Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 | // SPDX-License-Identifier: GPL-2.0-or-later #include <linux/memcontrol.h> #include <linux/swap.h> #include <linux/mm_inline.h> #include <linux/pagewalk.h> #include <linux/backing-dev.h> #include <linux/swap_cgroup.h> #include <linux/eventfd.h> #include <linux/poll.h> #include <linux/sort.h> #include <linux/file.h> #include <linux/seq_buf.h> #include "internal.h" #include "swap.h" #include "memcontrol-v1.h" /* * Cgroups above their limits are maintained in a RB-Tree, independent of * their hierarchy representation */ struct mem_cgroup_tree_per_node { struct rb_root rb_root; struct rb_node *rb_rightmost; spinlock_t lock; }; struct mem_cgroup_tree { struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; }; static struct mem_cgroup_tree soft_limit_tree __read_mostly; /* * Maximum loops in mem_cgroup_soft_reclaim(), used for soft * limit reclaim to prevent infinite loops, if they ever occur. */ #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 /* Stuffs for move charges at task migration. */ /* * Types of charges to be moved. */ #define MOVE_ANON 0x1ULL #define MOVE_FILE 0x2ULL #define MOVE_MASK (MOVE_ANON | MOVE_FILE) /* "mc" and its members are protected by cgroup_mutex */ static struct move_charge_struct { spinlock_t lock; /* for from, to */ struct mm_struct *mm; struct mem_cgroup *from; struct mem_cgroup *to; unsigned long flags; unsigned long precharge; unsigned long moved_charge; unsigned long moved_swap; struct task_struct *moving_task; /* a task moving charges */ wait_queue_head_t waitq; /* a waitq for other context */ } mc = { .lock = __SPIN_LOCK_UNLOCKED(mc.lock), .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), }; /* for OOM */ struct mem_cgroup_eventfd_list { struct list_head list; struct eventfd_ctx *eventfd; }; /* * cgroup_event represents events which userspace want to receive. */ struct mem_cgroup_event { /* * memcg which the event belongs to. */ struct mem_cgroup *memcg; /* * eventfd to signal userspace about the event. */ struct eventfd_ctx *eventfd; /* * Each of these stored in a list by the cgroup. */ struct list_head list; /* * register_event() callback will be used to add new userspace * waiter for changes related to this event. Use eventfd_signal() * on eventfd to send notification to userspace. */ int (*register_event)(struct mem_cgroup *memcg, struct eventfd_ctx *eventfd, const char *args); /* * unregister_event() callback will be called when userspace closes * the eventfd or on cgroup removing. This callback must be set, * if you want provide notification functionality. */ void (*unregister_event)(struct mem_cgroup *memcg, struct eventfd_ctx *eventfd); /* * All fields below needed to unregister event when * userspace closes eventfd. */ poll_table pt; wait_queue_head_t *wqh; wait_queue_entry_t wait; struct work_struct remove; }; #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) #define MEMFILE_ATTR(val) ((val) & 0xffff) enum { RES_USAGE, RES_LIMIT, RES_MAX_USAGE, RES_FAILCNT, RES_SOFT_LIMIT, }; #ifdef CONFIG_LOCKDEP static struct lockdep_map memcg_oom_lock_dep_map = { .name = "memcg_oom_lock", }; #endif DEFINE_SPINLOCK(memcg_oom_lock); static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, struct mem_cgroup_tree_per_node *mctz, unsigned long new_usage_in_excess) { struct rb_node **p = &mctz->rb_root.rb_node; struct rb_node *parent = NULL; struct mem_cgroup_per_node *mz_node; bool rightmost = true; if (mz->on_tree) return; mz->usage_in_excess = new_usage_in_excess; if (!mz->usage_in_excess) return; while (*p) { parent = *p; mz_node = rb_entry(parent, struct mem_cgroup_per_node, tree_node); if (mz->usage_in_excess < mz_node->usage_in_excess) { p = &(*p)->rb_left; rightmost = false; } else { p = &(*p)->rb_right; } } if (rightmost) mctz->rb_rightmost = &mz->tree_node; rb_link_node(&mz->tree_node, parent, p); rb_insert_color(&mz->tree_node, &mctz->rb_root); mz->on_tree = true; } static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, struct mem_cgroup_tree_per_node *mctz) { if (!mz->on_tree) return; if (&mz->tree_node == mctz->rb_rightmost) mctz->rb_rightmost = rb_prev(&mz->tree_node); rb_erase(&mz->tree_node, &mctz->rb_root); mz->on_tree = false; } static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, struct mem_cgroup_tree_per_node *mctz) { unsigned long flags; spin_lock_irqsave(&mctz->lock, flags); __mem_cgroup_remove_exceeded(mz, mctz); spin_unlock_irqrestore(&mctz->lock, flags); } static unsigned long soft_limit_excess(struct mem_cgroup *memcg) { unsigned long nr_pages = page_counter_read(&memcg->memory); unsigned long soft_limit = READ_ONCE(memcg->soft_limit); unsigned long excess = 0; if (nr_pages > soft_limit) excess = nr_pages - soft_limit; return excess; } static void memcg1_update_tree(struct mem_cgroup *memcg, int nid) { unsigned long excess; struct mem_cgroup_per_node *mz; struct mem_cgroup_tree_per_node *mctz; if (lru_gen_enabled()) { if (soft_limit_excess(memcg)) lru_gen_soft_reclaim(memcg, nid); return; } mctz = soft_limit_tree.rb_tree_per_node[nid]; if (!mctz) return; /* * Necessary to update all ancestors when hierarchy is used. * because their event counter is not touched. */ for (; memcg; memcg = parent_mem_cgroup(memcg)) { mz = memcg->nodeinfo[nid]; excess = soft_limit_excess(memcg); /* * We have to update the tree if mz is on RB-tree or * mem is over its softlimit. */ if (excess || mz->on_tree) { unsigned long flags; spin_lock_irqsave(&mctz->lock, flags); /* if on-tree, remove it */ if (mz->on_tree) __mem_cgroup_remove_exceeded(mz, mctz); /* * Insert again. mz->usage_in_excess will be updated. * If excess is 0, no tree ops. */ __mem_cgroup_insert_exceeded(mz, mctz, excess); spin_unlock_irqrestore(&mctz->lock, flags); } } } void memcg1_remove_from_trees(struct mem_cgroup *memcg) { struct mem_cgroup_tree_per_node *mctz; struct mem_cgroup_per_node *mz; int nid; for_each_node(nid) { mz = memcg->nodeinfo[nid]; mctz = soft_limit_tree.rb_tree_per_node[nid]; if (mctz) mem_cgroup_remove_exceeded(mz, mctz); } } static struct mem_cgroup_per_node * __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) { struct mem_cgroup_per_node *mz; retry: mz = NULL; if (!mctz->rb_rightmost) goto done; /* Nothing to reclaim from */ mz = rb_entry(mctz->rb_rightmost, struct mem_cgroup_per_node, tree_node); /* * Remove the node now but someone else can add it back, * we will to add it back at the end of reclaim to its correct * position in the tree. */ __mem_cgroup_remove_exceeded(mz, mctz); if (!soft_limit_excess(mz->memcg) || !css_tryget(&mz->memcg->css)) goto retry; done: return mz; } static struct mem_cgroup_per_node * mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) { struct mem_cgroup_per_node *mz; spin_lock_irq(&mctz->lock); mz = __mem_cgroup_largest_soft_limit_node(mctz); spin_unlock_irq(&mctz->lock); return mz; } static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, pg_data_t *pgdat, gfp_t gfp_mask, unsigned long *total_scanned) { struct mem_cgroup *victim = NULL; int total = 0; int loop = 0; unsigned long excess; unsigned long nr_scanned; struct mem_cgroup_reclaim_cookie reclaim = { .pgdat = pgdat, }; excess = soft_limit_excess(root_memcg); while (1) { victim = mem_cgroup_iter(root_memcg, victim, &reclaim); if (!victim) { loop++; if (loop >= 2) { /* * If we have not been able to reclaim * anything, it might because there are * no reclaimable pages under this hierarchy */ if (!total) break; /* * We want to do more targeted reclaim. * excess >> 2 is not to excessive so as to * reclaim too much, nor too less that we keep * coming back to reclaim from this cgroup */ if (total >= (excess >> 2) || (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) break; } continue; } total += mem_cgroup_shrink_node(victim, gfp_mask, false, pgdat, &nr_scanned); *total_scanned += nr_scanned; if (!soft_limit_excess(root_memcg)) break; } mem_cgroup_iter_break(root_memcg, victim); return total; } unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, gfp_t gfp_mask, unsigned long *total_scanned) { unsigned long nr_reclaimed = 0; struct mem_cgroup_per_node *mz, *next_mz = NULL; unsigned long reclaimed; int loop = 0; struct mem_cgroup_tree_per_node *mctz; unsigned long excess; if (lru_gen_enabled()) return 0; if (order > 0) return 0; mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; /* * Do not even bother to check the largest node if the root * is empty. Do it lockless to prevent lock bouncing. Races * are acceptable