Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 | // SPDX-License-Identifier: GPL-2.0-only /* * TI K3 R5F (MCU) Remote Processor driver * * Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/ * Suman Anna <s-anna@ti.com> */ #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/mailbox_client.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_reserved_mem.h> #include <linux/of_platform.h> #include <linux/omap-mailbox.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/remoteproc.h> #include <linux/reset.h> #include <linux/slab.h> #include "omap_remoteproc.h" #include "remoteproc_internal.h" #include "ti_sci_proc.h" /* This address can either be for ATCM or BTCM with the other at address 0x0 */ #define K3_R5_TCM_DEV_ADDR 0x41010000 /* R5 TI-SCI Processor Configuration Flags */ #define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001 #define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002 #define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100 #define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200 #define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400 #define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800 #define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000 #define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000 /* Available from J7200 SoCs onwards */ #define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS 0x00004000 /* Applicable to only AM64x SoCs */ #define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE 0x00008000 /* R5 TI-SCI Processor Control Flags */ #define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001 /* R5 TI-SCI Processor Status Flags */ #define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001 #define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002 #define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004 #define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100 /* Applicable to only AM64x SoCs */ #define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY 0x00000200 /** * struct k3_r5_mem - internal memory structure * @cpu_addr: MPU virtual address of the memory region * @bus_addr: Bus address used to access the memory region * @dev_addr: Device address from remoteproc view * @size: Size of the memory region */ struct k3_r5_mem { void __iomem *cpu_addr; phys_addr_t bus_addr; u32 dev_addr; size_t size; }; /* * All cluster mode values are not applicable on all SoCs. The following * are the modes supported on various SoCs: * Split mode : AM65x, J721E, J7200 and AM64x SoCs * LockStep mode : AM65x, J721E and J7200 SoCs * Single-CPU mode : AM64x SoCs only * Single-Core mode : AM62x, AM62A SoCs */ enum cluster_mode { CLUSTER_MODE_SPLIT = 0, CLUSTER_MODE_LOCKSTEP, CLUSTER_MODE_SINGLECPU, CLUSTER_MODE_SINGLECORE }; /** * struct k3_r5_soc_data - match data to handle SoC variations * @tcm_is_double: flag to denote the larger unified TCMs in certain modes * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode * @is_single_core: flag to denote if SoC/IP has only single core R5 */ struct k3_r5_soc_data { bool tcm_is_double; bool tcm_ecc_autoinit; bool single_cpu_mode; bool is_single_core; }; /** * struct k3_r5_cluster - K3 R5F Cluster structure * @dev: cached device pointer * @mode: Mode to configure the Cluster - Split or LockStep * @cores: list of R5 cores within the cluster * @core_transition: wait queue to sync core state changes * @soc_data: SoC-specific feature data for a R5FSS */ struct k3_r5_cluster { struct device *dev; enum cluster_mode mode; struct list_head cores; wait_queue_head_t core_transition; const struct k3_r5_soc_data *soc_data; }; /** * struct k3_r5_core - K3 R5 core structure * @elem: linked list item * @dev: cached device pointer * @rproc: rproc handle representing this core * @mem: internal memory regions data * @sram: on-chip SRAM memory regions data * @num_mems: number of internal memory regions * @num_sram: number of on-chip SRAM memory regions * @reset: reset control handle * @tsp: TI-SCI processor control handle * @ti_sci: TI-SCI handle * @ti_sci_id: TI-SCI device identifier * @atcm_enable: flag to control ATCM enablement * @btcm_enable: flag to control BTCM enablement * @loczrama: flag to dictate which TCM is at device address 0x0 * @released_from_reset: flag to signal when core is out of reset */ struct k3_r5_core { struct list_head elem; struct device *dev; struct rproc *rproc; struct k3_r5_mem *mem; struct k3_r5_mem *sram; int num_mems; int num_sram; struct reset_control *reset; struct ti_sci_proc *tsp; const struct ti_sci_handle *ti_sci; u32 ti_sci_id; u32 atcm_enable; u32 btcm_enable; u32 loczrama; bool released_from_reset; }; /** * struct k3_r5_rproc - K3 remote processor state * @dev: cached device pointer * @cluster: cached pointer to parent cluster structure * @mbox: mailbox channel handle * @client: mailbox client to request the mailbox channel * @rproc: rproc handle * @core: cached pointer to r5 core structure being used * @rmem: reserved memory regions data * @num_rmems: number of reserved memory regions */ struct k3_r5_rproc { struct device *dev; struct k3_r5_cluster *cluster; struct mbox_chan *mbox; struct mbox_client client; struct rproc *rproc; struct k3_r5_core *core; struct k3_r5_mem *rmem; int num_rmems; }; /** * k3_r5_rproc_mbox_callback() - inbound mailbox message handler * @client: mailbox client pointer used for requesting the mailbox channel * @data: mailbox payload * * This handler is invoked by the OMAP mailbox driver whenever a mailbox * message is received. Usually, the mailbox payload simply contains * the index of the virtqueue that is kicked by the remote processor, * and we let remoteproc core handle it. * * In addition to virtqueue indices, we also have some out-of-band values * that indicate different events. Those values are deliberately very * large so they don't coincide with virtqueue indices. */ static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data) { struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc, client); struct device *dev = kproc->rproc->dev.parent; const char *name = kproc->rproc->name; u32 msg = omap_mbox_message(data); /* Do not forward message from a detached core */ if (kproc->rproc->state == RPROC_DETACHED) return; dev_dbg(dev, "mbox msg: 0x%x\n", msg); switch (msg) { case RP_MBOX_CRASH: /* * remoteproc detected an exception, but error recovery is not * supported. So, just log this for now */ dev_err(dev, "K3 R5F rproc %s crashed\n", name); break; case RP_MBOX_ECHO_REPLY: dev_info(dev, "received echo reply from %s\n", name); break; default: /* silently handle all other valid