Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 | // SPDX-License-Identifier: GPL-2.0 /* * Device Memory Migration functionality. * * Originally written by Jérôme Glisse. */ #include <linux/export.h> #include <linux/memremap.h> #include <linux/migrate.h> #include <linux/mm.h> #include <linux/mm_inline.h> #include <linux/mmu_notifier.h> #include <linux/oom.h> #include <linux/pagewalk.h> #include <linux/rmap.h> #include <linux/swapops.h> #include <asm/tlbflush.h> #include "internal.h" static int migrate_vma_collect_skip(unsigned long start, unsigned long end, struct mm_walk *walk) { struct migrate_vma *migrate = walk->private; unsigned long addr; for (addr = start; addr < end; addr += PAGE_SIZE) { migrate->dst[migrate->npages] = 0; migrate->src[migrate->npages++] = 0; } return 0; } static int migrate_vma_collect_hole(unsigned long start, unsigned long end, __always_unused int depth, struct mm_walk *walk) { struct migrate_vma *migrate = walk->private; unsigned long addr; /* Only allow populating anonymous memory. */ if (!vma_is_anonymous(walk->vma)) return migrate_vma_collect_skip(start, end, walk); for (addr = start; addr < end; addr += PAGE_SIZE) { migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; migrate->dst[migrate->npages] = 0; migrate->npages++; migrate->cpages++; } return 0; } static int migrate_vma_collect_pmd(pmd_t *pmdp, unsigned long start, unsigned long end, struct mm_walk *walk) { struct migrate_vma *migrate = walk->private; struct vm_area_struct *vma = walk->vma; struct mm_struct *mm = vma->vm_mm; unsigned long addr = start, unmapped = 0; spinlock_t *ptl; pte_t *ptep; again: if (pmd_none(*pmdp)) return migrate_vma_collect_hole(start, end, -1, walk); if (pmd_trans_huge(*pmdp)) { struct folio *folio; ptl = pmd_lock(mm, pmdp); if (unlikely(!pmd_trans_huge(*pmdp))) { spin_unlock(ptl); goto again; } folio = pmd_folio(*pmdp); if (is_huge_zero_folio(folio)) { spin_unlock(ptl); split_huge_pmd(vma, pmdp, addr); } else { int ret; folio_get(folio); spin_unlock(ptl); if (unlikely(!folio_trylock(folio))) return migrate_vma_collect_skip(start, end, walk); ret = split_folio(folio); folio_unlock(folio); folio_put(folio); if (ret) return migrate_vma_collect_skip(start, end, walk); } } ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); if (!ptep) goto again; arch_enter_lazy_mmu_mode(); for (; addr < end; addr += PAGE_SIZE, ptep++) { unsigned long mpfn = 0, pfn; struct folio *folio; struct page *page; swp_entry_t entry; pte_t pte; pte = ptep_get(ptep); if (pte_none(pte)) { if (vma_is_anonymous(vma)) { mpfn = MIGRATE_PFN_MIGRATE; migrate->cpages++; } goto next; } if (!pte_present(pte)) { /* * Only care about unaddressable device page special * page table entry. Other special swap entries are not * migratable, and we ignore regular swapped page. */ entry = pte_to_swp_entry(pte); if (!is_device_private_entry(entry)) goto next; page = pfn_swap_entry_to_page(entry); if (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || page->pgmap->owner != migrate->pgmap_owner) goto next; mpfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE; if (is_writable_device_private_entry(entry)) mpfn |= MIGRATE_PFN_WRITE; } else { pfn = pte_pfn(pte); if (is_zero_pfn(pfn) && (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) { mpfn = MIGRATE_PFN_MIGRATE; migrate->cpages++; goto next; } page = vm_normal_page(migrate->vma, addr, pte); if (page && !is_zone_device_page(page) && !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) goto next; else if (page && is_device_coherent_page(page) && (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) || page->pgmap->owner != migrate->pgmap_owner)) goto next; mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; } /* FIXME support THP */ if (!page || !page->mapping || PageTransCompound(page)) { mpfn = 0; goto next; } /* * By getting a reference on the folio we pin it and that blocks * any kind of migration. Side effect is that it "freezes" the * pte. * * We drop this reference after isolating the folio from the lru * for non device folio (device folio are not on the lru and thus * can't be dropped from it). */ folio = page_folio(page); folio_get(folio); /* * We rely on folio_trylock() to avoid deadlock between * concurrent