as soft limit is best effort anyway. */ if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) return 0; /* * This loop can run a while, specially if mem_cgroup's continuously * keep exceeding their soft limit and putting the system under * pressure */ do { if (next_mz) mz = next_mz; else mz = mem_cgroup_largest_soft_limit_node(mctz); if (!mz) break; reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, gfp_mask, total_scanned); nr_reclaimed += reclaimed; spin_lock_irq(&mctz->lock); /* * If we failed to reclaim anything from this memory cgroup * it is time to move on to the next cgroup */ next_mz = NULL; if (!reclaimed) next_mz = __mem_cgroup_largest_soft_limit_node(mctz); excess = soft_limit_excess(mz->memcg); /* * One school of thought says that we should not add * back the node to the tree if reclaim returns 0. * But our reclaim could return 0, simply because due * to priority we are exposing a smaller subset of * memory to reclaim from. Consider this as a longer * term TODO. */ /* If excess == 0, no tree ops */ __mem_cgroup_insert_exceeded(mz, mctz, excess); spin_unlock_irq(&mctz->lock); css_put(&mz->memcg->css); loop++; /* * Could not reclaim anything and there are no more * mem cgroups to try or we seem to be looping without * reclaiming anything. */ if (!nr_reclaimed && (next_mz == NULL || loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) break; } while (!nr_reclaimed); if (next_mz) css_put(&next_mz->memcg->css); return nr_reclaimed; } /* * A routine for checking "mem" is under move_account() or not. * * Checking a cgroup is mc.from or mc.to or under hierarchy of * moving cgroups. This is for waiting at high-memory pressure * caused by "move". */ static bool mem_cgroup_under_move(struct mem_cgroup *memcg) { struct mem_cgroup *from; struct mem_cgroup *to; bool ret = false; /* * Unlike task_move routines, we access mc.to, mc.from not under * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. */ spin_lock(&mc.lock); from = mc.from; to = mc.to; if (!from) goto unlock; ret = mem_cgroup_is_descendant(from, memcg) || mem_cgroup_is_descendant(to, memcg); unlock: spin_unlock(&mc.lock); return ret; } bool memcg1_wait_acct_move(struct mem_cgroup *memcg) { if (mc.moving_task && current != mc.moving_task) { if (mem_cgroup_under_move(memcg)) { DEFINE_WAIT(wait); prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); /* moving charge context might have finished. */ if (mc.moving_task) schedule(); finish_wait(&mc.waitq, &wait); return true; } } return false; } /** * folio_memcg_lock - Bind a folio to its memcg. * @folio: The folio. * * This function prevents unlocked LRU folios from being moved to * another cgroup. * * It ensures lifetime of the bound memcg. The caller is responsible * for the lifetime of the folio. */ void folio_memcg_lock(struct folio *folio) { struct mem_cgroup *memcg; unsigned long flags; /* * The RCU lock is held throughout the transaction. The fast * path can get away without acquiring the memcg->move_lock * because page moving starts with an RCU grace period. */ rcu_read_lock(); if (mem_cgroup_disabled()) return; again: memcg = folio_memcg(folio); if (unlikely(!memcg)) return; #ifdef CONFIG_PROVE_LOCKING local_irq_save(flags); might_lock(&memcg->move_lock); local_irq_restore(flags); #endif if (atomic_read(&memcg->moving_account) <= 0) return; spin_lock_irqsave(&memcg->move_lock, flags); if (memcg != folio_memcg(folio)) { spin_unlock_irqrestore(&memcg->move_lock, flags); goto again; } /* * When charge migration first begins, we can have multiple * critical sections holding the fast-path RCU lock and one * holding the slowpath move_lock. Track the task who has the * move_lock for folio_memcg_unlock(). */ memcg->move_lock_task = current; memcg->move_lock_flags = flags; } static void __folio_memcg_unlock(struct mem_cgroup *memcg) { if (memcg && memcg->move_lock_task == current) { unsigned long flags = memcg->move_lock_flags; memcg->move_lock_task = NULL; memcg->move_lock_flags = 0; spin_unlock_irqrestore(&memcg->move_lock, flags); } rcu_read_unlock(); } /** * folio_memcg_unlock - Release the binding between a folio and its memcg. * @folio: The folio. * * This releases the binding created by folio_memcg_lock(). This does * not change the accounting of this folio to its memcg, but it does * permit others to change it. */ void folio_memcg_unlock(struct folio *folio) { __folio_memcg_unlock(folio_memcg(folio)); } #ifdef CONFIG_SWAP /** * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. * @entry: swap entry to be moved * @from: mem_cgroup which the entry is moved from * @to: mem_cgroup which the entry is moved to * * It succeeds only when the swap_cgroup's record for this entry is the same * as the mem_cgroup's id of @from. * * Returns 0 on success, -EINVAL on failure. * * The caller must have charged to @to, IOW, called page_counter_charge() about * both res and memsw, and called css_get(). */ static int mem_cgroup_move_swap_account(swp_entry_t entry, struct mem_cgroup *from, struct mem_cgroup *to) { unsigned short old_id, new_id; old_id = mem_cgroup_id(from); new_id = mem_cgroup_id(to); if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { mod_memcg_state(from, MEMCG_SWAP, -1); mod_memcg_state(to, MEMCG_SWAP, 1); return 0; } return -EINVAL; } #else static inline int mem_cgroup_move_swap_account(swp_entry_t entry, struct mem_cgroup *from, struct mem_cgroup *to) { return -EINVAL; } #endif static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, struct cftype *cft) { return mem_cgroup_from_css(css)->move_charge_at_immigrate; } #ifdef CONFIG_MMU static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. " "Please report your usecase to linux-mm@kvack.org if you " "depend on this functionality.\n"); if (val & ~MOVE_MASK) return -EINVAL; /* * No kind of locking is needed in here, because ->can_attach() will * check this value once in the beginning of the process, and then carry * on with stale data. This means that changes to this value will only * affect task migrations starting after the change. */ memcg->move_charge_at_immigrate = val; return 0; } #else static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { return -ENOSYS; } #endif #ifdef CONFIG_MMU /* Handlers for move charge at task migration. */ static int mem_cgroup_do_precharge(unsigned long count) { int ret; /* Try a single bulk charge without reclaim first, kswapd may wake */ ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); if (!ret) { mc.precharge += count; return ret; } /* Try charges one by one with reclaim, but do not retry */ while (count--) { ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); if (ret) return ret; mc.precharge++; cond_resched(); } return 0; } union mc_target { struct folio *folio; swp_entry_t ent; }; enum mc_target_type { MC_TARGET_NONE = 0, MC_TARGET_PAGE, MC_TARGET_SWAP, MC_TARGET_DEVICE, }; static struct page *mc_handle_present_pte(struct vm_area_struct *vma, unsigned long addr, pte_t ptent) { struct page *page = vm_normal_page(vma, addr, ptent); if (!page) return NULL; if (PageAnon(page)) { if (!(mc.flags & MOVE_ANON)) return NULL; } else { if (!(mc.flags & MOVE_FILE)) return NULL; } get_page(page); return page; } #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, pte_t ptent, swp_entry_t *entry) { struct page *page = NULL; swp_entry_t ent = pte_to_swp_entry(ptent); if (!(mc.flags & MOVE_ANON)) return NULL; /* * Handle device private pages that are not accessible by the CPU, but * stored as special swap entries in the page table. */ if (is_device_private_entry(ent)) { page = pfn_swap_entry_to_page(ent); if (!get_page_unless_zero(page)) return NULL; return page; } if (non_swap_entry(ent)) return NULL; /* * Because swap_cache_get_folio() updates some statistics counter, * we call find_get_page() with swapper_space directly. */ page = find_get_page(swap_address_space(ent), swap_cache_index(ent)); entry->val = ent.val; return page; } #else static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, pte_t ptent, swp_entry_t *entry) { return NULL; } #endif static struct page *mc_handle_file_pte(struct vm_area_struct *vma, unsigned long addr, pte_t ptent) { unsigned long index; struct folio *folio; if (!vma->vm_file) /* anonymous vma */ return NULL; if (!