messages */ if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) return; if (msg > kproc->rproc->max_notifyid) { dev_dbg(dev, "dropping unknown message 0x%x", msg); return; } /* msg contains the index of the triggered vring */ if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) dev_dbg(dev, "no message was found in vqid %d\n", msg); } } /* kick a virtqueue */ static void k3_r5_rproc_kick(struct rproc *rproc, int vqid) { struct k3_r5_rproc *kproc = rproc->priv; struct device *dev = rproc->dev.parent; mbox_msg_t msg = (mbox_msg_t)vqid; int ret; /* Do not forward message to a detached core */ if (kproc->rproc->state == RPROC_DETACHED) return; /* send the index of the triggered virtqueue in the mailbox payload */ ret = mbox_send_message(kproc->mbox, (void *)msg); if (ret < 0) dev_err(dev, "failed to send mailbox message, status = %d\n", ret); } static int k3_r5_split_reset(struct k3_r5_core *core) { int ret; ret = reset_control_assert(core->reset); if (ret) { dev_err(core->dev, "local-reset assert failed, ret = %d\n", ret); return ret; } ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, core->ti_sci_id); if (ret) { dev_err(core->dev, "module-reset assert failed, ret = %d\n", ret); if (reset_control_deassert(core->reset)) dev_warn(core->dev, "local-reset deassert back failed\n"); } return ret; } static int k3_r5_split_release(struct k3_r5_core *core) { int ret; ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, core->ti_sci_id); if (ret) { dev_err(core->dev, "module-reset deassert failed, ret = %d\n", ret); return ret; } ret = reset_control_deassert(core->reset); if (ret) { dev_err(core->dev, "local-reset deassert failed, ret = %d\n", ret); if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, core->ti_sci_id)) dev_warn(core->dev, "module-reset assert back failed\n"); } return ret; } static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster) { struct k3_r5_core *core; int ret; /* assert local reset on all applicable cores */ list_for_each_entry(core, &cluster->cores, elem) { ret = reset_control_assert(core->reset); if (ret) { dev_err(core->dev, "local-reset assert failed, ret = %d\n", ret); core = list_prev_entry(core, elem); goto unroll_local_reset; } } /* disable PSC modules on all applicable cores */ list_for_each_entry(core, &cluster->cores, elem) { ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, core->ti_sci_id); if (ret) { dev_err(core->dev, "module-reset assert failed, ret = %d\n", ret); goto unroll_module_reset; } } return 0; unroll_module_reset: list_for_each_entry_continue_reverse(core, &cluster->cores, elem) { if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, core->ti_sci_id)) dev_warn(core->dev, "module-reset assert back failed\n"); } core = list_last_entry(&cluster->cores, struct k3_r5_core, elem); unroll_local_reset: list_for_each_entry_from_reverse(core, &cluster->cores, elem) { if (reset_control_deassert(core->reset)) dev_warn(core->dev, "local-reset deassert back failed\n"); } return ret; } static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster) { struct k3_r5_core *core; int ret; /* enable PSC modules on all applicable cores */ list_for_each_entry_reverse(core, &cluster->cores, elem) { ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, core->ti_sci_id); if (ret) { dev_err(core->dev, "module-reset deassert failed, ret = %d\n", ret); core = list_next_entry(core, elem); goto unroll_module_reset; } } /* deassert local reset on all applicable cores */ list_for_each_entry_reverse(core, &cluster->cores, elem) { ret = reset_control_deassert(core->reset); if (ret) { dev_err(core->dev, "module-reset deassert failed, ret = %d\n", ret); goto unroll_local_reset; } } return 0; unroll_local_reset: list_for_each_entry_continue(core, &cluster->cores, elem) { if (reset_control_assert(core->reset)) dev_warn(core->dev, "local-reset assert back failed\n"); } core = list_first_entry(&cluster->cores, struct k3_r5_core, elem); unroll_module_reset: list_for_each_entry_from(core, &cluster->cores, elem) { if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, core->ti_sci_id)) dev_warn(core->dev, "module-reset assert back failed\n"); } return ret; } static inline int k3_r5_core_halt(struct k3_r5_core *core) { return ti_sci_proc_set_control(core->tsp, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0); } static inline int k3_r5_core_run(struct k3_r5_core *core) { return ti_sci_proc_set_control(core->tsp, 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT); } static int k3_r5_rproc_request_mbox(struct rproc *rproc) { struct k3_r5_rproc *kproc = rproc->priv; struct mbox_client *client = &kproc->client; struct device *dev = kproc->dev; int ret; client->dev = dev; client->tx_done = NULL; client->rx_callback = k3_r5_rproc_mbox_callback; client->tx_block = false; client->knows_txdone = false; kproc->mbox = mbox_request_channel(client, 0); if (IS_ERR(kproc->mbox)) return dev_err_probe(dev, PTR_ERR(kproc->mbox), "mbox_request_channel failed\n"); /* * Ping the remote processor, this is only for sanity-sake for now; * there is no functional effect whatsoever. * * Note that the reply will _not_ arrive immediately: this message * will wait in the mailbox fifo until the remote processor is booted. */ ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); if (ret < 0) { dev_err(dev, "mbox_send_message failed: %d\n", ret); mbox_free_channel(kproc->mbox); return ret; } return 0; } /* * The R5F cores have controls for both a reset and a halt/run. The code * execution from DDR requires the initial boot-strapping code to be run * from the internal TCMs. This function is used to release the resets on * applicable cores to allow loading into the TCMs. The .prepare() ops is * invoked by remoteproc core before any firmware loading, and is followed * by the .start() ops after loading to actually let the R5 cores run. * * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to * execute code, but combines the TCMs from both cores. The resets for both * cores need to be released to make this possible, as the TCMs are in general * private to each core. Only Core0 needs to be unhalted for running the * cluster in this mode. The function uses the same reset logic as LockStep * mode for this (though the behavior is agnostic of the reset release order). * This callback is invoked only in remoteproc mode. */ static int k3_r5_rproc_prepare(struct rproc *rproc) { struct k3_r5_rproc *kproc = rproc->priv; struct k3_r5_cluster *cluster = kproc->cluster; struct k3_r5_core *core = kproc->core; struct device *dev = kproc->dev; u32 ctrl = 0, cfg = 0, stat = 0; u64 boot_vec = 0; bool mem_init_dis; int