migrations where each is waiting on the others * folio lock. If we can't immediately lock the folio we fail this * migration as it is only best effort anyway. * * If we can lock the folio it's safe to set up a migration entry * now. In the common case where the folio is mapped once in a * single process setting up the migration entry now is an * optimisation to avoid walking the rmap later with * try_to_migrate(). */ if (folio_trylock(folio)) { bool anon_exclusive; pte_t swp_pte; flush_cache_page(vma, addr, pte_pfn(pte)); anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page); if (anon_exclusive) { pte = ptep_clear_flush(vma, addr, ptep); if (folio_try_share_anon_rmap_pte(folio, page)) { set_pte_at(mm, addr, ptep, pte); folio_unlock(folio); folio_put(folio); mpfn = 0; goto next; } } else { pte = ptep_get_and_clear(mm, addr, ptep); } migrate->cpages++; /* Set the dirty flag on the folio now the pte is gone. */ if (pte_dirty(pte)) folio_mark_dirty(folio); /* Setup special migration page table entry */ if (mpfn & MIGRATE_PFN_WRITE) entry = make_writable_migration_entry( page_to_pfn(page)); else if (anon_exclusive) entry = make_readable_exclusive_migration_entry( page_to_pfn(page)); else entry = make_readable_migration_entry( page_to_pfn(page)); if (pte_present(pte)) { if (pte_young(pte)) entry = make_migration_entry_young(entry); if (pte_dirty(pte)) entry = make_migration_entry_dirty(entry); } swp_pte = swp_entry_to_pte(entry); if (pte_present(pte)) { if (pte_soft_dirty(pte)) swp_pte = pte_swp_mksoft_dirty(swp_pte); if (pte_uffd_wp(pte)) swp_pte = pte_swp_mkuffd_wp(swp_pte); } else { if (pte_swp_soft_dirty(pte)) swp_pte = pte_swp_mksoft_dirty(swp_pte); if (pte_swp_uffd_wp(pte)) swp_pte = pte_swp_mkuffd_wp(swp_pte); } set_pte_at(mm, addr, ptep, swp_pte); /* * This is like regular unmap: we remove the rmap and * drop the folio refcount. The folio won't be freed, as * we took a reference just above. */ folio_remove_rmap_pte(folio, page, vma); folio_put(folio); if (pte_present(pte)) unmapped++; } else { folio_put(folio); mpfn = 0; } next: migrate->dst[migrate->npages] = 0; migrate->src[migrate->npages++] = mpfn; } /* Only flush the TLB if we actually modified any entries */ if (unmapped) flush_tlb_range(walk->vma, start, end); arch_leave_lazy_mmu_mode(); pte_unmap_unlock(ptep - 1, ptl); return 0; } static const struct mm_walk_ops migrate_vma_walk_ops = { .pmd_entry = migrate_vma_collect_pmd, .pte_hole = migrate_vma_collect_hole, .walk_lock = PGWALK_RDLOCK, }; /* * migrate_vma_collect() - collect pages over a range of virtual addresses * @migrate: migrate struct containing all migration information * * This will walk the CPU page table. For each virtual address backed by a * valid page, it updates the src array and takes a reference on the page, in * order to pin the page until we lock it and unmap it. */ static void migrate_vma_collect(struct migrate_vma *migrate) { struct mmu_notifier_range range; /* * Note that the pgmap_owner is passed to the mmu notifier callback so * that the registered device driver can skip invalidating device * private page mappings that won't be migrated. */ mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0, migrate->vma->vm_mm, migrate->start, migrate->end, migrate->pgmap_owner); mmu_notifier_invalidate_range_start(&range); walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, &migrate_vma_walk_ops, migrate); mmu_notifier_invalidate_range_end(&range); migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); } /* * migrate_vma_check_page() - check if page is pinned or not * @page: struct page to check * * Pinned pages cannot be migrated. This is the same test as in * folio_migrate_mapping(), except that here we allow migration of a * ZONE_DEVICE page. */ static bool migrate_vma_check_page(struct page *page, struct page *fault_page) { struct folio *folio = page_folio(page); /* * One extra ref because caller holds an extra reference, either from * isolate_lru_page() for a regular page, or migrate_vma_collect() for * a device page. */ int extra = 1 + (page == fault_page); /* * FIXME support THP (transparent huge page), it is bit more complex to * check them than regular pages, because they can be mapped with a pmd * or with a pte (split