(mc.flags & MOVE_FILE)) return NULL; /* folio is moved even if it's not RSS of this task(page-faulted). */ /* shmem/tmpfs may report page out on swap: account for that too. */ index = linear_page_index(vma, addr); folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index); if (IS_ERR(folio)) return NULL; return folio_file_page(folio, index); } /** * mem_cgroup_move_account - move account of the folio * @folio: The folio. * @compound: charge the page as compound or small page * @from: mem_cgroup which the folio is moved from. * @to: mem_cgroup which the folio is moved to. @from != @to. * * The folio must be locked and not on the LRU. * * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" * from old cgroup. */ static int mem_cgroup_move_account(struct folio *folio, bool compound, struct mem_cgroup *from, struct mem_cgroup *to) { struct lruvec *from_vec, *to_vec; struct pglist_data *pgdat; unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; int nid, ret; VM_BUG_ON(from == to); VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); VM_BUG_ON(compound && !folio_test_large(folio)); ret = -EINVAL; if (folio_memcg(folio) != from) goto out; pgdat = folio_pgdat(folio); from_vec = mem_cgroup_lruvec(from, pgdat); to_vec = mem_cgroup_lruvec(to, pgdat); folio_memcg_lock(folio); if (folio_test_anon(folio)) { if (folio_mapped(folio)) { __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); if (folio_test_pmd_mappable(folio)) { __mod_lruvec_state(from_vec, NR_ANON_THPS, -nr_pages); __mod_lruvec_state(to_vec, NR_ANON_THPS, nr_pages); } } } else { __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); if (folio_test_swapbacked(folio)) { __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); } if (folio_mapped(folio)) { __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); } if (folio_test_dirty(folio)) { struct address_space *mapping = folio_mapping(folio); if (mapping_can_writeback(mapping)) { __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages); __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages); } } } #ifdef CONFIG_SWAP if (folio_test_swapcache(folio)) { __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages); __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages); } #endif if (folio_test_writeback(folio)) { __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); } /* * All state has been migrated, let's switch to the new memcg. * * It is safe to change page's memcg here because the page * is referenced, charged, isolated, and locked: we can't race * with (un)charging, migration, LRU putback, or anything else * that would rely on a stable page's memory cgroup. * * Note that folio_memcg_lock is a memcg lock, not a page lock, * to save space. As soon as we switch page's memory cgroup to a * new memcg that isn't locked, the above state can change * concurrently again. Make sure we're truly done with it. */ smp_mb(); css_get(&to->css); css_put(&from->css); folio->memcg_data = (unsigned long)to; __folio_memcg_unlock(from); ret = 0; nid = folio_nid(folio); local_irq_disable(); mem_cgroup_charge_statistics(to, nr_pages); memcg1_check_events(to, nid); mem_cgroup_charge_statistics(from, -nr_pages); memcg1_check_events(from, nid); local_irq_enable(); out: return ret; } /** * get_mctgt_type - get target type of moving charge * @vma: the vma the pte to be checked belongs * @addr: the address corresponding to the pte to be checked * @ptent: the pte to be checked * @target: the pointer the target page or swap ent will be stored(can be NULL) * * Context: Called with pte lock held. * Return: * * MC_TARGET_NONE - If the pte is not a target for move charge. * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for * move charge. If @target is not NULL, the folio is stored in target->folio * with extra refcnt taken (Caller should release it). * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a * target for charge migration. If @target is not NULL, the entry is * stored in target->ent. * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and * thus not on the lru. For now such page is charged like a regular page * would be as it is just special memory taking the place of a regular page. * See Documentations/vm/hmm.txt and include/linux/hmm.h */ static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, unsigned long addr, pte_t ptent, union mc_target *target) { struct page *page = NULL; struct folio *folio; enum mc_target_type ret = MC_TARGET_NONE; swp_entry_t ent = { .val = 0 }; if (pte_present(ptent)) page = mc_handle_present_pte(vma, addr, ptent); else if (pte_none_mostly(ptent)) /* * PTE markers should be treated as a none pte here, separated * from other swap handling below. */ page = mc_handle_file_pte(vma, addr, ptent); else if (is_swap_pte(ptent)) page = mc_handle_swap_pte(vma, ptent, &ent); if (page) folio = page_folio(page); if (target && page) { if (!folio_trylock(folio)) { folio_put(folio); return ret; } /* * page_mapped() must be stable during the move. This * pte is locked, so if it's present, the page cannot * become unmapped. If it isn't, we have only partial * control over the mapped state: the page lock will * prevent new faults against pagecache and swapcache, * so an unmapped page cannot become mapped. However, * if the page is already mapped elsewhere, it can * unmap, and there is nothing we can do about it. * Alas, skip moving the page in this case. */ if (!pte_present(ptent) && page_mapped(page)) { folio_unlock(folio); folio_put(folio); return ret; } } if (!page && !ent.val) return ret; if (page) { /* * Do only loose check w/o serialization. * mem_cgroup_move_account() checks the page is valid or * not under LRU exclusion. */ if (folio_memcg(folio) == mc.from) { ret = MC_TARGET_PAGE; if (folio_is_device_private(folio) || folio_is_device_coherent(folio)) ret = MC_TARGET_DEVICE; if (target) target->folio = folio; } if (!ret || !target) { if (target) folio_unlock(folio); folio_put(folio); } } /* * There is a swap entry and a page doesn't exist or isn't charged. * But we cannot move a tail-page in a THP. */ if (ent.val && !ret && (!page || !PageTransCompound(page)) && mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { ret = MC_TARGET_SWAP; if (target) target->ent = ent; } return ret; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * We don't consider PMD mapped swapping or file mapped pages because THP does * not support them for now. * Caller should make sure that pmd_trans_huge(pmd) is true. */ static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd, union mc_target *target) { struct page *page = NULL; struct folio *folio; enum mc_target_type ret = MC_TARGET_NONE; if (unlikely(is_swap_pmd(pmd))) { VM_BUG_ON(thp_migration_supported() && !is_pmd_migration_entry(pmd)); return ret; } page = pmd_page(pmd); VM_BUG_ON_PAGE(!page || !PageHead(page), page); folio = page_folio(page); if (!(mc.flags & MOVE_ANON)) return ret; if (folio_memcg(folio) == mc.from) { ret = MC_TARGET_PAGE; if (target) { folio_get(folio); if (!folio_trylock(folio)) { folio_put(folio); return MC_TARGET_NONE; } target->folio = folio; } } return ret; } #else static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd, union mc_target *target) { return MC_TARGET_NONE; } #endif static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->vma; pte_t *pte; spinlock_t *ptl; ptl = pmd_trans_huge_lock(pmd, vma); if (ptl) { /* * Note their can not be MC_TARGET_DEVICE for now as we do not * support transparent huge page with MEMORY_DEVICE_PRIVATE but * this might change. */ if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) mc.precharge += HPAGE_PMD_NR; spin_unlock(ptl); return 0; } pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); if (!pte) return 0; for (; addr != end; pte++, addr += PAGE_SIZE) if (get_mctgt_type(vma, addr, ptep_get(pte), NULL)) mc.precharge++; /* increment precharge temporarily */ pte_unmap_unlock(pte - 1, ptl); cond_resched(); return 0; } static const struct mm_walk_ops precharge_walk_ops = { .pmd_entry = mem_cgroup_count_precharge_pte_range, .walk_lock = PGWALK_RDLOCK, }; static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) { unsigned long precharge; mmap_read_lock(mm); walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL); mmap_read_unlock(mm); precharge = mc.precharge; mc.precharge = 0; return precharge; } static int mem_cgroup_precharge_mc(struct mm_struct *mm) { unsigned long precharge = mem_cgroup_count_precharge(mm); VM_BUG_ON(mc.moving_task); mc.moving_task = current; return mem_cgroup_do_precharge(precharge); } /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ static void __mem_cgroup_clear_mc(void) { struct mem_cgroup *from = mc.from; struct mem_cgroup *to = mc.to; /* we must uncharge all