ret; ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat); if (ret < 0) return ret; mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS); /* Re-use LockStep-mode reset logic for Single-CPU mode */ ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP || cluster->mode == CLUSTER_MODE_SINGLECPU) ? k3_r5_lockstep_release(cluster) : k3_r5_split_release(core); if (ret) { dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n", ret); return ret; } /* * Newer IP revisions like on J7200 SoCs support h/w auto-initialization * of TCMs, so there is no need to perform the s/w memzero. This bit is * configurable through System Firmware, the default value does perform * auto-init, but account for it in case it is disabled */ if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) { dev_dbg(dev, "leveraging h/w init for TCM memories\n"); return 0; } /* * Zero out both TCMs unconditionally (access from v8 Arm core is not * affected by ATCM & BTCM enable configuration values) so that ECC * can be effective on all TCM addresses. */ dev_dbg(dev, "zeroing out ATCM memory\n"); memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size); dev_dbg(dev, "zeroing out BTCM memory\n"); memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size); return 0; } /* * This function implements the .unprepare() ops and performs the complimentary * operations to that of the .prepare() ops. The function is used to assert the * resets on all applicable cores for the rproc device (depending on LockStep * or Split mode). This completes the second portion of powering down the R5F * cores. The cores themselves are only halted in the .stop() ops, and the * .unprepare() ops is invoked by the remoteproc core after the remoteproc is * stopped. * * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from * both cores. The access is made possible only with releasing the resets for * both cores, but with only Core0 unhalted. This function re-uses the same * reset assert logic as LockStep mode for this mode (though the behavior is * agnostic of the reset assert order). This callback is invoked only in * remoteproc mode. */ static int k3_r5_rproc_unprepare(struct rproc *rproc) { struct k3_r5_rproc *kproc = rproc->priv; struct k3_r5_cluster *cluster = kproc->cluster; struct k3_r5_core *core = kproc->core; struct device *dev = kproc->dev; int ret; /* Re-use LockStep-mode reset logic for Single-CPU mode */ ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP || cluster->mode == CLUSTER_MODE_SINGLECPU) ? k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core); if (ret) dev_err(dev, "unable to disable cores, ret = %d\n", ret); return ret; } /* * The R5F start sequence includes two different operations * 1. Configure the boot vector for R5F core(s) * 2. Unhalt/Run the R5F core(s) * * The sequence is different between LockStep and Split modes. The LockStep * mode requires the boot vector to be configured only for Core0, and then * unhalt both the cores to start the execution - Core1 needs to be unhalted * first followed by Core0. The Split-mode requires that Core0 to be maintained * always in a higher power state that Core1 (implying Core1 needs to be started * always only after Core0 is started). * * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute * code, so only Core0 needs to be unhalted. The function uses the same logic * flow as Split-mode for this. This callback is invoked only in remoteproc * mode. */ static int k3_r5_rproc_start(struct rproc *rproc) { struct k3_r5_rproc *kproc = rproc->priv; struct k3_r5_cluster *cluster = kproc->cluster; struct device *dev = kproc->dev; struct k3_r5_core *core0, *core; u32 boot_addr; int ret; boot_addr = rproc->bootaddr; /* TODO: add boot_addr sanity checking */ dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr); /* boot vector need not be programmed for Core1 in LockStep mode */ core = kproc->core; ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0); if (ret) return ret; /* unhalt/run all applicable cores */ if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { list_for_each_entry_reverse(core, &cluster->cores, elem) { ret = k3_r5_core_run(core); if (ret) goto unroll_core_run; } } else { /* do not allow core 1 to start before core 0 */ core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); if (core != core0 && core0->rproc->state == RPROC_OFFLINE) { dev_err(dev, "%s: can not start core 1 before core 0\n", __func__); return -EPERM; } ret = k3_r5_core_run(core); if (ret) return ret; core->released_from_reset = true; wake_up_interruptible(&cluster->core_transition); } return 0; unroll_core_run: list_for_each_entry_continue(core, &cluster->cores, elem) { if (k3_r5_core_halt(core)) dev_warn(core->dev, "core halt back failed\n"); } return ret; } /* * The R5F stop function includes the following operations * 1. Halt R5F core(s) * * The sequence is different between LockStep and Split modes, and the order * of cores the operations are performed are also in general reverse to that * of the start function. The LockStep mode requires each operation to be * performed first on Core0 followed by Core1. The Split-mode requires that * Core0 to be maintained always in a higher power state that Core1 (implying * Core1 needs to be stopped first before Core0). * * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute * code, so only Core0 needs to be halted. The function uses the same logic * flow as Split-mode for this. * * Note that the R5F halt operation in general is not effective when the R5F * core is running, but is needed to make sure the core won't run after * deasserting the reset the subsequent time. The asserting of reset can * be done here, but is preferred to be done in the .unprepare() ops - this * maintains the symmetric behavior between the .start(), .stop(), .prepare() * and .unprepare() ops, and also balances them well between sysfs 'state' * flow and device bind/unbind or module removal. This callback is invoked * only in remoteproc mode. */ static int k3_r5_rproc_stop(struct rproc *rproc) { struct k3_r5_rproc *kproc = rproc->priv; struct k3_r5_cluster *cluster = kproc->cluster; struct device *dev = kproc->dev; struct k3_r5_core *core1, *core = kproc->core; int ret; /* halt all applicable cores */ if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { list_for_each_entry(core, &cluster->cores, elem) { ret = k3_r5_core_halt(core); if (ret) { core = list_prev_entry(core, elem); goto unroll_core_halt; } } } else { /* do not allow core 0 to stop before core 1 */ core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem); if (core != core1 && core1->rproc->state != RPROC_OFFLINE) { dev_err(dev, "%s: can not stop core 0 before core 1\n", __func__); ret = -EPERM; goto out; } ret = k3_r5_core_halt(core); if (ret) goto out; } return 0; unroll_core_halt: list_for_each_entry_from_reverse(core, &cluster->cores, elem) { if (k3_r5_core_run(core)) dev_warn(core->dev, "core run back failed\n"); } out: return ret; } /* * Attach to a running R5F remote processor (IPC-only mode) * * The R5F attach callback is a NOP. The remote processor is already booted, and * all required resources have been acquired during probe routine, so there is * no need to issue any TI-SCI commands to boot the R5F cores in IPC-only mode. * This callback is invoked only in IPC-only mode and exists because * rproc_validate() checks for its existence. */ static int k3_r5_rproc_attach(struct rproc *rproc) { return 0; } /* * Detach from a running R5F remote processor (IPC-only mode) * * The R5F detach callback is a NOP. The R5F cores are not stopped and will be * left in booted state in IPC-only mode. This callback is invoked only in * IPC-only mode and exists for sanity sake. */ static int k3_r5_rproc_detach(struct rproc *rproc) { return 0; } /* * This function implements the .get_loaded_rsc_table() callback and is used * to provide the resource table for the booted R5F in IPC-only mode. The K3 R5F * firmwares follow a design-by-contract approach and are expected to have the * resource table at the base of the DDR region reserved for firmware usage. * This provides flexibility for the remote processor to be booted by different * bootloaders that may or may not have the ability to publish the resource table * address and size through a DT property. This callback is invoked only in * IPC-only mode. */ static struct resource_table *k3_r5_get_loaded_rsc_table(struct rproc *rproc, size_t *rsc_table_sz) { struct k3_r5_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; if (!kproc->rmem[0].cpu_addr) { dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); return ERR_PTR(-ENOMEM); } /* * NOTE: The resource table size is currently hard-coded to a maximum * of 256 bytes. The most common resource table usage for K3 firmwares * is to only have the vdev resource entry and an optional trace entry. * The exact size could be computed based on resource table address, but * the hard-coded value suffices to support the IPC-only mode. */ *rsc_table_sz = 256; return (struct resource_table *)kproc->rmem[0].cpu_addr; } /* * Internal Memory translation helper * * Custom function implementing the rproc .da_to_va ops to provide address * translation (device address to kernel virtual address) for internal RAMs * present in a DSP or IPU device). The translated addresses can be used * either by the remoteproc core for loading, or by any rpmsg bus drivers. */ static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct k3_r5_rproc *kproc = rproc->priv; struct k3_r5_core *core = kproc->core; void __iomem *va = NULL; phys_addr_t bus_addr; u32 dev_addr, offset; size_t size; int i; if (len == 0) return NULL; /* handle both R5 and SoC views of ATCM and BTCM */ for (i = 0; i < core->num_mems; i++) { bus_addr = core->mem[i].bus_addr; dev_addr = core->mem[i].dev_addr; size = core->mem[i].size; /* handle R5-view addresses of TCMs */ if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { offset = da - dev_addr; va = core->mem[i].cpu_addr + offset; return (__force void *)va; } /* handle SoC-view addresses of TCMs */ if (da >= bus_addr && ((da + len) <= (bus_addr + size))) { offset = da - bus_addr; va = core->mem[i].cpu_addr + offset; return (__force void *)va; } } /* handle any SRAM regions using SoC-view addresses */ for (i = 0; i < core->num_sram; i++) { dev_addr = core->sram[i].dev_addr; size = core->sram[i].size; if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { offset = da - dev_addr; va = core->sram[i].cpu_addr + offset; return (__force void *)va; } } /* handle static DDR reserved memory regions */ for (i = 0; i < kproc->num_rmems; i++) { dev_addr = kproc->rmem[i].dev_addr; size = kproc->rmem[i].size; if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { offset = da - dev_addr; va = kproc->rmem[i].cpu_addr + offset; return (__force void *)va; } } return NULL; } static const struct rproc_ops k3_r5_rproc_ops = { .prepare = k3_r5_rproc_prepare, .unprepare = k3_r5_rproc_unprepare, .start = k3_r5_rproc_start, .stop = k3_r5_rproc_stop, .kick = k3_r5_rproc_kick, .da_to_va = k3_r5_rproc_da_to_va, }; /* * Internal R5F Core configuration * * Each R5FSS has a cluster-level setting for configuring the processor * subsystem either in a safety/fault-tolerant LockStep mode or a performance * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode * as an alternate for LockStep mode that exercises only a single R5F core * called Single-CPU mode. Each R5F core has a number of settings to either * enable/disable each of the TCMs, control which TCM appears at the R5F core's * address 0x0. These settings need to be configured before the resets for the * corresponding core are released. These settings are all protected and managed * by the System Processor. * * This function is used to pre-configure these settings for each R5F core, and * the configuration is all done through various ti_sci_proc functions that * communicate with the System Processor. The function also ensures that both * the cores are halted before the .prepare() step. * * The function is called from k3_r5_cluster_rproc_init() and is invoked either * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support * for LockStep-mode is dictated by an eFUSE register bit, and the config * settings retrieved from DT are adjusted accordingly as per the permitted * cluster mode. Another eFUSE register bit dictates if the R5F cluster only * supports a Single-CPU mode. All cluster level settings like Cluster mode and * TEINIT (exception handling state dictating ARM or Thumb mode) can only be set * and retrieved using Core0. * * The function behavior is different based on the cluster mode. The R5F cores * are configured independently as per their individual settings in Split mode. * They are identically configured in LockStep mode using the primary Core0 * settings. However, some individual settings cannot be set in LockStep mode. * This is overcome by switching to Split-mode initially and then programming * both the cores with the same settings, before reconfiguing again for * LockStep mode. */ static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc) { struct k3_r5_cluster *cluster = kproc->cluster; struct device *dev = kproc->dev; struct k3_r5_core *core0, *core, *temp; u32 ctrl = 0, cfg = 0, stat = 0; u32 set_cfg = 0, clr_cfg = 0; u64 boot_vec = 0; bool lockstep_en; bool single_cpu; int ret; core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); if (cluster->mode == CLUSTER_MODE_LOCKSTEP || cluster->mode == CLUSTER_MODE_SINGLECPU || cluster->mode == CLUSTER_MODE_SINGLECORE) { core = core0; } else { core = kproc->core; } ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat); if (ret < 0) return ret; dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n", boot_vec, cfg, ctrl, stat); single_cpu = !!