pte mapping). */ if (folio_test_large(folio)) return false; /* Page from ZONE_DEVICE have one extra reference */ if (folio_is_zone_device(folio)) extra++; /* For file back page */ if (folio_mapping(folio)) extra += 1 + folio_has_private(folio); if ((folio_ref_count(folio) - extra) > folio_mapcount(folio)) return false; return true; } /* * Unmaps pages for migration. Returns number of source pfns marked as * migrating. */ static unsigned long migrate_device_unmap(unsigned long *src_pfns, unsigned long npages, struct page *fault_page) { unsigned long i, restore = 0; bool allow_drain = true; unsigned long unmapped = 0; lru_add_drain(); for (i = 0; i < npages; i++) { struct page *page = migrate_pfn_to_page(src_pfns[i]); struct folio *folio; if (!page) { if (src_pfns[i] & MIGRATE_PFN_MIGRATE) unmapped++; continue; } /* ZONE_DEVICE pages are not on LRU */ if (!is_zone_device_page(page)) { if (!PageLRU(page) && allow_drain) { /* Drain CPU's lru cache */ lru_add_drain_all(); allow_drain = false; } if (!isolate_lru_page(page)) { src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; restore++; continue; } /* Drop the reference we took in collect */ put_page(page); } folio = page_folio(page); if (folio_mapped(folio)) try_to_migrate(folio, 0); if (page_mapped(page) || !migrate_vma_check_page(page, fault_page)) { if (!is_zone_device_page(page)) { get_page(page); putback_lru_page(page); } src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; restore++; continue; } unmapped++; } for (i = 0; i < npages && restore; i++) { struct page *page = migrate_pfn_to_page(src_pfns[i]); struct folio *folio; if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE)) continue; folio = page_folio(page); remove_migration_ptes(folio, folio, false); src_pfns[i] = 0; folio_unlock(folio); folio_put(folio); restore--; } return unmapped; } /* * migrate_vma_unmap() - replace page mapping with special migration pte entry * @migrate: migrate struct containing all migration information * * Isolate pages from the LRU and replace mappings (CPU page table pte) with a * special migration pte entry and check if it has been pinned. Pinned pages are * restored because we cannot migrate them. * * This is the last step before we call the device driver callback to allocate * destination memory and copy contents of original page over to new page. */ static void migrate_vma_unmap(struct migrate_vma *migrate) { migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages, migrate->fault_page); } /** * migrate_vma_setup() - prepare to migrate a range of memory * @args: contains the vma, start, and pfns arrays for the migration * * Returns: negative errno on failures, 0 when 0 or more pages were migrated * without an error. * * Prepare to migrate a range of memory virtual address range by collecting all * the pages backing each virtual address in the range, saving them inside the * src array. Then lock those pages and unmap them. Once the pages are locked * and unmapped, check whether each page is pinned or not. Pages that aren't * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the * corresponding src array entry. Then restores any pages that are pinned, by * remapping and unlocking those pages. * * The caller should then allocate destination memory and copy source memory to * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE * flag set). Once these are allocated and copied, the caller must update each * corresponding entry in the dst array with the pfn value of the destination * page and with MIGRATE_PFN_VALID. Destination pages must be locked via * lock_page(). * * Note that the caller does not have to migrate all the pages that are marked * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from * device memory to system memory. If the caller cannot migrate a device page * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe * consequences for the userspace process, so it must be avoided if at all * possible. * * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus * allowing the caller to allocate device memory for those unbacked virtual * addresses. For this the caller simply has to allocate device memory and * properly set the destination entry like for regular migration. Note that * this can still