Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 | /* * Copyright 2009 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ /* NVIDIA context programs handle a number of other conditions which are * not implemented in our versions. It's not clear why NVIDIA context * programs have this code, nor whether it's strictly necessary for * correct operation. We'll implement additional handling if/when we * discover it's necessary. * * - On context save, NVIDIA set 0x400314 bit 0 to 1 if the "3D state" * flag is set, this gets saved into the context. * - On context save, the context program for all cards load nsource * into a flag register and check for ILLEGAL_MTHD. If it's set, * opcode 0x60000d is called before resuming normal operation. * - Some context programs check more conditions than the above. NV44 * checks: ((nsource & 0x0857) || (0x400718 & 0x0100) || (intr & 0x0001)) * and calls 0x60000d before resuming normal operation. * - At the very beginning of NVIDIA's context programs, flag 9 is checked * and if true 0x800001 is called with count=0, pos=0, the flag is cleared * and then the ctxprog is aborted. It looks like a complicated NOP, * its purpose is unknown. * - In the section of code that loads the per-vs state, NVIDIA check * flag 10. If it's set, they only transfer the small 0x300 byte block * of state + the state for a single vs as opposed to the state for * all vs units. It doesn't seem likely that it'll occur in normal * operation, especially seeing as it appears NVIDIA may have screwed * up the ctxprogs for some cards and have an invalid instruction * rather than a cp_lsr(ctx, dwords_for_1_vs_unit) instruction. * - There's a number of places where context offset 0 (where we place * the PRAMIN offset of the context) is loaded into either 0x408000, * 0x408004 or 0x408008. Not sure what's up there either. * - The ctxprogs for some cards save 0x400a00 again during the cleanup * path for auto-loadctx. */ #define CP_FLAG_CLEAR 0 #define CP_FLAG_SET 1 #define CP_FLAG_SWAP_DIRECTION ((0 * 32) + 0) #define CP_FLAG_SWAP_DIRECTION_LOAD 0 #define CP_FLAG_SWAP_DIRECTION_SAVE 1 #define CP_FLAG_USER_SAVE ((0 * 32) + 5) #define CP_FLAG_USER_SAVE_NOT_PENDING 0 #define CP_FLAG_USER_SAVE_PENDING 1 #define CP_FLAG_USER_LOAD ((0 * 32) + 6) #define CP_FLAG_USER_LOAD_NOT_PENDING 0 #define CP_FLAG_USER_LOAD_PENDING 1 #define CP_FLAG_STATUS ((3 * 32) + 0) #define CP_FLAG_STATUS_IDLE 0 #define CP_FLAG_STATUS_BUSY 1 #define CP_FLAG_AUTO_SAVE ((3 * 32) + 4) #define CP_FLAG_AUTO_SAVE_NOT_PENDING 0 #define CP_FLAG_AUTO_SAVE_PENDING 1 #define CP_FLAG_AUTO_LOAD ((3 * 32) + 5) #define CP_FLAG_AUTO_LOAD_NOT_PENDING 0 #define CP_FLAG_AUTO_LOAD_PENDING 1 #define CP_FLAG_UNK54 ((3 * 32) + 6) #define CP_FLAG_UNK54_CLEAR 0 #define CP_FLAG_UNK54_SET 1 #define CP_FLAG_ALWAYS ((3 * 32) + 8) #define CP_FLAG_ALWAYS_FALSE 0 #define CP_FLAG_ALWAYS_TRUE 1 #define CP_FLAG_UNK57 ((3 * 32) + 9) #define CP_FLAG_UNK57_CLEAR 