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY); lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED); /* Override to single CPU mode if set in status flag */ if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) { dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n"); cluster->mode = CLUSTER_MODE_SINGLECPU; } /* Override to split mode if lockstep enable bit is not set in status flag */ if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) { dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n"); cluster->mode = CLUSTER_MODE_SPLIT; } /* always enable ARM mode and set boot vector to 0 */ boot_vec = 0x0; if (core == core0) { clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT; /* * Single-CPU configuration bit can only be configured * on Core0 and system firmware will NACK any requests * with the bit configured, so program it only on * permitted cores */ if (cluster->mode == CLUSTER_MODE_SINGLECPU || cluster->mode == CLUSTER_MODE_SINGLECORE) { set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE; } else { /* * LockStep configuration bit is Read-only on Split-mode * _only_ devices and system firmware will NACK any * requests with the bit configured, so program it only * on permitted devices */ if (lockstep_en) clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; } } if (core->atcm_enable) set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; else clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; if (core->btcm_enable) set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; else clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; if (core->loczrama) set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; else clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { /* * work around system firmware limitations to make sure both * cores are programmed symmetrically in LockStep. LockStep * and TEINIT config is only allowed with Core0. */ list_for_each_entry(temp, &cluster->cores, elem) { ret = k3_r5_core_halt(temp); if (ret) goto out; if (temp != core) { clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT; } ret = ti_sci_proc_set_config(temp->tsp, boot_vec, set_cfg, clr_cfg); if (ret) goto out; } set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; clr_cfg = 0; ret = ti_sci_proc_set_config(core->tsp, boot_vec, set_cfg, clr_cfg); } else { ret = k3_r5_core_halt(core); if (ret) goto out; ret = ti_sci_proc_set_config(core->tsp, boot_vec, set_cfg, clr_cfg); } out: return ret; } static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc) { struct device *dev = kproc->dev; struct device_node *np = dev_of_node(dev); struct device_node *rmem_np; struct reserved_mem *rmem; int num_rmems; int ret, i; num_rmems = of_property_count_elems_of_size(np, "memory-region", sizeof(phandle)); if (num_rmems <= 0) { dev_err(dev, "device does not have reserved memory regions, ret = %d\n", num_rmems); return -EINVAL; } if (num_rmems < 2) { dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", num_rmems); return -EINVAL; } /* use reserved memory region 0 for vring DMA allocations */ ret = of_reserved_mem_device_init_by_idx(dev, np, 0); if (ret) { dev_err(dev, "device cannot initialize DMA pool, ret = %d\n", ret); return ret; } num_rmems--; kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); if (!kproc->rmem) { ret = -ENOMEM; goto release_rmem; } /* use remaining reserved memory regions for static carveouts */ for (i = 0; i < num_rmems; i++) { rmem_np = of_parse_phandle(np, "memory-region", i + 1); if (!rmem_np) { ret = -EINVAL; goto unmap_rmem; } rmem = of_reserved_mem_lookup(rmem_np); if (!rmem) { of_node_put(rmem_np); ret = -EINVAL; goto unmap_rmem; } of_node_put(rmem_np); kproc->rmem[i].bus_addr = rmem->base; /* * R5Fs do not have an MMU, but have a Region Address Translator * (RAT) module that provides a fixed entry translation between * the 32-bit processor addresses to 64-bit bus addresses. The * RAT is programmable only by the R5F cores. Support for RAT * is currently not supported, so 64-bit address regions are not * supported. The absence of MMUs implies that the R5F device * addresses/supported memory regions are restricted to 32-bit * bus addresses, and are identical */ kproc->rmem[i].dev_addr = (u32)rmem->base; kproc->rmem[i].size = rmem->size; kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); if (!kproc->rmem[i].cpu_addr) { dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", i + 1, &rmem->base, &rmem->size); ret = -ENOMEM; goto unmap_rmem; } dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", i + 1, &kproc->rmem[i].bus_addr, kproc->rmem[i].size, kproc->rmem[i].cpu_addr, kproc->rmem[i].dev_addr); } kproc->num_rmems = num_rmems; return 0; unmap_rmem: for (i--; i >= 0; i--) iounmap(kproc->rmem[i].cpu_addr); kfree(kproc->rmem); release_rmem: of_reserved_mem_device_release(dev); return ret; } static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc) { int i; for (i = 0; i < kproc->num_rmems; i++) iounmap(kproc->rmem[i].cpu_addr); kfree(kproc->rmem); of_reserved_mem_device_release(kproc->dev); } /* * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs, * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both * cores are usable in Split-mode, but only the Core0 TCMs can be used in * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by * leveraging the Core1 TCMs as well in certain modes where they would have * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on * AM64x SoCs). This is done by making a Core1 TCM visible immediately after the * corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for * the Core0 TCMs, and the dts representation reflects this increased size on * supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only * half the original size in Split mode. */ static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc *kproc) { struct k3_r5_cluster *cluster = kproc->cluster; struct k3_r5_core *core = kproc->core; struct device *cdev = core->dev; struct k3_r5_core *core0; if (cluster->mode == CLUSTER_MODE_LOCKSTEP || cluster->mode == CLUSTER_MODE_SINGLECPU || cluster->mode == CLUSTER_MODE_SINGLECORE || !cluster->soc_data->tcm_is_double) return; core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); if (core == core0) { WARN_ON(core->mem[0].size != SZ_64K); WARN_ON(core->mem[1].size != SZ_64K); core->mem[0].size /= 2; core->mem[1].size /= 2; dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n", core->mem[0].size, core->mem[1].size); } } /* * This function checks and configures a R5F core for IPC-only or remoteproc * mode. The driver is configured to be in IPC-only mode for a R5F core when * the core has been loaded and started by a bootloader. The IPC-only mode is * detected by querying the System Firmware for reset, power on and halt status * and ensuring that the core is running. Any incomplete steps at bootloader * are validated and errored out. * * In IPC-only mode, the driver state flags for ATCM, BTCM and LOCZRAMA settings * and cluster mode parsed originally from kernel DT are updated to reflect the * actual values configured by bootloader. The driver internal device memory * addresses for TCMs are also updated. */ static int k3_r5_rproc_configure_mode(struct k3_r5_rproc *kproc) { struct k3_r5_cluster *cluster = kproc->cluster; struct k3_r5_core *core = kproc->core; struct device *cdev = core->dev; bool r_state = false, c_state = false, lockstep_en = false, single_cpu = false; u32 ctrl = 0, cfg = 0, stat = 0, halted = 0; u64 boot_vec = 0; u32 atcm_enable, btcm_enable, loczrama; struct k3_r5_core *core0; enum cluster_mode mode = cluster->mode; int reset_ctrl_status; int ret; core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); ret = core->ti_sci->ops.dev_ops.is_on(core->ti_sci, core->ti_sci_id, &r_state, &c_state); if (ret) { dev_err(cdev, "failed to get initial state, mode cannot be determined, ret = %d\n", ret); return ret; } if (r_state != c_state) { dev_warn(cdev, "R5F core may have been powered on by a different host, programmed state (%d) != actual state (%d)\n", r_state, c_state); } reset_ctrl_status = reset_control_status(core->reset); if (reset_ctrl_status < 0) { dev_err(cdev, "failed to get initial local reset status, ret = %d\n", reset_ctrl_status); return reset_ctrl_status; } /* * Skip the waiting mechanism for sequential power-on of cores if the * core has already been booted by another entity. */ core->released_from_reset = c_state; ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat); if (ret < 0) { dev_err(cdev, "failed to get initial processor status, ret = %d\n", ret); return ret; } atcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_ATCM_EN ? 1 : 0; btcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_BTCM_EN ? 1 : 0; loczrama = cfg & PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE ? 1 : 0; single_cpu = cfg & PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE ? 1 : 0; lockstep_en = cfg & PROC_BOOT_CFG_FLAG_R5_LOCKSTEP ? 1 : 0; if (single_cpu && mode != CLUSTER_MODE_SINGLECORE) mode = CLUSTER_MODE_SINGLECPU; if (lockstep_en) mode = CLUSTER_MODE_LOCKSTEP; halted = ctrl & PROC_BOOT_CTRL_FLAG_R5_CORE_HALT; /* * IPC-only mode detection requires both local and module resets to * be deasserted and R5F core to be unhalted. Local reset status is * irrelevant if module reset is asserted (POR value has local reset * deasserted), and is deemed as remoteproc mode */ if (c_state && !reset_ctrl_status && !halted) { dev_info(cdev, "configured R5F for IPC-only mode\n"); kproc->rproc->state = RPROC_DETACHED; ret = 1; /* override rproc ops with only required IPC-only mode ops */ kproc->rproc->ops->prepare = NULL; kproc->rproc->ops->unprepare = NULL; kproc->rproc->ops->start = NULL; kproc->rproc->ops->stop = NULL; kproc->rproc->ops->attach = k3_r5_rproc_attach; kproc->rproc->ops->detach = k3_r5_rproc_detach; kproc->rproc->ops->get_loaded_rsc_table = k3_r5_get_loaded_rsc_table; } else if (!c_state) { dev_info(cdev, "configured R5F for remoteproc mode\n"); ret = 0; } else { dev_err(cdev, "mismatched mode: local_reset = %s, module_reset = %s, core_state = %s\n", !reset_ctrl_status ? "deasserted" : "asserted", c_state ? "deasserted" : "asserted", halted ? "halted" : "unhalted"); ret = -EINVAL; } /* fixup TCMs, cluster & core flags to actual values in IPC-only mode */ if (ret > 0) { if (core == core0) cluster->mode = mode; core->atcm_enable = atcm_enable; core->btcm_enable = btcm_enable; core->loczrama = loczrama; core->mem[0].dev_addr = loczrama ? 0 : K3_R5_TCM_DEV_ADDR; core->mem[1].dev_addr = loczrama ? K3_R5_TCM_DEV_ADDR : 0; } return ret; } static int k3_r5_cluster_rproc_init(struct platform_device *pdev) { struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); struct device *dev = &pdev->dev; struct k3_r5_rproc *kproc; struct k3_r5_core *core, *core1; struct device *cdev; const char *fw_name; struct rproc *rproc; int ret, ret1; core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem); list_for_each_entry(core, &cluster->cores, elem) { cdev = core->dev; ret = rproc_of_parse_firmware(cdev, 0, &fw_name); if (ret) { dev_err(dev, "failed to parse firmware-name property, ret = %d\n", ret); goto out; } rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops, fw_name, sizeof(*kproc)); if (!rproc) { ret = -ENOMEM; goto out; } /* K3 R5s have a Region Address Translator (RAT) but no MMU */ rproc->has_iommu = false; /* error recovery is not supported at present */ rproc->recovery_disabled = true; kproc = rproc->priv; kproc->cluster = cluster; kproc->core = core; kproc->dev = cdev; kproc->rproc = rproc; core->rproc = rproc; ret = k3_r5_rproc_request_mbox(rproc); if (ret) return ret; ret = k3_r5_rproc_configure_mode(kproc); if (ret < 0) goto err_config; if (ret) goto init_rmem; ret = k3_r5_rproc_configure(kproc); if (ret) { dev_err(dev, "initial configure failed, ret = %d\n", ret); goto err_config; } init_rmem: k3_r5_adjust_tcm_sizes(kproc); ret = k3_r5_reserved_mem_init(kproc); if (ret) { dev_err(dev, "reserved memory init failed, ret = %d\n", ret); goto err_config; } ret = rproc_add(rproc); if (ret) { dev_err(dev, "rproc_add failed, ret = %d\n", ret); goto err_add; } /* create only one rproc in lockstep, single-cpu or * single core mode */ if (cluster->mode == CLUSTER_MODE_LOCKSTEP || cluster->mode == CLUSTER_MODE_SINGLECPU || cluster->mode == CLUSTER_MODE_SINGLECORE) break; /* * R5 cores require to be powered on sequentially, core0 * should be in higher power state than core1 in a cluster * So, wait for current core to power up before proceeding * to next core and put timeout of 2sec for each core. * * This waiting mechanism is necessary because * rproc_auto_boot_callback() for core1 can be called before * core0 due to thread execution order. */ ret = wait_event_interruptible_timeout(cluster->core_transition, core->released_from_reset, msecs_to_jiffies(2000)); if (ret <= 0) { dev_err(dev, "Timed out waiting for %s core to power up!