the leftover precharges from mc.to */ if (mc.precharge) { mem_cgroup_cancel_charge(mc.to, mc.precharge); mc.precharge = 0; } /* * we didn't uncharge from mc.from at mem_cgroup_move_account(), so * we must uncharge here. */ if (mc.moved_charge) { mem_cgroup_cancel_charge(mc.from, mc.moved_charge); mc.moved_charge = 0; } /* we must fixup refcnts and charges */ if (mc.moved_swap) { /* uncharge swap account from the old cgroup */ if (!mem_cgroup_is_root(mc.from)) page_counter_uncharge(&mc.from->memsw, mc.moved_swap); mem_cgroup_id_put_many(mc.from, mc.moved_swap); /* * we charged both to->memory and to->memsw, so we * should uncharge to->memory. */ if (!mem_cgroup_is_root(mc.to)) page_counter_uncharge(&mc.to->memory, mc.moved_swap); mc.moved_swap = 0; } memcg1_oom_recover(from); memcg1_oom_recover(to); wake_up_all(&mc.waitq); } static void mem_cgroup_clear_mc(void) { struct mm_struct *mm = mc.mm; /* * we must clear moving_task before waking up waiters at the end of * task migration. */ mc.moving_task = NULL; __mem_cgroup_clear_mc(); spin_lock(&mc.lock); mc.from = NULL; mc.to = NULL; mc.mm = NULL; spin_unlock(&mc.lock); mmput(mm); } int memcg1_can_attach(struct cgroup_taskset *tset) { struct cgroup_subsys_state *css; struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ struct mem_cgroup *from; struct task_struct *leader, *p; struct mm_struct *mm; unsigned long move_flags; int ret = 0; /* charge immigration isn't supported on the default hierarchy */ if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) return 0; /* * Multi-process migrations only happen on the default hierarchy * where charge immigration is not used. Perform charge * immigration if @tset contains a leader and whine if there are * multiple. */ p = NULL; cgroup_taskset_for_each_leader(leader, css, tset) { WARN_ON_ONCE(p); p = leader; memcg = mem_cgroup_from_css(css); } if (!p) return 0; /* * We are now committed to this value whatever it is. Changes in this * tunable will only affect upcoming migrations, not the current one. * So we need to save it, and keep it going. */ move_flags = READ_ONCE(memcg->move_charge_at_immigrate); if (!move_flags) return 0; from = mem_cgroup_from_task(p); VM_BUG_ON(from == memcg); mm = get_task_mm(p); if (!mm) return 0; /* We move charges only when we move a owner of the mm */ if (mm->owner == p) { VM_BUG_ON(mc.from); VM_BUG_ON(mc.to); VM_BUG_ON(mc.precharge); VM_BUG_ON(mc.moved_charge); VM_BUG_ON(mc.moved_swap); spin_lock(&mc.lock); mc.mm = mm; mc.from = from; mc.to = memcg; mc.flags = move_flags; spin_unlock(&mc.lock); /* We set mc.moving_task later */ ret = mem_cgroup_precharge_mc(mm); if (ret) mem_cgroup_clear_mc(); } else { mmput(mm); } return ret; } void memcg1_cancel_attach(struct cgroup_taskset *tset) { if (mc.to) mem_cgroup_clear_mc(); } static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { int ret = 0; struct vm_area_struct *vma = walk->vma; pte_t *pte; spinlock_t *ptl; enum mc_target_type target_type; union mc_target target; struct folio *folio; ptl = pmd_trans_huge_lock(pmd, vma); if (ptl) { if (mc.precharge < HPAGE_PMD_NR) { spin_unlock(ptl); return 0; } target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); if (target_type == MC_TARGET_PAGE) { folio = target.folio; if (folio_isolate_lru(folio)) { if (!mem_cgroup_move_account(folio, true, mc.from, mc.to)) { mc.precharge -= HPAGE_PMD_NR; mc.moved_charge += HPAGE_PMD_NR; } folio_putback_lru(folio); } folio_unlock(folio); folio_put(folio); } else if (target_type == MC_TARGET_DEVICE) { folio = target.folio; if (!mem_cgroup_move_account(folio, true, mc.from, mc.to)) { mc.precharge -= HPAGE_PMD_NR; mc.moved_charge += HPAGE_PMD_NR; } folio_unlock(folio); folio_put(folio); } spin_unlock(ptl); return 0; } retry: pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); if (!pte) return 0; for (; addr != end; addr += PAGE_SIZE) { pte_t ptent = ptep_get(pte++); bool device = false; swp_entry_t ent; if (!mc.precharge) break; switch (get_mctgt_type(vma, addr, ptent, &target)) { case MC_TARGET_DEVICE: device = true; fallthrough; case MC_TARGET_PAGE: folio = target.folio; /* * We can have a part of the split pmd here. Moving it * can be done but it would be too convoluted so simply * ignore such a partial THP and keep it in original * memcg. There should be somebody mapping the head. */ if (folio_test_large(folio)) goto put; if (!device && !folio_isolate_lru(folio)) goto put; if (!mem_cgroup_move_account(folio, false, mc.from, mc.to)) { mc.precharge--; /* we uncharge from mc.from later. */ mc.moved_charge++; } if (!device) folio_putback_lru(folio); put: /* get_mctgt_type() gets & locks the page */ folio_unlock(folio); folio_put(folio); break; case MC_TARGET_SWAP: ent = target.ent; if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { mc.precharge--; mem_cgroup_id_get_many(mc.to, 1); /* we fixup other refcnts and charges later. */ mc.moved_swap++; } break; default: break; } } pte_unmap_unlock(pte - 1, ptl); cond_resched(); if (addr != end) { /* * We have consumed all precharges we got in can_attach(). * We try charge one by one, but don't do any additional * charges to mc.to if we have failed in charge once in attach() * phase. */ ret = mem_cgroup_do_precharge(1); if (!ret) goto retry; } return ret; } static const struct mm_walk_ops charge_walk_ops = { .pmd_entry = mem_cgroup_move_charge_pte_range, .walk_lock = PGWALK_RDLOCK, }; static void mem_cgroup_move_charge(void) { lru_add_drain_all(); /* * Signal folio_memcg_lock() to take the memcg's move_lock * while we're moving its pages to another memcg. Then wait * for already started RCU-only updates to finish. */ atomic_inc(&mc.from->moving_account); synchronize_rcu(); retry: if (unlikely(!mmap_read_trylock(mc.mm))) { /* * Someone who are holding the mmap_lock might be waiting in * waitq. So we cancel all extra charges, wake up all waiters, * and retry. Because we cancel precharges, we might not be able * to move enough charges, but moving charge is a best-effort * feature anyway, so it wouldn't be a big problem. */ __mem_cgroup_clear_mc(); cond_resched(); goto retry; } /* * When we have consumed all precharges and failed in doing * additional charge, the page walk just aborts. */ walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL); mmap_read_unlock(mc.mm); atomic_dec(&mc.from->moving_account); } void memcg1_move_task(void) { if (mc.to) { mem_cgroup_move_charge(); mem_cgroup_clear_mc(); } } #else /* !CONFIG_MMU */ int memcg1_can_attach(struct cgroup_taskset *tset) { return 0; } void memcg1_cancel_attach(struct cgroup_taskset *tset) { } void memcg1_move_task(void) { } #endif static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) { struct mem_cgroup_threshold_ary *t; unsigned long usage; int i; rcu_read_lock(); if (!swap) t = rcu_dereference(memcg->thresholds.primary); else t = rcu_dereference(memcg->memsw_thresholds.primary); if (!t) goto unlock; usage = mem_cgroup_usage(memcg, swap); /* * current_threshold points to threshold just below or equal to usage. * If it's not true, a threshold was crossed after last * call of __mem_cgroup_threshold(). */ i = t->current_threshold; /* * Iterate backward over array of thresholds starting from * current_threshold and check if a threshold is crossed. * If none of thresholds below usage is crossed, we read * only one element of the array here. */ for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) eventfd_signal(t->entries[i].eventfd); /* i = current_threshold + 1 */ i++; /* * Iterate forward over array of thresholds starting from * current_threshold+1 and check if a threshold is crossed. * If none of thresholds above usage is crossed, we read * only one element of the array here. */ for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) eventfd_signal(t->entries[i].eventfd); /* Update current_threshold */ t->current_threshold = i - 1; unlock: rcu_read_unlock(); } static void mem_cgroup_threshold(struct mem_cgroup *memcg) { while (memcg) { __mem_cgroup_threshold(memcg, false); if (do_memsw_account()) __mem_cgroup_threshold(memcg, true); memcg = parent_mem_cgroup(memcg); } } /* * Check events in order. * */ void memcg1_check_events(struct mem_cgroup *memcg, int nid) { if (IS_ENABLED(CONFIG_PREEMPT_RT)) return; /* threshold event is triggered in finer grain than soft limit */ if (unlikely(mem_cgroup_event_ratelimit(memcg, MEM_CGROUP_TARGET_THRESH))) { bool do_softlimit; do_softlimit = mem_cgroup_event_ratelimit(memcg, MEM_CGROUP_TARGET_SOFTLIMIT); mem_cgroup_threshold(memcg); if (unlikely(do_softlimit)) memcg1_update_tree(memcg, nid); } } static int compare_thresholds(const void *a, const void *b) { const struct mem_cgroup_threshold *_a = a; const struct mem_cgroup_threshold *_b = b; if (_a->threshold > _b->threshold) return 1; if (_a->threshold < _b->threshold) return -1; return 0; } static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) { struct mem_cgroup_eventfd_list *ev; spin_lock(&memcg_oom_lock); list_for_each_entry(ev, &memcg->oom_notify, list) eventfd_signal(ev->eventfd); spin_unlock(&memcg_oom_lock); return 0; } static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) { struct mem_cgroup *iter; for_each_mem_cgroup_tree(iter, memcg) mem_cgroup_oom_notify_cb(iter); } static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, struct eventfd_ctx *eventfd, const char *args, enum res_type type) { struct mem_cgroup_thresholds *thresholds; struct mem_cgroup_threshold_ary *new; unsigned long threshold; unsigned long usage; int i, size, ret; ret = page_counter_memparse(args, "-1", &threshold); if (ret) return ret; mutex_lock(&memcg->thresholds_lock); if (type == _MEM) { thresholds = &memcg->thresholds; usage = mem_cgroup_usage(memcg, false); } else if (type == _MEMSWAP) { thresholds = &memcg->memsw_thresholds; usage = mem_cgroup_usage(memcg, true); } else BUG(); /* Check if a threshold crossed before adding a new one */ if (thresholds->primary) __mem_cgroup_threshold(memcg, type == _MEMSWAP); size = thresholds->primary ? thresholds->primary->size + 1 : 1; /* Allocate memory for new array of thresholds */ new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); if (!new) { ret = -ENOMEM; goto unlock; } new->size = size; /* Copy thresholds (if any) to new array */ if (thresholds->primary) memcpy(new->entries, thresholds->primary->entries, flex_array_size(new, entries, size - 1)); /* Add new threshold */ new->entries[size - 1].eventfd = eventfd; new->entries[size - 1].threshold = threshold; /* Sort thresholds. Registering of new threshold isn't time-critical */ sort(new->entries, size, sizeof(*new->entries), compare_thresholds, NULL); /* Find current threshold */ new->current_threshold = -1; for (i = 0; i < size; i++) { if (new->entries[i].threshold <= usage) { /* * new->current_threshold will not be used until * rcu_assign_pointer(), so it's safe to increment * it here. */ ++new->current_threshold; } else break; } /* Free old spare buffer and save old primary buffer as spare */ kfree(thresholds->spare); thresholds->spare = thresholds->primary; rcu_assign_pointer(thresholds->primary, new); /* To be sure that nobody uses thresholds */ synchronize_rcu(); unlock: mutex_unlock(&memcg->thresholds_lock); return ret; } static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, struct eventfd_ctx *eventfd, const char *args) { return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); } static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, struct eventfd_ctx *eventfd, const char *args) { return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); } static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, struct eventfd_ctx *eventfd, enum res_type type) { struct mem_cgroup_thresholds *thresholds; struct mem_cgroup_threshold_ary *new; unsigned long usage; int i, j, size, entries; mutex_lock(&memcg->thresholds_lock); if (type == _MEM) { thresholds = &memcg->thresholds; usage = mem_cgroup_usage(memcg, false); } else if (type == _MEMSWAP) { thresholds = &memcg->memsw_thresholds; usage = mem_cgroup_usage(memcg, true); } else BUG(); if (!thresholds->primary) goto unlock; /* Check if a threshold crossed before removing */ __mem_cgroup_threshold(memcg, type == _MEMSWAP); /* Calculate new number of threshold */ size = entries = 0; for (i = 0; i < thresholds->primary->size; i++) { if (thresholds->primary->entries[i].eventfd != eventfd) size++; else entries++; } new = thresholds->spare; /* If no items related to eventfd have been cleared, nothing to do */ if (!entries) goto unlock; /* Set thresholds array to NULL if we don't have thresholds */ if (!size) { kfree(new); new = NULL; goto swap_buffers; } new->size = size; /* Copy thresholds and find current threshold */ new->current_threshold = -1; for (i = 0, j = 0; i < thresholds->primary->size; i++) { if (thresholds->primary->entries[i].eventfd == eventfd) continue; new->entries[j] = thresholds->primary->entries[i]; if (new->entries[j].threshold <= usage) { /* * new->current_threshold will not be used * until rcu_assign_pointer(), so it's safe to increment * it here. */ ++new->current_threshold; } j++; } swap_buffers: /* Swap primary and spare array */ thresholds->spare = thresholds->primary; rcu_assign_pointer(thresholds->primary, new); /* To be sure that nobody uses thresholds */ synchronize_rcu(); /* If all events are unregistered, free the spare array */ if (!new) { kfree(thresholds->spare); thresholds->spare = NULL; } unlock: mutex_unlock(&memcg->thresholds_lock); } static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, struct eventfd_ctx *eventfd) { return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); } static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, struct eventfd_ctx *eventfd) { return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); } static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, struct eventfd_ctx *eventfd, const char *args) { struct mem_cgroup_eventfd_list *event; event = kmalloc(sizeof(*event), GFP_KERNEL); if (!event) return -ENOMEM; spin_lock(&memcg_oom_lock); event->eventfd = eventfd; list_add(&event->list, &memcg->oom_notify); /* already in OOM ? */ if (memcg->under_oom) eventfd_signal(eventfd); spin_unlock(&memcg_oom_lock); return 0; } static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, struct eventfd_ctx *eventfd) { struct mem_cgroup_eventfd_list *ev, *tmp; spin_lock(&memcg_oom_lock); list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { if (ev->eventfd == eventfd) { list_del(&ev->list); kfree(ev); } } spin_unlock(&memcg_oom_lock); } /* * DO NOT USE IN NEW FILES. * * "cgroup.event_control" implementation. * * This is way over-engineered. It tries to support fully configurable * events for each user. Such level of flexibility is completely * unnecessary especially in the light of the planned unified hierarchy. * * Please deprecate this and replace with something simpler if at all * possible. */ /* * Unregister event and free resources. * * Gets called from workqueue. */ static void memcg_event_remove(struct work_struct *work) { struct mem_cgroup_event *event = container_of(work, struct mem_cgroup_event, remove); struct mem_cgroup *memcg = event->memcg; remove_wait_queue(event->wqh, &event->wait); event->unregister_event(memcg, event->eventfd); /* Notify userspace the event is going away. */ eventfd_signal(event->eventfd); eventfd_ctx_put(event->eventfd); kfree(event); css_put(&memcg->css); } /* * Gets called on EPOLLHUP on eventfd when user closes it. * * Called with wqh->lock held and interrupts disabled. */ static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) { struct mem_cgroup_event *event = container_of(wait, struct mem_cgroup_event, wait); struct mem_cgroup *memcg = event->memcg; __poll_t flags = key_to_poll(key); if (flags & EPOLLHUP) { /* * If the event has been detached at cgroup removal, we * can simply return knowing the other side will cleanup * for us. * * We can't race against event freeing since the other * side will require wqh->lock via remove_wait_queue(), * which we hold. */ spin_lock(&memcg->event_list_lock); if (!list_empty(&event->list)) { list_del_init(&event->list); /* * We are in atomic context, but cgroup_event_remove() * may sleep, so we have to call it in workqueue. */ schedule_work(&event->remove); } spin_unlock(&memcg->event_list_lock); } return 0; } static void memcg_event_ptable_queue_proc(struct file *file, wait_queue_head_t *wqh, poll_table *pt) { struct mem_cgroup_event *event = container_of(pt, struct mem_cgroup_event, pt); event->wqh = wqh; add_wait_queue(wqh, &event->wait); } /* * DO NOT USE IN NEW FILES. * * Parse input and register new cgroup event handler. * * Input must be in format '<event_fd> <control_fd> <args>'. * Interpretation of args is defined by control file implementation. */ static ssize_t memcg_write_event_control(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cgroup_subsys_state *css = of_css(of); struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup_event *event; struct cgroup_subsys_state *cfile_css; unsigned int efd, cfd; struct fd efile; struct fd cfile; struct dentry *cdentry; const char *name; char *endp; int ret; if (IS_ENABLED(CONFIG_PREEMPT_RT)) return -EOPNOTSUPP; buf = strstrip(buf); efd = simple_strtoul(buf, &endp, 10); if (*endp != ' ') return -EINVAL; buf = endp + 1; cfd = simple_strtoul(buf, &endp, 10); if (*endp == '\0') buf = endp; else if (*endp == ' ') buf = endp + 1; else return -EINVAL; event = kzalloc(sizeof(*event), GFP_KERNEL); if (!event) return -ENOMEM; event->memcg = memcg; INIT_LIST_HEAD(&event->list); init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); init_waitqueue_func_entry(&event->wait, memcg_event_wake); INIT_WORK(&event->remove, memcg_event_remove); efile = fdget(efd); if (!efile.file) { ret = -EBADF; goto out_kfree; } event->eventfd = eventfd_ctx_fileget(efile.file); if (IS_ERR(event->eventfd)) { ret = PTR_ERR(event->eventfd); goto out_put_efile; } cfile = fdget(cfd); if (!cfile.file) { ret = -EBADF; goto out_put_eventfd; } /* the process need read permission on control file */ /* AV: shouldn't we check that it's been opened for read instead? */ ret = file_permission(cfile.file, MAY_READ); if (ret < 0) goto out_put_cfile; /* * The control file must be a regular cgroup1 file. As a regular cgroup * file can't be renamed, it's safe to access its name afterwards. */ cdentry = cfile.file->f_path.dentry; if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) { ret = -EINVAL; goto out_put_cfile; } /* * Determine the event callbacks and set them in @event. This used * to be done via struct cftype but cgroup core no longer knows * about these events. The following is crude but the whole thing * is for compatibility anyway. * * DO NOT ADD NEW FILES. */ name = cdentry->d_name.name; if (!strcmp(name, "memory.usage_in_bytes")) { event->register_event = mem_cgroup_usage_register_event; event->unregister_event = mem_cgroup_usage_unregister_event; } else if (!strcmp(name, "memory.oom_control")) { event->register_event = mem_cgroup_oom_register_event; event->unregister_event = mem_cgroup_oom_unregister_event; } else if (!strcmp(name, "memory.pressure_level")) { event->register_event = vmpressure_register_event; event->unregister_event = vmpressure_unregister_event; } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { event->register_event = memsw_cgroup_usage_register_event; event->unregister_event = memsw_cgroup_usage_unregister_event; } else { ret = -EINVAL; goto out_put_cfile; } /* * Verify @cfile should belong to @css. Also, remaining events are * automatically removed on cgroup destruction but the removal is * asynchronous, so take an extra ref on @css. */ cfile_css = css_tryget_online_from_dir(cdentry->d_parent, &memory_cgrp_subsys); ret = -EINVAL; if (IS_ERR(cfile_css)) goto out_put_cfile; if (cfile_css != css) { css_put(cfile_css); goto out_put_cfile; } ret = event->register_event(memcg, event->eventfd, buf); if (ret) goto out_put_css; vfs_poll(efile.file, &event->pt); spin_lock_irq(&memcg->event_list_lock); list_add(&event->list, &memcg->event_list); spin_unlock_irq(&memcg->event_list_lock); fdput(cfile); fdput(efile); return nbytes; out_put_css: css_put(css); out_put_cfile: fdput(cfile); out_put_eventfd: eventfd_ctx_put(event->eventfd); out_put_efile: fdput(efile); out_kfree: kfree(event); return ret; } void memcg1_memcg_init(struct mem_cgroup *memcg) { INIT_LIST_HEAD(&memcg->oom_notify); mutex_init(&memcg->thresholds_lock); spin_lock_init(&memcg->move_lock); INIT_LIST_HEAD(&memcg->event_list); spin_lock_init(&memcg->event_list_lock); } void memcg1_css_offline(struct mem_cgroup *memcg) { struct mem_cgroup_event *event, *tmp; /* * Unregister events and notify userspace. * Notify userspace about cgroup removing only after rmdir of cgroup * directory to avoid race between userspace and kernelspace. */ spin_lock_irq(&memcg->event_list_lock); list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { list_del_init(&event->list); schedule_work(&event->remove); } spin_unlock_irq(&memcg->event_list_lock); } /* * Check OOM-Killer is already running under our hierarchy. * If someone is running, return false. */ static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) { struct mem_cgroup *iter, *failed = NULL; spin_lock(&memcg_oom_lock); for_each_mem_cgroup_tree(iter, memcg) { if (iter->oom_lock) { /* * this subtree of our hierarchy is already locked * so we cannot give a lock. */ failed = iter; mem_cgroup_iter_break(memcg, iter); break; } else iter->oom_lock = true; } if (failed) { /* * OK, we failed to lock the whole subtree so we have * to clean up what we set up to the failing subtree */ for_each_mem_cgroup_tree(iter, memcg) { if (iter == failed) { mem_cgroup_iter_break(memcg, iter); break; } iter->oom_lock = false; } } else mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); spin_unlock(&memcg_oom_lock); return !failed; } static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) { struct mem_cgroup *iter; spin_lock(&memcg_oom_lock); mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); for_each_mem_cgroup_tree(iter, memcg) iter->oom_lock = false; spin_unlock(&memcg_oom_lock); } static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) { struct mem_cgroup *iter; spin_lock(&memcg_oom_lock); for_each_mem_cgroup_tree(iter, memcg) iter->under_oom++; spin_unlock(&memcg_oom_lock); } static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) { struct mem_cgroup *iter; /* * Be careful about under_oom underflows because a child memcg * could have been added after mem_cgroup_mark_under_oom. */ spin_lock(&memcg_oom_lock); for_each_mem_cgroup_tree(iter, memcg) if (iter->under_oom > 0) iter->under_oom--; spin_unlock(&memcg_oom_lock); } static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); struct oom_wait_info { struct mem_cgroup *memcg; wait_queue_entry_t wait; }; static int memcg_oom_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) { struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; struct mem_cgroup *oom_wait_memcg; struct oom_wait_info *oom_wait_info; oom_wait_info = container_of(wait, struct oom_wait_info, wait); oom_wait_memcg = oom_wait_info->memcg; if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) return 0; return autoremove_wake_function(wait, mode, sync, arg); } void memcg1_oom_recover(struct mem_cgroup *memcg) { /* * For the following lockless ->under_oom test, the only required * guarantee is that it must see the state asserted by an OOM when * this function is called as a result of userland actions * triggered by the notification of the OOM. This is trivially * achieved by invoking mem_cgroup_mark_under_oom() before * triggering notification. */ if (memcg && memcg->under_oom) __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); } /** * mem_cgroup_oom_synchronize - complete memcg OOM handling * @handle: actually kill/wait or just clean up the OOM state * * This has to be called at the end of a page fault if the memcg OOM * handler was enabled. * * Memcg supports userspace OOM handling where failed allocations must * sleep on a waitqueue until the userspace task resolves the * situation. Sleeping directly in the charge context with all kinds * of locks held is not a good idea, instead we remember an OOM state * in the task and mem_cgroup_oom_synchronize() has to be called at * the end of the page fault to complete the OOM handling. * * Returns %true if an ongoing memcg OOM situation was detected and * completed, %false otherwise. */ bool mem_cgroup_oom_synchronize(bool handle) { struct mem_cgroup *memcg = current->memcg_in_oom; struct oom_wait_info owait; bool locked; /* OOM is global, do not handle */ if (!memcg) return false; if (!handle) goto cleanup; owait.memcg = memcg; owait.wait.flags = 0; owait.wait.func = memcg_oom_wake_function; owait.wait.private = current; INIT_LIST_HEAD(&owait.wait.entry); prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); mem_cgroup_mark_under_oom(memcg); locked = mem_cgroup_oom_trylock(memcg); if (locked) mem_cgroup_oom_notify(memcg); schedule(); mem_cgroup_unmark_under_oom(memcg); finish_wait(&memcg_oom_waitq, &owait.wait); if (locked) mem_cgroup_oom_unlock(memcg); cleanup: current->memcg_in_oom = NULL; css_put(&memcg->css); return true; } bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked) { /* * We are in the middle of the charge context here, so we * don't want to block when potentially sitting on a callstack * that holds all kinds of filesystem and mm locks. * * cgroup1 