Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2015-2018, 2020-2021 The Linux Foundation. All rights reserved.
 */

#define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
#include "dpu_encoder_phys.h"
#include "dpu_hw_interrupts.h"
#include "dpu_hw_merge3d.h"
#include "dpu_core_irq.h"
#include "dpu_formats.h"
#include "dpu_trace.h"
#include "disp/msm_disp_snapshot.h"

#include <drm/display/drm_dsc_helper.h>
#include <drm/drm_managed.h>

#define DPU_DEBUG_VIDENC(e, fmt, ...) DPU_DEBUG("enc%d intf%d " fmt, \
		(e) && (e)->parent ? \
		(e)->parent->base.id : -1, \
		(e) && (e)->hw_intf ? \
		(e)->hw_intf->idx - INTF_0 : -1, ##__VA_ARGS__)

#define DPU_ERROR_VIDENC(e, fmt, ...) DPU_ERROR("enc%d intf%d " fmt, \
		(e) && (e)->parent ? \
		(e)->parent->base.id : -1, \
		(e) && (e)->hw_intf ? \
		(e)->hw_intf->idx - INTF_0 : -1, ##__VA_ARGS__)

#define to_dpu_encoder_phys_vid(x) \
	container_of(x, struct dpu_encoder_phys_vid, base)

static bool dpu_encoder_phys_vid_is_master(
		struct dpu_encoder_phys *phys_enc)
{
	bool ret = false;

	if (phys_enc->split_role != ENC_ROLE_SLAVE)
		ret = true;

	return ret;
}

static void drm_mode_to_intf_timing_params(
		const struct dpu_encoder_phys *phys_enc,
		const struct drm_display_mode *mode,
		struct dpu_hw_intf_timing_params *timing)
{
	memset(timing, 0, sizeof(*timing));

	if ((mode->htotal < mode->hsync_end)
			|| (mode->hsync_start < mode->hdisplay)
			|| (mode->vtotal < mode->vsync_end)
			|| (mode->vsync_start < mode->vdisplay)
			|| (mode->hsync_end < mode->hsync_start)
			|| (mode->vsync_end < mode->vsync_start)) {
		DPU_ERROR(
		    "invalid params - hstart:%d,hend:%d,htot:%d,hdisplay:%d\n",
				mode->hsync_start, mode->hsync_end,
				mode->htotal, mode->hdisplay);
		DPU_ERROR("vstart:%d,vend:%d,vtot:%d,vdisplay:%d\n",
				mode->vsync_start, mode->vsync_end,
				mode->vtotal, mode->vdisplay);
		return;
	}

	/*
	 * https://www.kernel.org/doc/htmldocs/drm/ch02s05.html
	 *  Active Region      Front Porch   Sync   Back Porch
	 * <-----------------><------------><-----><----------->
	 * <- [hv]display --->
	 * <--------- [hv]sync_start ------>
	 * <----------------- [hv]sync_end ------->
	 * <---------------------------- [hv]total ------------->
	 */
	timing->width = mode->hdisplay;	/* active width */
	timing->height = mode->vdisplay;	/* active height */
	timing->xres = timing->width;
	timing->yres = timing->height;
	timing->h_back_porch = mode->htotal - mode->hsync_end;
	timing->h_front_porch = mode->hsync_start - mode->hdisplay;
	timing->v_back_porch = mode->vtotal - mode->vsync_end;
	timing->v_front_porch = mode->vsync_start - mode->vdisplay;
	timing->hsync_pulse_width = mode->hsync_end - mode->hsync_start;
	timing->vsync_pulse_width = mode->vsync_end - mode->vsync_start;
	timing->hsync_polarity = (mode->flags & DRM_MODE_FLAG_NHSYNC) ? 1 : 0;
	timing->vsync_polarity = (mode->flags & DRM_MODE_FLAG_NVSYNC) ? 1 : 0;
	timing->border_clr = 0;
	timing->underflow_clr = 0xff;
	timing->hsync_skew = mode->hskew;