fail, and thus inside the device driver you must check if the * migration was successful for those entries after calling migrate_vma_pages(), * just like for regular migration. * * After that, the callers must call migrate_vma_pages() to go over each entry * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, * then migrate_vma_pages() to migrate struct page information from the source * struct page to the destination struct page. If it fails to migrate the * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the * src array. * * At this point all successfully migrated pages have an entry in the src * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst * array entry with MIGRATE_PFN_VALID flag set. * * Once migrate_vma_pages() returns the caller may inspect which pages were * successfully migrated, and which were not. Successfully migrated pages will * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. * * It is safe to update device page table after migrate_vma_pages() because * both destination and source page are still locked, and the mmap_lock is held * in read mode (hence no one can unmap the range being migrated). * * Once the caller is done cleaning up things and updating its page table (if it * chose to do so, this is not an obligation) it finally calls * migrate_vma_finalize() to update the CPU page table to point to new pages * for successfully migrated pages or otherwise restore the CPU page table to * point to the original source pages. */ int migrate_vma_setup(struct migrate_vma *args) { long nr_pages = (args->end - args->start) >> PAGE_SHIFT; args->start &= PAGE_MASK; args->end &= PAGE_MASK; if (!args->vma || is_vm_hugetlb_page(args->vma) || (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) return -EINVAL; if (nr_pages <= 0) return -EINVAL; if (args->start < args->vma->vm_start || args->start >= args->vma->vm_end) return -EINVAL; if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) return -EINVAL; if (!args->src || !args->dst) return -EINVAL; if (args->fault_page && !is_device_private_page(args->fault_page)) return -EINVAL; memset(args->src, 0, sizeof(*args->src) * nr_pages); args->cpages = 0; args->npages = 0; migrate_vma_collect(args); if (args->cpages) migrate_vma_unmap(args); /* * At this point pages are locked and unmapped, and thus they have * stable content and can safely be copied to destination memory that * is allocated by the drivers. */ return 0; } EXPORT_SYMBOL(migrate_vma_setup); /* * This code closely matches the code in: * __handle_mm_fault() * handle_pte_fault() * do_anonymous_page() * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE * private or coherent page. */ static void migrate_vma_insert_page(struct migrate_vma *migrate, unsigned long addr, struct page *page, unsigned long *src) { struct folio *folio = page_folio(page); struct vm_area_struct *vma = migrate->vma; struct mm_struct *mm = vma->vm_mm; bool flush = false; spinlock_t *ptl; pte_t entry; pgd_t *pgdp; p4d_t *p4dp; pud_t *pudp; pmd_t *pmdp; pte_t *ptep; pte_t orig_pte; /* Only allow populating anonymous memory */ if (!vma_is_anonymous(vma)) goto abort; pgdp = pgd_offset(mm, addr); p4dp = p4d_alloc(mm, pgdp, addr); if (!p4dp) goto abort; pudp = pud_alloc(mm, p4dp, addr); if (!pudp) goto abort; pmdp = pmd_alloc(mm, pudp, addr); if (!pmdp) goto abort; if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) goto abort; if (pte_alloc(mm, pmdp)) goto abort; if (unlikely(anon_vma_prepare(vma))) goto abort; if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) goto abort; /* * The memory barrier inside __folio_mark_uptodate makes sure that * preceding stores to the folio contents become visible before * the set_pte_at() write. */ __folio_mark_uptodate(folio); if (folio_is_device_private(folio)) { swp_entry_t swp_entry; if (vma->vm_flags & VM_WRITE) swp_entry = make_writable_device_private_entry( page_to_pfn(page)); else swp_entry = make_readable_device_private_entry( page_to_pfn(page)); entry = swp_entry_to_pte(swp_entry); } else { if (folio_is_zone_device(folio) && !folio_is_device_coherent(folio)) { pr_warn_once("Unsupported ZONE_DEVICE page type.