0 #define CP_FLAG_UNK57_SET 1 #define CP_CTX 0x00100000 #define CP_CTX_COUNT 0x000fc000 #define CP_CTX_COUNT_SHIFT 14 #define CP_CTX_REG 0x00003fff #define CP_LOAD_SR 0x00200000 #define CP_LOAD_SR_VALUE 0x000fffff #define CP_BRA 0x00400000 #define CP_BRA_IP 0x0000ff00 #define CP_BRA_IP_SHIFT 8 #define CP_BRA_IF_CLEAR 0x00000080 #define CP_BRA_FLAG 0x0000007f #define CP_WAIT 0x00500000 #define CP_WAIT_SET 0x00000080 #define CP_WAIT_FLAG 0x0000007f #define CP_SET 0x00700000 #define CP_SET_1 0x00000080 #define CP_SET_FLAG 0x0000007f #define CP_NEXT_TO_SWAP 0x00600007 #define CP_NEXT_TO_CURRENT 0x00600009 #define CP_SET_CONTEXT_POINTER 0x0060000a #define CP_END 0x0060000e #define CP_LOAD_MAGIC_UNK01 0x00800001 /* unknown */ #define CP_LOAD_MAGIC_NV44TCL 0x00800029 /* per-vs state (0x4497) */ #define CP_LOAD_MAGIC_NV40TCL 0x00800041 /* per-vs state (0x4097) */ #include "ctxnv40.h" #include "nv40.h" /* TODO: * - get vs count from 0x1540 */ static int nv40_gr_vs_count(struct nvkm_device *device) { switch (device->chipset) { case 0x47: case 0x49: case 0x4b: return 8; case 0x40: return 6; case 0x41: case 0x42: return 5; case 0x43: case 0x44: case 0x46: case 0x4a: return 3; case 0x4c: case 0x4e: case 0x67: default: return 1; } } enum cp_label { cp_check_load = 1, cp_setup_auto_load, cp_setup_load, cp_setup_save, cp_swap_state, cp_swap_state3d_3_is_save, cp_prepare_exit, cp_exit, }; static void nv40_gr_construct_general(struct nvkm_grctx *ctx) { struct nvkm_device *device = ctx->device; int i; cp_ctx(ctx, 0x4000a4, 1); gr_def(ctx, 0x4000a4, 0x00000008); cp_ctx(ctx, 0x400144, 58); gr_def(ctx, 0x400144, 0x00000001); cp_ctx(ctx, 0x400314, 1); gr_def(ctx, 0x400314, 0x00000000); cp_ctx(ctx, 0x400400, 10); cp_ctx(ctx, 0x400480, 10); cp_ctx(ctx, 0x400500, 19); gr_def(ctx, 0x400514, 0x00040000); gr_def(ctx, 0x400524, 0x55555555); gr_def(ctx, 0x400528, 0x55555555); gr_def(ctx, 0x40052c, 0x55555555); gr_def(ctx, 0x400530, 0x55555555); cp_ctx(ctx, 0x400560, 6); gr_def(ctx, 0x400568, 0x0000ffff); gr_def(ctx, 0x40056c, 0x0000ffff); cp_ctx(ctx, 0x40057c, 5); cp_ctx(ctx, 0x400710, 3); gr_def(ctx, 0x400710, 0x20010001); gr_def(ctx, 0x400714, 0x0f73ef00); cp_ctx(ctx, 0x400724, 1); gr_def(ctx, 0x400724, 0x02008821); cp_ctx(ctx, 0x400770, 3); if (device->chipset == 0x40) { cp_ctx(ctx, 0x400814, 4); cp_ctx(ctx, 0x400828, 5); cp_ctx(ctx, 0x400840, 5); gr_def(ctx, 0x400850, 0x00000040); cp_ctx(ctx, 0x400858, 4); gr_def(ctx, 0x400858, 0x00000040); gr_def(ctx, 0x40085c, 0x00000040); gr_def(ctx, 0x400864, 0x80000000); cp_ctx(ctx, 0x40086c, 9); gr_def(ctx, 0x40086c, 0x80000000); gr_def(ctx, 0x400870, 0x80000000); gr_def(ctx, 0x400874, 0x80000000); gr_def(ctx, 0x400878, 0x80000000); gr_def(ctx, 0x400888, 0x00000040); gr_def(ctx, 0x40088c, 0x80000000); cp_ctx(ctx, 0x4009c0, 8); gr_def(ctx, 0x4009cc, 0x80000000); gr_def(ctx, 0x4009dc, 0x80000000); } else { cp_ctx(ctx, 0x400840, 20); if (nv44_gr_class(ctx->device)) { for (i = 