	/* DSI controller cannot handle active-low sync signals. */
	if (phys_enc->hw_intf->cap->type == INTF_DSI) {
		timing->hsync_polarity = 0;
		timing->vsync_polarity = 0;
	}

	/* for DP/EDP, Shift timings to align it to bottom right */
	if (phys_enc->hw_intf->cap->type == INTF_DP) {
		timing->h_back_porch += timing->h_front_porch;
		timing->h_front_porch = 0;
		timing->v_back_porch += timing->v_front_porch;
		timing->v_front_porch = 0;
	}

	timing->wide_bus_en = dpu_encoder_is_widebus_enabled(phys_enc->parent);
	timing->compression_en = dpu_encoder_is_dsc_enabled(phys_enc->parent);

	/*
	 * for DP, divide the horizonal parameters by 2 when
	 * widebus is enabled
	 */
	if (phys_enc->hw_intf->cap->type == INTF_DP && timing->wide_bus_en) {
		timing->width = timing->width >> 1;
		timing->xres = timing->xres >> 1;
		timing->h_back_porch = timing->h_back_porch >> 1;
		timing->h_front_porch = timing->h_front_porch >> 1;
		timing->hsync_pulse_width = timing->hsync_pulse_width >> 1;
	}

	/*
	 * for DSI, if compression is enabled, then divide the horizonal active
	 * timing parameters by compression ratio. bits of 3 components(R/G/B)
	 * is compressed into bits of 1 pixel.
	 */
	if (phys_enc->hw_intf->cap->type != INTF_DP && timing->compression_en) {
		struct drm_dsc_config *dsc =
		       dpu_encoder_get_dsc_config(phys_enc->parent);
		/*
		 * TODO: replace drm_dsc_get_bpp_int with logic to handle
		 * fractional part if there is fraction
		 */
		timing->width = timing->width * drm_dsc_get_bpp_int(dsc) /
				(dsc->bits_per_component * 3);
		timing->xres = timing->width;
	}
}

static u32 get_horizontal_total(const struct dpu_hw_intf_timing_params *timing)
{
	u32 active = timing->xres;
	u32 inactive =
	    timing->h_back_porch + timing->h_front_porch +
	    timing->hsync_pulse_width;
	return active + inactive;
}

static u32 get_vertical_total(const struct dpu_hw_intf_timing_params *timing)
{
	u32 active = timing->yres;
	u32 inactive =
	    timing->v_back_porch + timing->v_front_porch +
	    timing->vsync_pulse_width;
	return active + inactive;
}

/*
 * programmable_fetch_get_num_lines:
 *	Number of fetch lines in vertical front porch
 * @timing: Pointer to the intf timing information for the requested mode
 *
 * Returns the number of fetch lines in vertical front porch at which mdp
 * can start fetching the next frame.
 *
 * Number of needed prefetch lines is anything that cannot be absorbed in the
 * start of frame time (back porch + vsync pulse width).
 *
 * Some panels have very large VFP, however we only need a total number of
 * lines based on the chip worst case latencies.
 */
static u32 programmable_fetch_get_num_lines(
		struct dpu_encoder_phys *phys_enc,
		const struct dpu_hw_intf_timing_params *timing)
{
	u32 worst_case_needed_lines =
	    phys_enc->hw_intf->cap->prog_fetch_lines_worst_case;
	u32 start_of_frame_lines =
	    timing->v_back_porch + timing->vsync_pulse_width;
	u32 needed_vfp_lines = worst_case_needed_lines - start_of_frame_lines;
	u32 actual_vfp_lines = 0;