allows disabling the OOM killer and waiting for outside * handling until the charge can succeed; remember the context and put * the task to sleep at the end of the page fault when all locks are * released. * * On the other hand, in-kernel OOM killer allows for an async victim * memory reclaim (oom_reaper) and that means that we are not solely * relying on the oom victim to make a forward progress and we can * invoke the oom killer here. * * Please note that mem_cgroup_out_of_memory might fail to find a * victim and then we have to bail out from the charge path. */ if (READ_ONCE(memcg->oom_kill_disable)) { if (current->in_user_fault) { css_get(&memcg->css); current->memcg_in_oom = memcg; } return false; } mem_cgroup_mark_under_oom(memcg); *locked = mem_cgroup_oom_trylock(memcg); if (*locked) mem_cgroup_oom_notify(memcg); mem_cgroup_unmark_under_oom(memcg); return true; } void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked) { if (locked) mem_cgroup_oom_unlock(memcg); } static DEFINE_MUTEX(memcg_max_mutex); static int mem_cgroup_resize_max(struct mem_cgroup *memcg, unsigned long max, bool memsw) { bool enlarge = false; bool drained = false; int ret; bool limits_invariant; struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; do { if (signal_pending(current)) { ret = -EINTR; break; } mutex_lock(&memcg_max_mutex); /* * Make sure that the new limit (memsw or memory limit) doesn't * break our basic invariant rule memory.max <= memsw.max. */ limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : max <= memcg->memsw.max; if (!limits_invariant) { mutex_unlock(&memcg_max_mutex); ret = -EINVAL; break; } if (max > counter->max) enlarge = true; ret = page_counter_set_max(counter, max); mutex_unlock(&memcg_max_mutex); if (!ret) break; if (!drained) { drain_all_stock(memcg); drained = true; continue; } if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) { ret = -EBUSY; break; } } while (true); if (!ret && enlarge) memcg1_oom_recover(memcg); return ret; } /* * Reclaims as many pages from the given memcg as possible. * * Caller is responsible for holding css reference for memcg. */ static int mem_cgroup_force_empty(struct mem_cgroup *memcg) { int nr_retries = MAX_RECLAIM_RETRIES; /* we call try-to-free pages for make this cgroup empty */ lru_add_drain_all(); drain_all_stock(memcg); /* try to free all pages in this cgroup */ while (nr_retries && page_counter_read(&memcg->memory)) { if (signal_pending(current)) return -EINTR; if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) nr_retries--; } return 0; } static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); if (mem_cgroup_is_root(memcg)) return -EINVAL; return mem_cgroup_force_empty(memcg) ?: nbytes; } static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, struct cftype *cft) { return 1; } static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { if (val == 1) return 0; pr_warn_once("Non-hierarchical mode is deprecated. " "Please report your usecase to linux-mm@kvack.org if you " "depend on this functionality.\n"); return -EINVAL; } static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct page_counter *counter; switch (MEMFILE_TYPE(cft->private)) { case _MEM: counter = &memcg->memory; break; case _MEMSWAP: counter = &memcg->memsw; break; case _KMEM: counter = &memcg->kmem; break; case _TCP: counter = &memcg->tcpmem; break; default: BUG(); } switch (MEMFILE_ATTR(cft->private)) { case RES_USAGE: if (counter == &memcg->memory) return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; if (counter == &memcg->memsw) return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; return (u64)page_counter_read(counter) * PAGE_SIZE; case RES_LIMIT: return (u64)counter->max * PAGE_SIZE; case RES_MAX_USAGE: return (u64)counter->watermark * PAGE_SIZE; case RES_FAILCNT: return counter->failcnt; case RES_SOFT_LIMIT: return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE; default: BUG(); } } /* * This function doesn't do anything useful. Its only job is to provide a read * handler for a file so that cgroup_file_mode() will add read permissions. */ static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m, __always_unused void *v) { return -EINVAL; } static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) { int ret; mutex_lock(&memcg_max_mutex); ret = page_counter_set_max(&memcg->tcpmem, max); if (ret) goto out; if (!memcg->tcpmem_active) { /* * The active flag needs to be written after the static_key * update. This is what guarantees that the socket activation * function is the last one to run. See mem_cgroup_sk_alloc() * for details, and note that we don't mark any socket as * belonging to this memcg until that flag is up. * * We need to do this, because static_keys will span multiple * sites, but we can't control their order. If we mark a socket * as accounted, but the accounting functions are not patched in * yet, we'll lose accounting. * * We never race with the readers in mem_cgroup_sk_alloc(), * because when this value change, the code to process it is not * patched in yet. */ static_branch_inc(&memcg_sockets_enabled_key); memcg->tcpmem_active = true; } out: mutex_unlock(&memcg_max_mutex); return ret; } /* * The user of this function is... * RES_LIMIT. */ static ssize_t mem_cgroup_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); unsigned long nr_pages; int ret; buf = strstrip(buf); ret = page_counter_memparse(buf, "-1", &nr_pages); if (ret) return ret; switch (MEMFILE_ATTR(of_cft(of)->private)) { case RES_LIMIT: if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ ret = -EINVAL; break; } switch (MEMFILE_TYPE(of_cft(of)->private)) { case _MEM: ret = mem_cgroup_resize_max(memcg, nr_pages, false); break; case _MEMSWAP: ret = mem_cgroup_resize_max(memcg, nr_pages, true); break; case _KMEM: pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " "Writing any value to this file has no effect. " "Please report your usecase to linux-mm@kvack.org if you " "depend on this functionality.\n"); ret = 0; break; case _TCP: ret = memcg_update_tcp_max(memcg, nr_pages); break; } break; case RES_SOFT_LIMIT: if (IS_ENABLED(CONFIG_PREEMPT_RT)) { ret = -EOPNOTSUPP; } else { WRITE_ONCE(memcg->soft_limit, nr_pages); ret = 0; } break; } return ret ?: nbytes; } static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); struct page_counter *counter; switch (MEMFILE_TYPE(of_cft(of)->private)) { case _MEM: counter = &memcg->memory; break; case _MEMSWAP: counter = &memcg->memsw; break; case _KMEM: counter = &memcg->kmem; break; case _TCP: counter = &memcg->tcpmem; break; default: BUG(); } switch (MEMFILE_ATTR(of_cft(of)->private)) { case RES_MAX_USAGE: page_counter_reset_watermark(counter); break; case RES_FAILCNT: counter->failcnt = 0; break; default: BUG(); } return nbytes; } #ifdef CONFIG_NUMA #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, int nid, unsigned int lru_mask, bool tree) { struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); unsigned long nr = 0; enum lru_list lru; VM_BUG_ON((unsigned)nid >= nr_node_ids); for_each_lru(lru) { if (!(BIT(lru) & lru_mask)) continue; if (tree) nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); else nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); } return nr; } static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, unsigned int lru_mask, bool tree) { unsigned long nr = 0; enum lru_list lru; for_each_lru(lru) { if (!