0; i < 8; i++) gr_def(ctx, 0x400860 + (i * 4), 0x00000001); } gr_def(ctx, 0x400880, 0x00000040); gr_def(ctx, 0x400884, 0x00000040); gr_def(ctx, 0x400888, 0x00000040); cp_ctx(ctx, 0x400894, 11); gr_def(ctx, 0x400894, 0x00000040); if (!nv44_gr_class(ctx->device)) { for (i = 0; i < 8; i++) gr_def(ctx, 0x4008a0 + (i * 4), 0x80000000); } cp_ctx(ctx, 0x4008e0, 2); cp_ctx(ctx, 0x4008f8, 2); if (device->chipset == 0x4c || (device->chipset & 0xf0) == 0x60) cp_ctx(ctx, 0x4009f8, 1); } cp_ctx(ctx, 0x400a00, 73); gr_def(ctx, 0x400b0c, 0x0b0b0b0c); cp_ctx(ctx, 0x401000, 4); cp_ctx(ctx, 0x405004, 1); switch (device->chipset) { case 0x47: case 0x49: case 0x4b: cp_ctx(ctx, 0x403448, 1); gr_def(ctx, 0x403448, 0x00001010); break; default: cp_ctx(ctx, 0x403440, 1); switch (device->chipset) { case 0x40: gr_def(ctx, 0x403440, 0x00000010); break; case 0x44: case 0x46: case 0x4a: gr_def(ctx, 0x403440, 0x00003010); break; case 0x41: case 0x42: case 0x43: case 0x4c: case 0x4e: case 0x67: default: gr_def(ctx, 0x403440, 0x00001010); break; } break; } } static void nv40_gr_construct_state3d(struct nvkm_grctx *ctx) { struct nvkm_device *device = ctx->device; int i; if (device->chipset == 0x40) { cp_ctx(ctx, 0x401880, 51); gr_def(ctx, 0x401940, 0x00000100); } else if (device->chipset == 0x46 || device->chipset == 0x47 || device->chipset == 0x49 || device->chipset == 0x4b) { cp_ctx(ctx, 0x401880, 32); for (i = 0; i < 16; i++) gr_def(ctx, 0x401880 + (i * 4), 0x00000111); if (device->chipset == 0x46) cp_ctx(ctx, 0x401900, 16); cp_ctx(ctx, 0x401940, 3); } cp_ctx(ctx, 0x40194c, 18); gr_def(ctx, 0x401954, 0x00000111); gr_def(ctx, 0x401958, 0x00080060); gr_def(ctx, 0x401974, 0x00000080); gr_def(ctx, 0x401978, 0xffff0000); gr_def(ctx, 0x40197c, 0x00000001); gr_def(ctx, 0x401990, 0x46400000); if (device->chipset == 0x40) { cp_ctx(ctx, 0x4019a0, 2); cp_ctx(ctx, 0x4019ac, 5); } else { cp_ctx(ctx, 0x4019a0, 1); cp_ctx(ctx, 0x4019b4, 3); } gr_def(ctx, 0x4019bc, 0xffff0000); switch (device->chipset) { case 0x46: case 0x47: case 0x49: case 0x4b: cp_ctx(ctx, 0x4019c0, 18); for (i = 0; i < 16; i++) gr_def(ctx, 0x4019c0 + (i * 4), 0x88888888); break; } cp_ctx(ctx, 0x401a08, 8); gr_def(ctx, 0x401a10, 0x0fff0000); gr_def(ctx, 0x401a14, 0x0fff0000); gr_def(ctx, 0x401a1c, 0x00011100); cp_ctx(ctx, 0x401a2c, 4); cp_ctx(ctx, 0x401a44, 26); for (i = 0; i < 16; i++) gr_def(ctx, 0x401a44 + (i * 4), 0x07ff0000); gr_def(ctx, 0x401a8c, 0x4b7fffff); if (device->chipset == 0x40) { cp_ctx(ctx, 0x401ab8, 3); } else { cp_ctx(ctx, 0x401ab8, 1); cp_ctx(ctx, 0x401ac0, 1); } cp_ctx(ctx, 0x401ad0, 8); gr_def(ctx, 0x401ad0, 0x30201000); gr_def(ctx, 0x401ad4, 0x70605040); gr_def(ctx, 0x401ad8, 0xb8a89888); gr_def(ctx, 0x401adc, 0xf8e8d8c8); cp_ctx(ctx, 0x401b10, device->chipset == 0x40 ? 2 : 1); gr_def(ctx, 0x401b10, 0x40100000); cp_ctx(ctx, 0x401b18, device->chipset == 0x40 ? 6 : 5); gr_def(ctx, 0x401b28, device->chipset == 0x40 ? 