	/* Fetch must be outside active lines, otherwise undefined. */
	if (start_of_frame_lines >= worst_case_needed_lines) {
		DPU_DEBUG_VIDENC(phys_enc,
				"prog fetch is not needed, large vbp+vsw\n");
		actual_vfp_lines = 0;
	} else if (timing->v_front_porch < needed_vfp_lines) {
		/* Warn fetch needed, but not enough porch in panel config */
		pr_warn_once
			("low vbp+vfp may lead to perf issues in some cases\n");
		DPU_DEBUG_VIDENC(phys_enc,
				"less vfp than fetch req, using entire vfp\n");
		actual_vfp_lines = timing->v_front_porch;
	} else {
		DPU_DEBUG_VIDENC(phys_enc, "room in vfp for needed prefetch\n");
		actual_vfp_lines = needed_vfp_lines;
	}

	DPU_DEBUG_VIDENC(phys_enc,
		"v_front_porch %u v_back_porch %u vsync_pulse_width %u\n",
		timing->v_front_porch, timing->v_back_porch,
		timing->vsync_pulse_width);
	DPU_DEBUG_VIDENC(phys_enc,
		"wc_lines %u needed_vfp_lines %u actual_vfp_lines %u\n",
		worst_case_needed_lines, needed_vfp_lines, actual_vfp_lines);

	return actual_vfp_lines;
}

/*
 * programmable_fetch_config: Programs HW to prefetch lines by offsetting
 *	the start of fetch into the vertical front porch for cases where the
 *	vsync pulse width and vertical back porch time is insufficient
 *
 *	Gets # of lines to pre-fetch, then calculate VSYNC counter value.
 *	HW layer requires VSYNC counter of first pixel of tgt VFP line.
 *
 * @timing: Pointer to the intf timing information for the requested mode
 */
static void programmable_fetch_config(struct dpu_encoder_phys *phys_enc,
				      const struct dpu_hw_intf_timing_params *timing)
{
	struct dpu_hw_intf_prog_fetch f = { 0 };
	u32 vfp_fetch_lines = 0;
	u32 horiz_total = 0;
	u32 vert_total = 0;
	u32 vfp_fetch_start_vsync_counter = 0;
	unsigned long lock_flags;

	if (WARN_ON_ONCE(!phys_enc->hw_intf->ops.setup_prg_fetch))
		return;

	vfp_fetch_lines = programmable_fetch_get_num_lines(phys_enc, timing);
	if (vfp_fetch_lines) {
		vert_total = get_vertical_total(timing);
		horiz_total = get_horizontal_total(timing);
		vfp_fetch_start_vsync_counter =
		    (vert_total - vfp_fetch_lines) * horiz_total + 1;
		f.enable = 1;
		f.fetch_start = vfp_fetch_start_vsync_counter;
	}

	DPU_DEBUG_VIDENC(phys_enc,
		"vfp_fetch_lines %u vfp_fetch_start_vsync_counter %u\n",
		vfp_fetch_lines, vfp_fetch_start_vsync_counter);

	spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags);
	phys_enc->hw_intf->ops.setup_prg_fetch(phys_enc->hw_intf, &f);
	spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags);
}

static void dpu_encoder_phys_vid_setup_timing_engine(
		struct dpu_encoder_phys *phys_enc)
{
	struct drm_display_mode mode;
	struct dpu_hw_intf_timing_params timing_params = { 0 };
	const struct msm_format *fmt = NULL;
	u32 fmt_fourcc;
	unsigned long lock_flags;
	struct dpu_hw_intf_cfg intf_cfg = { 0 };

	drm_mode_init(&mode, &phys_enc->cached_mode);

	if (!phys_enc->hw_ctl->ops.setup_intf_cfg) {
		DPU_ERROR("invalid encoder %d\n", phys_enc != NULL);
		return;
	}

	if (!phys_enc->hw_intf->ops.setup_timing_gen) {
		DPU_ERROR("timing engine setup is not supported\n");
		return;
	}

	DPU_DEBUG_VIDENC(phys_enc, "enabling mode:\n");
	drm_mode_debug_printmodeline(&mode);

	fmt_fourcc = dpu_encoder_get_drm_fmt(phys_enc);

	if (phys_enc->split_role != ENC_ROLE_SOLO || fmt_fourcc == DRM_FORMAT_YUV420) {
		mode.hdisplay >>= 1;
		mode.htotal >>= 1;
		mode.hsync_start >>= 1;
		mode.hsync_end >>= 1;
		mode.hskew >>= 1;