\n", rproc->name); goto err_powerup; } } return 0; err_split: if (rproc->state == RPROC_ATTACHED) { ret1 = rproc_detach(rproc); if (ret1) { dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret1); return ret1; } } err_powerup: rproc_del(rproc); err_add: k3_r5_reserved_mem_exit(kproc); err_config: rproc_free(rproc); core->rproc = NULL; out: /* undo core0 upon any failures on core1 in split-mode */ if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) { core = list_prev_entry(core, elem); rproc = core->rproc; kproc = rproc->priv; goto err_split; } return ret; } static void k3_r5_cluster_rproc_exit(void *data) { struct k3_r5_cluster *cluster = platform_get_drvdata(data); struct k3_r5_rproc *kproc; struct k3_r5_core *core; struct rproc *rproc; int ret; /* * lockstep mode and single-cpu modes have only one rproc associated * with first core, whereas split-mode has two rprocs associated with * each core, and requires that core1 be powered down first */ core = (cluster->mode == CLUSTER_MODE_LOCKSTEP || cluster->mode == CLUSTER_MODE_SINGLECPU) ? list_first_entry(&cluster->cores, struct k3_r5_core, elem) : list_last_entry(&cluster->cores, struct k3_r5_core, elem); list_for_each_entry_from_reverse(core, &cluster->cores, elem) { rproc = core->rproc; kproc = rproc->priv; if (rproc->state == RPROC_ATTACHED) { ret = rproc_detach(rproc); if (ret) { dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret); return; } } mbox_free_channel(kproc->mbox); rproc_del(rproc); k3_r5_reserved_mem_exit(kproc); rproc_free(rproc); core->rproc = NULL; } } static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev, struct k3_r5_core *core) { static const char * const mem_names[] = {"atcm", "btcm"}; struct device *dev = &pdev->dev; struct resource *res; int num_mems; int i; num_mems = ARRAY_SIZE(mem_names); core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL); if (!core->mem) return -ENOMEM; for (i = 0; i < num_mems; i++) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, mem_names[i]); if (!res) { dev_err(dev, "found no memory resource for %s\n", mem_names[i]); return -EINVAL; } if (!devm_request_mem_region(dev, res->start, resource_size(res), dev_name(dev))) { dev_err(dev, "could not request %s region for resource\n", mem_names[i]); return -EBUSY; } /* * TCMs are designed in general to support RAM-like backing * memories. So, map these as Normal Non-Cached memories. This * also avoids/fixes any potential alignment faults due to * unaligned data accesses when using memcpy() or memset() * functions (normally seen with device type memory). */ core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, resource_size(res)); if (!core->mem[i].cpu_addr) { dev_err(dev, "failed to map %s memory\n", mem_names[i]); return -ENOMEM; } core->mem[i].bus_addr = res->start; /* * TODO: * The R5F cores can place ATCM & BTCM anywhere in its address * based on the corresponding Region Registers in the System * Control coprocessor. For now, place ATCM and BTCM at * addresses 0 and 0x41010000 (same as the bus address on AM65x * SoCs) based on loczrama setting */ if (!strcmp(mem_names[i], "atcm")) { core->mem[i].dev_addr = core->loczrama ? 0 : K3_R5_TCM_DEV_ADDR; } else { core->mem[i].dev_addr = core->loczrama ? K3_R5_TCM_DEV_ADDR : 0; } core->mem[i].size = resource_size(res); dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n", mem_names[i], &core->mem[i].bus_addr, core->mem[i].size, core->mem[i].cpu_addr, core->mem[i].dev_addr); } core->num_mems = num_mems; return 0; } static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev, struct k3_r5_core *core) { struct device_node *np = pdev->dev.of_node; struct device *dev = &pdev->dev; struct device_node *sram_np; struct resource res; int num_sram; int i, ret; num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle)); if (num_sram <= 0) { dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n", num_sram); return 0; } core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL); if (!core->sram) return -ENOMEM; for (i = 0; i < num_sram; i++) { sram_np = of_parse_phandle(np, "sram", i); if (!sram_np) return -EINVAL; if (!of_device_is_available(sram_np)) { of_node_put(sram_np); return -EINVAL; } ret = of_address_to_resource(sram_np, 0, &res); of_node_put(sram_np); if (ret) return -EINVAL; core->sram[i].bus_addr = res.start; core->sram[i].dev_addr = res.start; core->sram[i].size = resource_size(&res); core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start, resource_size(&res)); if (!core->sram[i].cpu_addr) { dev_err(dev, "failed to parse and map sram%d memory at %pad\n", i, &res.start); return -ENOMEM; } dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", i, &core->sram[i].bus_addr, core->sram[i].size, core->sram[i].cpu_addr, core->sram[i].dev_addr); } core->num_sram = num_sram; return 0; } static struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev, const struct ti_sci_handle *sci) { struct ti_sci_proc *tsp; u32 temp[2]; int ret; ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids", temp, 2); if (ret < 0) return ERR_PTR(ret); tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL); if (!tsp) return ERR_PTR(-ENOMEM); tsp->dev = dev; tsp->sci = sci; tsp->ops = &sci->ops.proc_ops; tsp->proc_id = temp[0]; tsp->host_id = temp[1]; return tsp; } static int k3_r5_core_of_init(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev_of_node(dev); struct k3_r5_core *core; int ret; if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL)) return -ENOMEM; core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL); if (!core) { ret = -ENOMEM; goto err; } core->dev = dev; /* * Use SoC Power-on-Reset values as default if no DT properties are * used to dictate the TCM configurations */ core->atcm_enable = 0; core->btcm_enable = 1; core->loczrama = 1; ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable); if (ret < 0 && ret != -EINVAL) { dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n", ret); goto err; } ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable); if (ret < 0 && ret != -EINVAL) { dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n", ret); goto err; } ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama); if (ret < 0 && ret != -EINVAL) { dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret); goto err; } core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci"); if (IS_ERR(core->ti_sci)) { ret = PTR_ERR(core->ti_sci); if (ret != -EPROBE_DEFER) { dev_err(dev, "failed to get ti-sci handle, ret = %d\n", ret); } core->ti_sci = NULL; goto err; } ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id); if (ret) { dev_err(dev, "missing 'ti,sci-dev-id' property\n"); goto err; } core->reset = devm_reset_control_get_exclusive(dev, NULL); if (IS_ERR_OR_NULL(core->reset)) { ret = PTR_ERR_OR_ZERO(core->reset); if (!ret) ret = -ENODEV; if (ret != -EPROBE_DEFER) { dev_err(dev, "failed to get reset handle, ret = %d\n", ret); } goto err; } core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci); if (IS_ERR(core->tsp)) { ret = PTR_ERR(core->tsp); dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n", ret); goto err; } ret = k3_r5_core_of_get_internal_memories(pdev, core); if (ret) { dev_err(dev, "failed to get internal memories, ret = %d\n", ret); goto err; } ret = k3_r5_core_of_get_sram_memories(pdev, core); if (ret) { dev_err(dev, "failed to get sram memories, ret = %d\n", ret); goto err; } ret = ti_sci_proc_request(core->tsp); if (ret < 0) { dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret); goto err; } platform_set_drvdata(pdev, core); devres_close_group(dev, k3_r5_core_of_init); return 0; err: devres_release_group(dev, k3_r5_core_of_init); return ret; } /* * free the resources explicitly since driver model is not being used * for the child R5F devices */ static void k3_r5_core_of_exit(struct platform_device *pdev) { struct k3_r5_core *core = platform_get_drvdata(pdev); struct device *dev = &pdev->dev; int ret; ret = ti_sci_proc_release(core->tsp); if (ret) dev_err(dev, "failed to release proc, ret = %d\n", ret); platform_set_drvdata(pdev, NULL); devres_release_group(dev, k3_r5_core_of_init); } static void k3_r5_cluster_of_exit(void *data) { struct k3_r5_cluster *cluster = platform_get_drvdata(data); struct platform_device *cpdev; struct k3_r5_core *core, *temp; list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) { list_del(&core->elem); cpdev = to_platform_device(core->dev); k3_r5_core_of_exit(cpdev); } } static int k3_r5_cluster_of_init(struct platform_device *pdev) { struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); struct device *dev = &pdev->dev; struct device_node *np = dev_of_node(dev); struct platform_device *cpdev; struct device_node *child; struct k3_r5_core *core; int ret; for_each_available_child_of_node(np, child) { cpdev = of_find_device_by_node(child); if (!cpdev) { ret = -ENODEV; dev_err(dev, "could not get R5 core platform device\n"); of_node_put(child); goto fail; } ret = k3_r5_core_of_init(cpdev); if (ret) { dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n", ret); put_device(&cpdev->dev); of_node_put(child); goto fail; } core = platform_get_drvdata(cpdev); put_device(&cpdev->dev); list_add_tail(&core->elem, &cluster->cores); } return 0; fail: k3_r5_cluster_of_exit(pdev); return ret; } static int k3_r5_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev_of_node(dev); struct k3_r5_cluster *cluster; const struct k3_r5_soc_data *data; int ret; int num_cores; data = of_device_get_match_data(&pdev->dev); if (!data) { dev_err(dev, "SoC-specific data is not defined\n"); return -ENODEV; } cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL); if (!cluster) return -ENOMEM; cluster->dev = dev; cluster->soc_data = data; INIT_LIST_HEAD(&cluster->cores); init_waitqueue_head(&cluster->core_transition); ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode); if (ret < 0 && ret != -EINVAL) { dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n", ret); return ret; } if (ret == -EINVAL) { /* * default to most common efuse configurations - Split-mode on AM64x * and LockStep-mode on all others * default to most common efuse configurations - * Split-mode on AM64x * Single core on AM62x * LockStep-mode on all others */ if (!data->is_single_core) cluster->mode = data->single_cpu_mode ? CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP; else cluster->mode = CLUSTER_MODE_SINGLECORE; } if ((cluster->mode == CLUSTER_MODE_SINGLECPU && !data->single_cpu_mode) || (cluster->mode == CLUSTER_MODE_SINGLECORE && !data->is_single_core)) { dev_err(dev, "Cluster mode = %d is not supported on this SoC\n", cluster->mode); return -EINVAL; } num_cores = of_get_available_child_count(np); if (num_cores != 2 && !data->is_single_core) { dev_err(dev, "MCU cluster requires both R5F cores to be enabled but num_cores is set to = %d\n", num_cores); return -ENODEV; } if (num_cores != 1 && data->is_single_core) { dev_err(dev, "SoC supports only single core R5 but num_cores is set to %d\n", num_cores); return -ENODEV; } platform_set_drvdata(pdev, cluster); ret = devm_of_platform_populate(dev); if (ret) { dev_err(dev, "devm_of_platform_populate failed, ret = %d\n", ret); return ret; } ret = k3_r5_cluster_of_init(pdev); if (ret) { dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret); return ret; } ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev); if (ret) return ret; ret = k3_r5_cluster_rproc_init(pdev); if (ret) { dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n", ret); return ret; } ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev); if (ret) return ret; return 0; } static const struct k3_r5_soc_data am65_j721e_soc_data = { .tcm_is_double = false, .tcm_ecc_autoinit = false, .single_cpu_mode = false, .is_single_core = false, }; static const struct k3_r5_soc_data j7200_j721s2_soc_data = { .tcm_is_double = true, .tcm_ecc_autoinit = true, .single_cpu_mode = false, .is_single_core = false, }; static const struct k3_r5_soc_data am64_soc_data = { .tcm_is_double = true, .tcm_ecc_autoinit = true, .single_cpu_mode = true, .is_single_core = false, }; static const struct k3_r5_soc_data am62_soc_data = { .tcm_is_double = false, .tcm_ecc_autoinit = true, .single_cpu_mode = false, .is_single_core = true, }; static const struct of_device_id k3_r5_of_match[] = { { .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, }, { .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, }, { .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, }, { .compatible = "ti,am64-r5fss", .data = &am64_soc_data, }, { .compatible = "ti,am62-r5fss", .data = &am62_soc_data, }, { .compatible = "ti,j721s2-r5fss", .data = &j7200_j721s2_soc_data, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, k3_r5_of_match); static struct platform_driver k3_r5_rproc_driver = { .probe = k3_r5_probe, .driver = { .name = "k3_r5_rproc", .of_match_table = k3_r5_of_match, }, }; module_platform_driver(k3_r5_rproc_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("TI K3 R5F remote processor driver"); MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); |