0x00000004 : 0x00000000); cp_ctx(ctx, 0x401b30, 25); gr_def(ctx, 0x401b34, 0x0000ffff); gr_def(ctx, 0x401b68, 0x435185d6); gr_def(ctx, 0x401b6c, 0x2155b699); gr_def(ctx, 0x401b70, 0xfedcba98); gr_def(ctx, 0x401b74, 0x00000098); gr_def(ctx, 0x401b84, 0xffffffff); gr_def(ctx, 0x401b88, 0x00ff7000); gr_def(ctx, 0x401b8c, 0x0000ffff); if (device->chipset != 0x44 && device->chipset != 0x4a && device->chipset != 0x4e) cp_ctx(ctx, 0x401b94, 1); cp_ctx(ctx, 0x401b98, 8); gr_def(ctx, 0x401b9c, 0x00ff0000); cp_ctx(ctx, 0x401bc0, 9); gr_def(ctx, 0x401be0, 0x00ffff00); cp_ctx(ctx, 0x401c00, 192); for (i = 0; i < 16; i++) { /* fragment texture units */ gr_def(ctx, 0x401c40 + (i * 4), 0x00018488); gr_def(ctx, 0x401c80 + (i * 4), 0x00028202); gr_def(ctx, 0x401d00 + (i * 4), 0x0000aae4); gr_def(ctx, 0x401d40 + (i * 4), 0x01012000); gr_def(ctx, 0x401d80 + (i * 4), 0x00080008); gr_def(ctx, 0x401e00 + (i * 4), 0x00100008); } for (i = 0; i < 4; i++) { /* vertex texture units */ gr_def(ctx, 0x401e90 + (i * 4), 0x0001bc80); gr_def(ctx, 0x401ea0 + (i * 4), 0x00000202); gr_def(ctx, 0x401ec0 + (i * 4), 0x00000008); gr_def(ctx, 0x401ee0 + (i * 4), 0x00080008); } cp_ctx(ctx, 0x400f5c, 3); gr_def(ctx, 0x400f5c, 0x00000002); cp_ctx(ctx, 0x400f84, 1); } static void nv40_gr_construct_state3d_2(struct nvkm_grctx *ctx) { struct nvkm_device *device = ctx->device; int i; cp_ctx(ctx, 0x402000, 1); cp_ctx(ctx, 0x402404, device->chipset == 0x40 ? 1 : 2); switch (device->chipset) { case 0x40: gr_def(ctx, 0x402404, 0x00000001); break; case 0x4c: case 0x4e: case 0x67: gr_def(ctx, 0x402404, 0x00000020); break; case 0x46: case 0x49: case 0x4b: gr_def(ctx, 0x402404, 0x00000421); break; default: gr_def(ctx, 0x402404, 0x00000021); } if (device->chipset != 0x40) gr_def(ctx, 0x402408, 0x030c30c3); switch (device->chipset) { case 0x44: case 0x46: case 0x4a: case 0x4c: case 0x4e: case 0x67: cp_ctx(ctx, 0x402440, 1); gr_def(ctx, 0x402440, 0x00011001); break; default: break; } cp_ctx(ctx, 0x402480, device->chipset == 0x40 ? 8 : 9); gr_def(ctx, 0x402488, 0x3e020200); gr_def(ctx, 0x40248c, 0x00ffffff); switch (device->chipset) { case 0x40: gr_def(ctx, 0x402490, 0x60103f00); break; case 0x47: gr_def(ctx, 0x402490, 0x40103f00); break; case 0x41: case 0x42: case 0x49: case 0x4b: gr_def(ctx, 0x402490, 0x20103f00); break; default: gr_def(ctx, 0x402490, 0x0c103f00); break; } gr_def(ctx, 0x40249c, device->chipset <= 0x43 ? 0x00020000 : 0x00040000); cp_ctx(ctx, 0x402500, 31); gr_def(ctx, 0x402530, 0x00008100); if (device->chipset == 0x40) cp_ctx(ctx, 0x40257c, 6); cp_ctx(ctx, 0x402594, 16); cp_ctx(ctx, 0x402800, 17); gr_def(ctx, 0x402800, 0x00000001); switch (device->chipset) { case 0x47: case 0x49: case 0x4b: cp_ctx(ctx, 0x402864, 1); gr_def(ctx, 0x402864, 0x00001001); cp_ctx(ctx, 0x402870, 3); gr_def(ctx, 0x402878, 0x00000003); if (device->chipset != 0x47) { /* belong at end!! */ cp_ctx(ctx, 0x402900, 1); cp_ctx(ctx, 0x402940, 1); cp_ctx(ctx, 0x402980, 1); cp_ctx(ctx, 0x4029c0, 1); cp_ctx(ctx, 0x402a00, 1); cp_ctx(ctx, 0x402a40, 1); cp_ctx(ctx, 0x402a80, 1); cp_ctx(ctx, 0x402ac0, 1); } break; case 0x40: cp_ctx(ctx, 0x402844, 1); gr_def(ctx, 0x402844, 0x00000001); cp_ctx(ctx, 0x402850, 1); break; default: cp_ctx(ctx, 0x402844, 1); gr_def(ctx, 0x402844, 0x00001001); cp_ctx(ctx, 0x402850, 2); gr_def(ctx, 0x402854, 0x00000003); break; } cp_ctx(ctx, 0x402c00, 4); gr_def(ctx, 0x402c00, device->chipset == 0x40 ? 