		DPU_DEBUG_VIDENC(phys_enc,
			"split_role %d, halve horizontal %d %d %d %d %d\n",
			phys_enc->split_role,
			mode.hdisplay, mode.htotal,
			mode.hsync_start, mode.hsync_end,
			mode.hskew);
	}

	drm_mode_to_intf_timing_params(phys_enc, &mode, &timing_params);

	fmt = mdp_get_format(&phys_enc->dpu_kms->base, fmt_fourcc, 0);
	DPU_DEBUG_VIDENC(phys_enc, "fmt_fourcc 0x%X\n", fmt_fourcc);

	if (phys_enc->hw_cdm)
		intf_cfg.cdm = phys_enc->hw_cdm->idx;
	intf_cfg.intf = phys_enc->hw_intf->idx;
	intf_cfg.intf_mode_sel = DPU_CTL_MODE_SEL_VID;
	intf_cfg.stream_sel = 0; /* Don't care value for video mode */
	intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
	intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
	if (phys_enc->hw_pp->merge_3d)
		intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;

	spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags);
	phys_enc->hw_intf->ops.setup_timing_gen(phys_enc->hw_intf,
			&timing_params, fmt,
			phys_enc->dpu_kms->catalog->mdss_ver);
	phys_enc->hw_ctl->ops.setup_intf_cfg(phys_enc->hw_ctl, &intf_cfg);

	/* setup which pp blk will connect to this intf */
	if (phys_enc->hw_intf->ops.bind_pingpong_blk)
		phys_enc->hw_intf->ops.bind_pingpong_blk(
				phys_enc->hw_intf,
				phys_enc->hw_pp->idx);

	if (phys_enc->hw_pp->merge_3d)
		phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d, intf_cfg.mode_3d);

	spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags);

	programmable_fetch_config(phys_enc, &timing_params);
}

static void dpu_encoder_phys_vid_vblank_irq(void *arg)
{
	struct dpu_encoder_phys *phys_enc = arg;
	struct dpu_hw_ctl *hw_ctl;
	unsigned long lock_flags;
	u32 flush_register = 0;

	hw_ctl = phys_enc->hw_ctl;

	DPU_ATRACE_BEGIN("vblank_irq");

	dpu_encoder_vblank_callback(phys_enc->parent, phys_enc);

	atomic_read(&phys_enc->pending_kickoff_cnt);

	/*
	 * only decrement the pending flush count if we've actually flushed
	 * hardware. due to sw irq latency, vblank may have already happened
	 * so we need to double-check with hw that it accepted the flush bits
	 */
	spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags);
	if (hw_ctl->ops.get_flush_register)
		flush_register = hw_ctl->ops.get_flush_register(hw_ctl);

	if (!(flush_register & hw_ctl->ops.get_pending_flush(hw_ctl)))
		atomic_add_unless(&phys_enc->pending_kickoff_cnt, -1, 0);
	spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags);

	/* Signal any waiting atomic commit thread */
	wake_up_all(&phys_enc->pending_kickoff_wq);

	dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
			DPU_ENCODER_FRAME_EVENT_DONE);

	DPU_ATRACE_END("vblank_irq");
}

static void dpu_encoder_phys_vid_underrun_irq(void *arg)
{
	struct dpu_encoder_phys *phys_enc = arg;

	dpu_encoder_underrun_callback(phys_enc->parent, phys_enc);
}

static bool dpu_encoder_phys_vid_needs_single_flush(
		struct dpu_encoder_phys *phys_enc)
{
	return phys_enc->split_role != ENC_ROLE_SOLO;
}

static void dpu_encoder_phys_vid_atomic_mode_set(
		struct dpu_encoder_phys *phys_enc,
		struct drm_crtc_state *crtc_state,
		struct drm_connector_state *conn_state)
{
	phys_enc->irq[INTR_IDX_VSYNC] = phys_enc->hw_intf->cap->intr_vsync;

	phys_enc->irq[INTR_IDX_UNDERRUN] = phys_enc->hw_intf->cap->intr_underrun;
}

static int dpu_encoder_phys_vid_control_vblank_irq(
		struct dpu_encoder_phys *phys_enc,
		bool enable)
{
	int ret = 0;
	int refcount;

	mutex_lock(&phys_enc->vblank_ctl_lock);
	refcount = phys_enc->vblank_refcount;