(BIT(lru) & lru_mask)) continue; if (tree) nr += memcg_page_state(memcg, NR_LRU_BASE + lru); else nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); } return nr; } static int memcg_numa_stat_show(struct seq_file *m, void *v) { struct numa_stat { const char *name; unsigned int lru_mask; }; static const struct numa_stat stats[] = { { "total", LRU_ALL }, { "file", LRU_ALL_FILE }, { "anon", LRU_ALL_ANON }, { "unevictable", BIT(LRU_UNEVICTABLE) }, }; const struct numa_stat *stat; int nid; struct mem_cgroup *memcg = mem_cgroup_from_seq(m); mem_cgroup_flush_stats(memcg); for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { seq_printf(m, "%s=%lu", stat->name, mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, false)); for_each_node_state(nid, N_MEMORY) seq_printf(m, " N%d=%lu", nid, mem_cgroup_node_nr_lru_pages(memcg, nid, stat->lru_mask, false)); seq_putc(m, '\n'); } for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { seq_printf(m, "hierarchical_%s=%lu", stat->name, mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, true)); for_each_node_state(nid, N_MEMORY) seq_printf(m, " N%d=%lu", nid, mem_cgroup_node_nr_lru_pages(memcg, nid, stat->lru_mask, true)); seq_putc(m, '\n'); } return 0; } #endif /* CONFIG_NUMA */ static const unsigned int memcg1_stats[] = { NR_FILE_PAGES, NR_ANON_MAPPED, #ifdef CONFIG_TRANSPARENT_HUGEPAGE NR_ANON_THPS, #endif NR_SHMEM, NR_FILE_MAPPED, NR_FILE_DIRTY, NR_WRITEBACK, WORKINGSET_REFAULT_ANON, WORKINGSET_REFAULT_FILE, #ifdef CONFIG_SWAP MEMCG_SWAP, NR_SWAPCACHE, #endif }; static const char *const memcg1_stat_names[] = { "cache", "rss", #ifdef CONFIG_TRANSPARENT_HUGEPAGE "rss_huge", #endif "shmem", "mapped_file", "dirty", "writeback", "workingset_refault_anon", "workingset_refault_file", #ifdef CONFIG_SWAP "swap", "swapcached", #endif }; /* Universal VM events cgroup1 shows, original sort order */ static const unsigned int memcg1_events[] = { PGPGIN, PGPGOUT, PGFAULT, PGMAJFAULT, }; void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) { unsigned long memory, memsw; struct mem_cgroup *mi; unsigned int i; BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); mem_cgroup_flush_stats(memcg); for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { unsigned long nr; nr = memcg_page_state_local_output(memcg, memcg1_stats[i]); seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr); } for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]), memcg_events_local(memcg, memcg1_events[i])); for (i = 0; i < NR_LRU_LISTS; i++) seq_buf_printf(s, "%s %lu\n", lru_list_name(i), memcg_page_state_local(memcg, NR_LRU_BASE + i) * PAGE_SIZE); /* Hierarchical information */ memory = memsw = PAGE_COUNTER_MAX; for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { memory = min(memory, READ_ONCE(mi->memory.max)); memsw = min(memsw, READ_ONCE(mi->memsw.max)); } seq_buf_printf(s, "hierarchical_memory_limit %llu\n", (u64)memory * PAGE_SIZE); seq_buf_printf(s, "hierarchical_memsw_limit %llu\n", (u64)memsw * PAGE_SIZE); for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { unsigned long nr; nr = memcg_page_state_output(memcg, memcg1_stats[i]); seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i], (u64)nr); } for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) seq_buf_printf(s, "total_%s %llu\n", vm_event_name(memcg1_events[i]), (u64)memcg_events(memcg, memcg1_events[i])); for (i = 0; i < NR_LRU_LISTS; i++) seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i), (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * PAGE_SIZE); #ifdef CONFIG_DEBUG_VM { pg_data_t *pgdat; struct mem_cgroup_per_node *mz; unsigned long anon_cost = 0; unsigned long file_cost = 0; for_each_online_pgdat(pgdat) { mz = memcg->nodeinfo[pgdat->node_id]; anon_cost += mz->lruvec.anon_cost; file_cost += mz->lruvec.file_cost; } seq_buf_printf(s, "anon_cost %lu\n", anon_cost); seq_buf_printf(s, "file_cost %lu\n", file_cost); } #endif } static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, struct cftype *cft) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); return mem_cgroup_swappiness(memcg); } static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); if (val > MAX_SWAPPINESS) return -EINVAL; if (!mem_cgroup_is_root(memcg)) WRITE_ONCE(memcg->swappiness, val); else WRITE_ONCE(vm_swappiness, val); return 0; } static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) { struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable)); seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); seq_printf(sf, "oom_kill %lu\n", atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); return 0; } static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); /* cannot set to root cgroup and only 0 and 1 are allowed */ if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) return -EINVAL; WRITE_ONCE(memcg->oom_kill_disable, val); if (!val) memcg1_oom_recover(memcg); return 0; } #ifdef CONFIG_SLUB_DEBUG static int mem_cgroup_slab_show(struct seq_file *m, void *p) { /* * Deprecated. * Please, take a look at tools/cgroup/memcg_slabinfo.py . */ return 0; } #endif struct cftype mem_cgroup_legacy_files[] = { { .name = "usage_in_bytes", .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), .read_u64 = mem_cgroup_read_u64, }, { .name = "max_usage_in_bytes", .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), .write = mem_cgroup_reset, .read_u64 = mem_cgroup_read_u64, }, { .name = "limit_in_bytes", .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), .write = mem_cgroup_write, .read_u64 = mem_cgroup_read_u64, }, { .name = "soft_limit_in_bytes", .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), .write = mem_cgroup_write, .read_u64 = mem_cgroup_read_u64, }, { .name = "failcnt", .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), .write = mem_cgroup_reset, .read_u64 = mem_cgroup_read_u64, }, { .name = "stat", .seq_show = memory_stat_show, }, { .name = "force_empty", .write = mem_cgroup_force_empty_write, }, { .name = "use_hierarchy", .write_u64 = mem_cgroup_hierarchy_write, .read_u64 = mem_cgroup_hierarchy_read, }, { .name = "cgroup.event_control", /* XXX: for compat */ .write = memcg_write_event_control, .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, }, { .name = "swappiness", .read_u64 = mem_cgroup_swappiness_read, .write_u64 = mem_cgroup_swappiness_write, }, { .name = "move_charge_at_immigrate", .read_u64 = mem_cgroup_move_charge_read, .write_u64 = mem_cgroup_move_charge_write, }, { .name = "oom_control", .seq_show = mem_cgroup_oom_control_read, .write_u64 = mem_cgroup_oom_control_write, }, { .name = "pressure_level", .seq_show = mem_cgroup_dummy_seq_show, }, #ifdef CONFIG_NUMA { .name = "numa_stat", .seq_show = memcg_numa_stat_show, }, #endif { .name = "kmem.limit_in_bytes", .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), .write = mem_cgroup_write, .read_u64 = mem_cgroup_read_u64, }, { .name = "kmem.usage_in_bytes", .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), .read_u64 = mem_cgroup_read_u64, }, { .name = "kmem.failcnt", .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), .write = mem_cgroup_reset, .read_u64 = mem_cgroup_read_u64, }, { .name = "kmem.max_usage_in_bytes", .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), .write = mem_cgroup_reset, .read_u64 = mem_cgroup_read_u64, }, #ifdef CONFIG_SLUB_DEBUG { .name = "kmem.slabinfo", .seq_show = mem_cgroup_slab_show, }, #endif { .name = "kmem.tcp.limit_in_bytes", .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), .write = mem_cgroup_write, .read_u64 = mem_cgroup_read_u64, }, { .name = "kmem.tcp.usage_in_bytes", .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), .read_u64 = mem_cgroup_read_u64, }, { .name = "kmem.tcp.failcnt", .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), .write = mem_cgroup_reset, .read_u64 = mem_cgroup_read_u64, }, { .name = "kmem.tcp.max_usage_in_bytes", .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), .write = mem_cgroup_reset, .read_u64 = mem_cgroup_read_u64, }, { }, /* terminate */ }; struct cftype memsw_files[] = { { .name = "memsw.usage_in_bytes", .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), .read_u64 = mem_cgroup_read_u64, }, { .name = "memsw.max_usage_in_bytes", .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), .write = mem_cgroup_reset, .read_u64 = mem_cgroup_read_u64, }, { .name = "memsw.limit_in_bytes", .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), .write = mem_cgroup_write, .read_u64 = mem_cgroup_read_u64, }, { .name = "memsw.failcnt", .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), .write = mem_cgroup_reset, .read_u64 = mem_cgroup_read_u64, }, { }, /* terminate */ }; void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages) { if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { if (nr_pages > 0) page_counter_charge(&memcg->kmem, nr_pages); else page_counter_uncharge(&memcg->kmem, -nr_pages); } } bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, gfp_t gfp_mask) { struct page_counter *fail; if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { memcg->tcpmem_pressure = 0; return true; } memcg->tcpmem_pressure = 1; if (gfp_mask & __GFP_NOFAIL) { page_counter_charge(&memcg->tcpmem, nr_pages); return true; } return false; } static int __init memcg1_init(void) { int node; for_each_node(node) { struct mem_cgroup_tree_per_node *rtpn; rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node); rtpn->rb_root = RB_ROOT; rtpn->rb_rightmost = NULL; spin_lock_init(&rtpn->lock); soft_limit_tree.rb_tree_per_node[node] = rtpn; } return 0; } subsys_initcall(memcg1_init); |