0x80800001 : 0x00888001); switch (device->chipset) { case 0x47: case 0x49: case 0x4b: cp_ctx(ctx, 0x402c20, 40); for (i = 0; i < 32; i++) gr_def(ctx, 0x402c40 + (i * 4), 0xffffffff); cp_ctx(ctx, 0x4030b8, 13); gr_def(ctx, 0x4030dc, 0x00000005); gr_def(ctx, 0x4030e8, 0x0000ffff); break; default: cp_ctx(ctx, 0x402c10, 4); if (device->chipset == 0x40) cp_ctx(ctx, 0x402c20, 36); else if (device->chipset <= 0x42) cp_ctx(ctx, 0x402c20, 24); else if (device->chipset <= 0x4a) cp_ctx(ctx, 0x402c20, 16); else cp_ctx(ctx, 0x402c20, 8); cp_ctx(ctx, 0x402cb0, device->chipset == 0x40 ? 12 : 13); gr_def(ctx, 0x402cd4, 0x00000005); if (device->chipset != 0x40) gr_def(ctx, 0x402ce0, 0x0000ffff); break; } cp_ctx(ctx, 0x403400, device->chipset == 0x40 ? 4 : 3); cp_ctx(ctx, 0x403410, device->chipset == 0x40 ? 4 : 3); cp_ctx(ctx, 0x403420, nv40_gr_vs_count(ctx->device)); for (i = 0; i < nv40_gr_vs_count(ctx->device); i++) gr_def(ctx, 0x403420 + (i * 4), 0x00005555); if (device->chipset != 0x40) { cp_ctx(ctx, 0x403600, 1); gr_def(ctx, 0x403600, 0x00000001); } cp_ctx(ctx, 0x403800, 1); cp_ctx(ctx, 0x403c18, 1); gr_def(ctx, 0x403c18, 0x00000001); switch (device->chipset) { case 0x46: case 0x47: case 0x49: case 0x4b: cp_ctx(ctx, 0x405018, 1); gr_def(ctx, 0x405018, 0x08e00001); cp_ctx(ctx, 0x405c24, 1); gr_def(ctx, 0x405c24, 0x000e3000); break; } if (device->chipset != 0x4e) cp_ctx(ctx, 0x405800, 11); cp_ctx(ctx, 0x407000, 1); } static void nv40_gr_construct_state3d_3(struct nvkm_grctx *ctx) { int len = nv44_gr_class(ctx->device) ? 0x0084 : 0x0684; cp_out (ctx, 0x300000); cp_lsr (ctx, len - 4); cp_bra (ctx, SWAP_DIRECTION, SAVE, cp_swap_state3d_3_is_save); cp_lsr (ctx, len); cp_name(ctx, cp_swap_state3d_3_is_save); cp_out (ctx, 0x800001); ctx->ctxvals_pos += len; } static void nv40_gr_construct_shader(struct nvkm_grctx *ctx) { struct nvkm_device *device = ctx->device; struct nvkm_gpuobj *obj = ctx->data; int vs, vs_nr, vs_len, vs_nr_b0, vs_nr_b1, b0_offset, b1_offset; int offset, i; vs_nr = nv40_gr_vs_count(ctx->device); vs_nr_b0 = 363; vs_nr_b1 = device->chipset == 0x40 ? 128 : 64; if (device->chipset == 0x40) { b0_offset = 0x2200/4; /* 33a0 */ b1_offset = 0x55a0/4; /* 1500 */ vs_len = 0x6aa0/4; } else if (device->chipset == 0x41 || device->chipset == 0x42) { b0_offset = 0x2200/4; /* 2200 */ b1_offset = 0x4400/4; /* 0b00 */ vs_len = 0x4f00/4; } else { b0_offset = 0x1d40/4; /* 2200 */ b1_offset = 0x3f40/4; /* 0b00 : 0a40 */ vs_len = nv44_gr_class(device) ? 