	/* Slave encoders don't report vblank */
	if (!dpu_encoder_phys_vid_is_master(phys_enc))
		goto end;

	/* protect against negative */
	if (!enable && refcount == 0) {
		ret = -EINVAL;
		goto end;
	}

	DRM_DEBUG_VBL("id:%u enable=%d/%d\n", DRMID(phys_enc->parent), enable,
		      refcount);

	if (enable) {
		if (phys_enc->vblank_refcount == 0)
			ret = dpu_core_irq_register_callback(phys_enc->dpu_kms,
					phys_enc->irq[INTR_IDX_VSYNC],
					dpu_encoder_phys_vid_vblank_irq,
					phys_enc);
		if (!ret)
			phys_enc->vblank_refcount++;
	} else if (!enable) {
		if (phys_enc->vblank_refcount == 1)
			ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
					phys_enc->irq[INTR_IDX_VSYNC]);
		if (!ret)
			phys_enc->vblank_refcount--;
	}

end:
	mutex_unlock(&phys_enc->vblank_ctl_lock);
	if (ret) {
		DRM_ERROR("failed: id:%u intf:%d ret:%d enable:%d refcnt:%d\n",
			  DRMID(phys_enc->parent),
			  phys_enc->hw_intf->idx - INTF_0, ret, enable,
			  refcount);
	}
	return ret;
}

static void dpu_encoder_phys_vid_enable(struct dpu_encoder_phys *phys_enc)
{
	struct dpu_hw_ctl *ctl;
	const struct msm_format *fmt;
	u32 fmt_fourcc;

	ctl = phys_enc->hw_ctl;
	fmt_fourcc = dpu_encoder_get_drm_fmt(phys_enc);
	fmt = mdp_get_format(&phys_enc->dpu_kms->base, fmt_fourcc, 0);

	DPU_DEBUG_VIDENC(phys_enc, "\n");

	if (WARN_ON(!phys_enc->hw_intf->ops.enable_timing))
		return;

	dpu_encoder_helper_split_config(phys_enc, phys_enc->hw_intf->idx);

	dpu_encoder_helper_phys_setup_cdm(phys_enc, fmt, CDM_CDWN_OUTPUT_HDMI);

	dpu_encoder_phys_vid_setup_timing_engine(phys_enc);

	/*
	 * For single flush cases (dual-ctl or pp-split), skip setting the
	 * flush bit for the slave intf, since both intfs use same ctl
	 * and HW will only flush the master.
	 */
	if (dpu_encoder_phys_vid_needs_single_flush(phys_enc) &&
		!dpu_encoder_phys_vid_is_master(phys_enc))
		goto skip_flush;

	ctl->ops.update_pending_flush_intf(ctl, phys_enc->hw_intf->idx);
	if (ctl->ops.update_pending_flush_merge_3d && phys_enc->hw_pp->merge_3d)
		ctl->ops.update_pending_flush_merge_3d(ctl, phys_enc->hw_pp->merge_3d->idx);

	if (ctl->ops.update_pending_flush_cdm && phys_enc->hw_cdm)
		ctl->ops.update_pending_flush_cdm(ctl, phys_enc->hw_cdm->idx);