\n"); goto abort; } entry = mk_pte(page, vma->vm_page_prot); if (vma->vm_flags & VM_WRITE) entry = pte_mkwrite(pte_mkdirty(entry), vma); } ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); if (!ptep) goto abort; orig_pte = ptep_get(ptep); if (check_stable_address_space(mm)) goto unlock_abort; if (pte_present(orig_pte)) { unsigned long pfn = pte_pfn(orig_pte); if (!is_zero_pfn(pfn)) goto unlock_abort; flush = true; } else if (!pte_none(orig_pte)) goto unlock_abort; /* * Check for userfaultfd but do not deliver the fault. Instead, * just back off. */ if (userfaultfd_missing(vma)) goto unlock_abort; inc_mm_counter(mm, MM_ANONPAGES); folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); if (!folio_is_zone_device(folio)) folio_add_lru_vma(folio, vma); folio_get(folio); if (flush) { flush_cache_page(vma, addr, pte_pfn(orig_pte)); ptep_clear_flush(vma, addr, ptep); } set_pte_at(mm, addr, ptep, entry); update_mmu_cache(vma, addr, ptep); pte_unmap_unlock(ptep, ptl); *src = MIGRATE_PFN_MIGRATE; return; unlock_abort: pte_unmap_unlock(ptep, ptl); abort: *src &= ~MIGRATE_PFN_MIGRATE; } static void __migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns, unsigned long npages, struct migrate_vma *migrate) { struct mmu_notifier_range range; unsigned long i; bool notified = false; for (i = 0; i < npages; i++) { struct page *newpage = migrate_pfn_to_page(dst_pfns[i]); struct page *page = migrate_pfn_to_page(src_pfns[i]); struct address_space *mapping; struct folio *newfolio, *folio; int r, extra_cnt = 0; if (!newpage) { src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; continue; } if (!page) { unsigned long addr; if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE)) continue; /* * The only time there is no vma is when called from * migrate_device_coherent_page(). However this isn't * called if the page could not be unmapped. */ VM_BUG_ON(!migrate); addr = migrate->start + i*PAGE_SIZE; if (!notified) { notified = true; mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0, migrate->vma->vm_mm, addr, migrate->end, migrate->pgmap_owner); mmu_notifier_invalidate_range_start(&range); } migrate_vma_insert_page(migrate, addr, newpage, &src_pfns[i]); continue; } newfolio = page_folio(newpage); folio = page_folio(page); mapping = folio_mapping(folio); if (folio_is_device_private(newfolio) || folio_is_device_coherent(newfolio)) { if (mapping) { /* * For now only support anonymous memory migrating to * device private or coherent memory. * * Try to get rid of swap cache if possible. */ if (!folio_test_anon(folio) || !folio_free_swap(folio)) { src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; continue; } } } else if (folio_is_zone_device(newfolio)) { /* * Other types of ZONE_DEVICE page are not supported. */ src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; continue; } BUG_ON(folio_test_writeback(folio)); if (migrate && migrate->fault_page == page) extra_cnt = 1; r = folio_migrate_mapping(mapping, newfolio, folio, extra_cnt); if (r != MIGRATEPAGE_SUCCESS) src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; else folio_migrate_flags(newfolio, folio); } if (notified) mmu_notifier_invalidate_range_end(&range); } /** * migrate_device_pages() - migrate meta-data from src page to dst page * @src_pfns: src_pfns returned from migrate_device_range() * @dst_pfns: array of pfns allocated by the driver to migrate memory to * @npages: number of pages in the range * * Equivalent to migrate_vma_pages(). This is called to migrate struct page * meta-data from source struct page to destination. */ void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns, unsigned long npages) { __migrate_device_pages(src_pfns, dst_pfns, npages, NULL); } EXPORT_SYMBOL(migrate_device_pages); /** * migrate_vma_pages() - migrate meta-data from src page to dst page * @migrate: migrate struct containing all migration information * * This migrates struct page meta-data from source struct page to destination * struct page. This effectively finishes the migration from source page to the * destination page. */ void migrate_vma_pages(struct migrate_vma *migrate) { __migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate); } EXPORT_SYMBOL(migrate_vma_pages); /* * migrate_device_finalize() - complete page migration * @src_pfns: src_pfns returned from migrate_device_range() * @dst_pfns: array