0x4980/4 : 0x4a40/4; } cp_lsr(ctx, vs_len * vs_nr + 0x300/4); cp_out(ctx, nv44_gr_class(device) ? 0x800029 : 0x800041); offset = ctx->ctxvals_pos; ctx->ctxvals_pos += (0x0300/4 + (vs_nr * vs_len)); if (ctx->mode != NVKM_GRCTX_VALS) return; offset += 0x0280/4; for (i = 0; i < 16; i++, offset += 2) nvkm_wo32(obj, offset * 4, 0x3f800000); for (vs = 0; vs < vs_nr; vs++, offset += vs_len) { for (i = 0; i < vs_nr_b0 * 6; i += 6) nvkm_wo32(obj, (offset + b0_offset + i) * 4, 0x00000001); for (i = 0; i < vs_nr_b1 * 4; i += 4) nvkm_wo32(obj, (offset + b1_offset + i) * 4, 0x3f800000); } } static void nv40_grctx_generate(struct nvkm_grctx *ctx) { /* decide whether we're loading/unloading the context */ cp_bra (ctx, AUTO_SAVE, PENDING, cp_setup_save); cp_bra (ctx, USER_SAVE, PENDING, cp_setup_save); cp_name(ctx, cp_check_load); cp_bra (ctx, AUTO_LOAD, PENDING, cp_setup_auto_load); cp_bra (ctx, USER_LOAD, PENDING, cp_setup_load); cp_bra (ctx, ALWAYS, TRUE, cp_exit); /* setup for context load */ cp_name(ctx, cp_setup_auto_load); cp_wait(ctx, STATUS, IDLE); cp_out (ctx, CP_NEXT_TO_SWAP); cp_name(ctx, cp_setup_load); cp_wait(ctx, STATUS, IDLE); cp_set (ctx, SWAP_DIRECTION, LOAD); cp_out (ctx, 0x00910880); /* ?? */ cp_out (ctx, 0x00901ffe); /* ?? */ cp_out (ctx, 0x01940000); /* ?? */ cp_lsr (ctx, 0x20); cp_out (ctx, 0x0060000b); /* ?? */ cp_wait(ctx, UNK57, CLEAR); cp_out (ctx, 0x0060000c); /* ?? */ cp_bra (ctx, ALWAYS, TRUE, cp_swap_state); /* setup for context save */ cp_name(ctx, cp_setup_save); cp_set (ctx, SWAP_DIRECTION, SAVE); /* general PGRAPH state */ cp_name(ctx, cp_swap_state); cp_pos (ctx, 0x00020/4); nv40_gr_construct_general(ctx); cp_wait(ctx, STATUS, IDLE); /* 3D state, block 1 */ cp_bra (ctx, UNK54, CLEAR, cp_prepare_exit); nv40_gr_construct_state3d(ctx); cp_wait(ctx, STATUS, IDLE); /* 3D state, block 2 */ nv40_gr_construct_state3d_2(ctx); /* Some other block of "random" state */ nv40_gr_construct_state3d_3(ctx); /* Per-vertex shader state */ cp_pos (ctx, ctx->ctxvals_pos); nv40_gr_construct_shader(ctx); /* pre-exit state updates */ cp_name(ctx, cp_prepare_exit); cp_bra (ctx, SWAP_DIRECTION, SAVE, cp_check_load); cp_bra (ctx, USER_SAVE, PENDING, cp_exit); cp_out (ctx, CP_NEXT_TO_CURRENT); cp_name(ctx, cp_exit); cp_set (ctx, USER_SAVE, NOT_PENDING); cp_set (ctx, USER_LOAD, NOT_PENDING); cp_out (ctx, CP_END); } void nv40_grctx_fill(struct nvkm_device *device, struct nvkm_gpuobj *mem) { nv40_grctx_generate(&(struct nvkm_grctx) { .device = device, .mode = NVKM_GRCTX_VALS, .data = mem, }); } int nv40_grctx_init(struct nvkm_device *device, u32 *size) { u32 *ctxprog = kmalloc(256 * 4, GFP_KERNEL), i; struct nvkm_grctx ctx = { .device = device, .mode = NVKM_GRCTX_PROG, .ucode = ctxprog, .ctxprog_max = 256, }; if (!ctxprog) return -ENOMEM; nv40_grctx_generate(&ctx); nvkm_wr32(device, 0x400324, 0); for (i = 0; i < ctx.ctxprog_len; i++) nvkm_wr32(device, 0x400328, ctxprog[i]); *size = ctx.ctxvals_pos * 4; kfree(ctxprog); return 0; } |