	/*
	 * Peripheral flush must be updated whenever flushing SDP packets is needed.
	 * SDP packets are required for any YUV format (YUV420, YUV422, YUV444).
	 */
	if (ctl->ops.update_pending_flush_periph && dpu_encoder_needs_periph_flush(phys_enc))
		ctl->ops.update_pending_flush_periph(ctl, phys_enc->hw_intf->idx);

skip_flush:
	DPU_DEBUG_VIDENC(phys_enc,
		"update pending flush ctl %d intf %d\n",
		ctl->idx - CTL_0, phys_enc->hw_intf->idx);

	atomic_set(&phys_enc->underrun_cnt, 0);

	/* ctl_flush & timing engine enable will be triggered by framework */
	if (phys_enc->enable_state == DPU_ENC_DISABLED)
		phys_enc->enable_state = DPU_ENC_ENABLING;
}

static int dpu_encoder_phys_vid_wait_for_tx_complete(
		struct dpu_encoder_phys *phys_enc)
{
	struct dpu_encoder_wait_info wait_info;
	int ret;

	wait_info.wq = &phys_enc->pending_kickoff_wq;
	wait_info.atomic_cnt = &phys_enc->pending_kickoff_cnt;
	wait_info.timeout_ms = KICKOFF_TIMEOUT_MS;

	if (!dpu_encoder_phys_vid_is_master(phys_enc)) {
		return 0;
	}

	/* Wait for kickoff to complete */
	ret = dpu_encoder_helper_wait_for_irq(phys_enc,
			phys_enc->irq[INTR_IDX_VSYNC],
			dpu_encoder_phys_vid_vblank_irq,
			&wait_info);

	if (ret == -ETIMEDOUT) {
		dpu_encoder_helper_report_irq_timeout(phys_enc, INTR_IDX_VSYNC);
	}

	return ret;
}

static int dpu_encoder_phys_vid_wait_for_commit_done(
		struct dpu_encoder_phys *phys_enc)
{
	struct dpu_hw_ctl *hw_ctl = phys_enc->hw_ctl;
	int ret;

	if (!hw_ctl)
		return 0;

	ret = wait_event_timeout(phys_enc->pending_kickoff_wq,
		(hw_ctl->ops.get_flush_register(hw_ctl) == 0),
		msecs_to_jiffies(50));
	if (ret <= 0) {
		DPU_ERROR("vblank timeout: %x\n", hw_ctl->ops.get_flush_register(hw_ctl));
		return -ETIMEDOUT;
	}

	return 0;
}

static void dpu_encoder_phys_vid_prepare_for_kickoff(
		struct dpu_encoder_phys *phys_enc)
{
	struct dpu_hw_ctl *ctl;
	int rc;
	struct drm_encoder *drm_enc;

	drm_enc = phys_enc->parent;

	ctl = phys_enc->hw_ctl;
	if (!ctl->ops.wait_reset_status)
		return;

	/*
	 * hw supports hardware initiated ctl reset, so before we kickoff a new
	 * frame, need to check and wait for hw initiated ctl reset completion
	 */
	rc = ctl->ops.wait_reset_status(ctl);
	if (rc) {
		DPU_ERROR_VIDENC(phys_enc, "ctl %d reset failure: %d\n",
				ctl->idx, rc);
		msm_disp_snapshot_state(drm_enc->dev);
		dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
				phys_enc->irq[INTR_IDX_VSYNC]);
	}
}

static void dpu_encoder_phys_vid_disable(struct dpu_encoder_phys *phys_enc)
{
	unsigned long lock_flags;
	int ret;
	struct dpu_hw_intf_status intf_status = {0};

	if (!phys_enc->parent || !phys_enc->parent->dev) {
		DPU_ERROR("invalid encoder/device\n");
		return;
	}

	if (!phys_enc->hw_intf) {
		DPU_ERROR("invalid hw_intf %d hw_ctl %d\n",
				phys_enc->hw_intf != NULL, phys_enc->hw_ctl != NULL);
		return;
	}

	if (WARN_ON(!phys_enc->hw_intf->ops.enable_timing))
		return;