of pfns allocated by the driver to migrate memory to * @npages: number of pages in the range * * Completes migration of the page by removing special migration entries. * Drivers must ensure copying of page data is complete and visible to the CPU * before calling this. */ void migrate_device_finalize(unsigned long *src_pfns, unsigned long *dst_pfns, unsigned long npages) { unsigned long i; for (i = 0; i < npages; i++) { struct folio *dst, *src; struct page *newpage = migrate_pfn_to_page(dst_pfns[i]); struct page *page = migrate_pfn_to_page(src_pfns[i]); if (!page) { if (newpage) { unlock_page(newpage); put_page(newpage); } continue; } if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !newpage) { if (newpage) { unlock_page(newpage); put_page(newpage); } newpage = page; } src = page_folio(page); dst = page_folio(newpage); remove_migration_ptes(src, dst, false); folio_unlock(src); if (is_zone_device_page(page)) put_page(page); else putback_lru_page(page); if (newpage != page) { unlock_page(newpage); if (is_zone_device_page(newpage)) put_page(newpage); else putback_lru_page(newpage); } } } EXPORT_SYMBOL(migrate_device_finalize); /** * migrate_vma_finalize() - restore CPU page table entry * @migrate: migrate struct containing all migration information * * This replaces the special migration pte entry with either a mapping to the * new page if migration was successful for that page, or to the original page * otherwise. * * This also unlocks the pages and puts them back on the lru, or drops the extra * refcount, for device pages. */ void migrate_vma_finalize(struct migrate_vma *migrate) { migrate_device_finalize(migrate->src, migrate->dst, migrate->npages); } EXPORT_SYMBOL(migrate_vma_finalize); /** * migrate_device_range() - migrate device private pfns to normal memory. * @src_pfns: array large enough to hold migrating source device private pfns. * @start: starting pfn in the range to migrate. * @npages: number of pages to migrate. * * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that * instead of looking up pages based on virtual address mappings a range of * device pfns that should be migrated to system memory is used instead. * * This is useful when a driver needs to free device memory but doesn't know the * virtual mappings of every page that may be in device memory. For example this * is often the case when a driver is being unloaded or unbound from a device. * * Like migrate_vma_setup() this function will take a reference and lock any * migrating pages that aren't free before unmapping them. Drivers may then * allocate destination pages and start copying data from the device to CPU * memory before calling migrate_device_pages(). */ int migrate_device_range(unsigned long *src_pfns, unsigned long start, unsigned long npages) { unsigned long i, pfn; for (pfn = start, i = 0; i < npages; pfn++, i++) { struct page *page = pfn_to_page(pfn); if (!get_page_unless_zero(page)) { src_pfns[i] = 0; continue; } if (!trylock_page(page)) { src_pfns[i] = 0; put_page(page); continue; } src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; } migrate_device_unmap(src_pfns, npages, NULL); return 0; } EXPORT_SYMBOL(migrate_device_range); /* * Migrate a device coherent page back to normal memory. The caller should have * a reference on page which will be copied to the new page if migration is * successful or dropped on failure. */ int migrate_device_coherent_page(struct page *page) { unsigned long src_pfn, dst_pfn = 0; struct page *dpage; WARN_ON_ONCE(PageCompound(page)); lock_page(page); src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE; /* * We don't have a VMA and don't need to walk the page tables to find * the source page. So call migrate_vma_unmap() directly to unmap the * page as migrate_vma_setup() will fail if args.vma == NULL. */ migrate_device_unmap(&src_pfn, 1, NULL); if (!(src_pfn & MIGRATE_PFN_MIGRATE)) return -EBUSY; dpage = alloc_page(GFP_USER | __GFP_NOWARN); if (dpage) { lock_page(dpage); dst_pfn = migrate_pfn(page_to_pfn(dpage)); } migrate_device_pages(&src_pfn, &dst_pfn, 1); if (src_pfn & MIGRATE_PFN_MIGRATE) copy_highpage(dpage, page); migrate_device_finalize(&src_pfn, &dst_pfn, 1); if (src_pfn & MIGRATE_PFN_MIGRATE) return 0; return -EBUSY; } |