	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
		DPU_ERROR("already disabled\n");
		return;
	}

	spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags);
	phys_enc->hw_intf->ops.enable_timing(phys_enc->hw_intf, 0);
	if (dpu_encoder_phys_vid_is_master(phys_enc))
		dpu_encoder_phys_inc_pending(phys_enc);
	spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags);

	/*
	 * Wait for a vsync so we know the ENABLE=0 latched before
	 * the (connector) source of the vsync's gets disabled,
	 * otherwise we end up in a funny state if we re-enable
	 * before the disable latches, which results that some of
	 * the settings changes for the new modeset (like new
	 * scanout buffer) don't latch properly..
	 */
	if (dpu_encoder_phys_vid_is_master(phys_enc)) {
		ret = dpu_encoder_phys_vid_wait_for_tx_complete(phys_enc);
		if (ret) {
			atomic_set(&phys_enc->pending_kickoff_cnt, 0);
			DRM_ERROR("wait disable failed: id:%u intf:%d ret:%d\n",
				  DRMID(phys_enc->parent),
				  phys_enc->hw_intf->idx - INTF_0, ret);
		}
	}

	if (phys_enc->hw_intf && phys_enc->hw_intf->ops.get_status)
		phys_enc->hw_intf->ops.get_status(phys_enc->hw_intf, &intf_status);

	/*
	 * Wait for a vsync if timing en status is on after timing engine
	 * is disabled.
	 */
	if (intf_status.is_en && dpu_encoder_phys_vid_is_master(phys_enc)) {
		spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags);
		dpu_encoder_phys_inc_pending(phys_enc);
		spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags);
		ret = dpu_encoder_phys_vid_wait_for_tx_complete(phys_enc);
		if (ret) {
			atomic_set(&phys_enc->pending_kickoff_cnt, 0);
			DRM_ERROR("wait disable failed: id:%u intf:%d ret:%d\n",
				  DRMID(phys_enc->parent),
				  phys_enc->hw_intf->idx - INTF_0, ret);
		}
	}

	dpu_encoder_helper_phys_cleanup(phys_enc);
	phys_enc->enable_state = DPU_ENC_DISABLED;
}

static void dpu_encoder_phys_vid_handle_post_kickoff(
		struct dpu_encoder_phys *phys_enc)
{
	unsigned long lock_flags;

	/*
	 * Video mode must flush CTL before enabling timing engine
	 * Video encoders need to turn on their interfaces now
	 */
	if (phys_enc->enable_state == DPU_ENC_ENABLING) {
		trace_dpu_enc_phys_vid_post_kickoff(DRMID(phys_enc->parent),
				    phys_enc->hw_intf->idx - INTF_0);
		spin_lock_irqsave(phys_enc->enc_spinlock, lock_flags);
		phys_enc->hw_intf->ops.enable_timing(phys_enc->hw_intf, 1);
		spin_unlock_irqrestore(phys_enc->enc_spinlock, lock_flags);
		phys_enc->enable_state = DPU_ENC_ENABLED;
	}
}

static void dpu_encoder_phys_vid_irq_enable(struct dpu_encoder_phys *phys_enc)
{
	int ret;

	trace_dpu_enc_phys_vid_irq_enable(DRMID(phys_enc->parent),
					  phys_enc->hw_intf->idx - INTF_0,
					  phys_enc->vblank_refcount);

	ret = dpu_encoder_phys_vid_control_vblank_irq(phys_enc, true);
	if (WARN_ON(ret))
		return;

	dpu_core_irq_register_callback(phys_enc->dpu_kms,
				       phys_enc->irq[INTR_IDX_UNDERRUN],
				       dpu_encoder_phys_vid_underrun_irq,
				       phys_enc);
}

static void dpu_encoder_phys_vid_irq_disable(struct dpu_encoder_phys *phys_enc)
{
	trace_dpu_enc_phys_vid_irq_disable(DRMID(phys_enc->parent),
					   phys_enc->hw_intf->idx - INTF_0,
					   phys_enc->vblank_refcount);

	dpu_encoder_phys_vid_control_vblank_irq(phys_enc, false);
	dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
					 phys_enc->irq[INTR_IDX_UNDERRUN]);
}

static int dpu_encoder_phys_vid_get_line_count(
		struct dpu_encoder_phys *phys_enc)
{
	if (!dpu_encoder_phys_vid_is_master(phys_enc))
		return -EINVAL;

	if (!phys_enc->hw_intf || !phys_enc->hw_intf->ops.get_line_count)
		return -EINVAL;

	return phys_enc->hw_intf->ops.get_line_count(phys_enc->hw_intf);
}

static int dpu_encoder_phys_vid_get_frame_count(
		struct dpu_encoder_phys *phys_enc)
{
	struct dpu_hw_intf_status s = {0};
	u32 fetch_start = 0;
	struct drm_display_mode mode;

	drm_mode_init(&mode, &phys_enc->cached_mode);

	if (!dpu_encoder_phys_vid_is_master(phys_enc))
		return -EINVAL;

	if (!phys_enc->hw_intf || !phys_enc->hw_intf->ops.get_status)
		return -EINVAL;

	phys_enc->hw_intf->ops.get_status(phys_enc->hw_intf, &s);

	if (s.is_prog_fetch_en && s.is_en) {
		fetch_start = mode.vtotal - (mode.vsync_start - mode.vdisplay);
		if ((s.line_count > fetch_start) &&
			(s.line_count <= mode.vtotal))
			return s.frame_count + 1;
	}

	return s.frame_count;
}

static void dpu_encoder_phys_vid_init_ops(struct dpu_encoder_phys_ops *ops)
{
	ops->is_master = dpu_encoder_phys_vid_is_master;
	ops->atomic_mode_set = dpu_encoder_phys_vid_atomic_mode_set;
	ops->enable = dpu_encoder_phys_vid_enable;
	ops->disable = dpu_encoder_phys_vid_disable;
	ops->control_vblank_irq = dpu_encoder_phys_vid_control_vblank_irq;
	ops->wait_for_commit_done = dpu_encoder_phys_vid_wait_for_commit_done;
	ops->wait_for_tx_complete = dpu_encoder_phys_vid_wait_for_tx_complete;
	ops->irq_enable = dpu_encoder_phys_vid_irq_enable;
	ops->irq_disable = dpu_encoder_phys_vid_irq_disable;
	ops->prepare_for_kickoff = dpu_encoder_phys_vid_prepare_for_kickoff;
	ops->handle_post_kickoff = dpu_encoder_phys_vid_handle_post_kickoff;
	ops->needs_single_flush = dpu_encoder_phys_vid_needs_single_flush;
	ops->get_line_count = dpu_encoder_phys_vid_get_line_count;
	ops->get_frame_count = dpu_encoder_phys_vid_get_frame_count;
}

struct dpu_encoder_phys *dpu_encoder_phys_vid_init(struct drm_device *dev,
		struct dpu_enc_phys_init_params *p)
{
	struct dpu_encoder_phys *phys_enc = NULL;

	if (!p) {
		DPU_ERROR("failed to create encoder due to invalid parameter\n");
		return ERR_PTR(-EINVAL);
	}

	phys_enc = drmm_kzalloc(dev, sizeof(*phys_enc), GFP_KERNEL);
	if (!phys_enc) {
		DPU_ERROR("failed to create encoder due to memory allocation error\n");
		return ERR_PTR(-ENOMEM);
	}

	DPU_DEBUG_VIDENC(phys_enc, "\n");

	dpu_encoder_phys_init(phys_enc, p);
	mutex_init(&phys_enc->vblank_ctl_lock);
	phys_enc->vblank_refcount = 0;

	dpu_encoder_phys_vid_init_ops(&phys_enc->ops);
	phys_enc->intf_mode = INTF_MODE_VIDEO;

	DPU_DEBUG_VIDENC(phys_enc, "created intf idx:%d\n", p->hw_intf->idx);

	return phys_enc;
}