Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
// SPDX-License-Identifier: GPL-2.0
/*
 * Pressure stall information for CPU, memory and IO
 *
 * Copyright (c) 2018 Facebook, Inc.
 * Author: Johannes Weiner <hannes@cmpxchg.org>
 *
 * Polling support by Suren Baghdasaryan <surenb@google.com>
 * Copyright (c) 2018 Google, Inc.
 *
 * When CPU, memory and IO are contended, tasks experience delays that
 * reduce throughput and introduce latencies into the workload. Memory
 * and IO contention, in addition, can cause a full loss of forward
 * progress in which the CPU goes idle.
 *
 * This code aggregates individual task delays into resource pressure
 * metrics that indicate problems with both workload health and
 * resource utilization.
 *
 *			Model
 *
 * The time in which a task can execute on a CPU is our baseline for
 * productivity. Pressure expresses the amount of time in which this
 * potential cannot be realized due to resource contention.
 *
 * This concept of productivity has two components: the workload and
 * the CPU. To measure the impact of pressure on both, we define two
 * contention states for a resource: SOME and FULL.
 *
 * In the SOME state of a given resource, one or more tasks are
 * delayed on that resource. This affects the workload's ability to
 * perform work, but the CPU may still be executing other tasks.
 *
 * In the FULL state of a given resource, all non-idle tasks are
 * delayed on that resource such that nobody is advancing and the CPU
 * goes idle. This leaves both workload and CPU unproductive.
 *
 *	SOME = nr_delayed_tasks != 0
 *	FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0
 *
 * What it means for a task to be productive is defined differently
 * for each resource. For IO, productive means a running task. For
 * memory, productive means a running task that isn't a reclaimer. For
 * CPU, productive means an on-CPU task.
 *
 * Naturally, the FULL state doesn't exist for the CPU resource at the
 * system level, but exist at the cgroup level. At the cgroup level,
 * FULL means all non-idle tasks in the cgroup are delayed on the CPU
 * resource which is being used by others outside of the cgroup or
 * throttled by the cgroup cpu.max configuration.
 *
 * The percentage of wall clock time spent in those compound stall
 * states gives pressure numbers between 0 and 100 for each resource,
 * where the SOME percentage indicates workload slowdowns and the FULL
 * percentage indicates reduced CPU utilization:
 *
 *	%SOME = time(SOME) / period
 *	%FULL = time(FULL) / period
 *
 *			Multiple CPUs
 *
 * The more tasks and available CPUs there are, the more work can be
 * performed concurrently. This means that the potential that can go
 * unrealized due to resource contention *also* scales with non-idle
 * tasks and CPUs.
 *
 * Consider a scenario where 257 number crunching tasks are trying to
 * run concurrently on 256 CPUs. If we simply aggregated the task
 * states, we would have to conclude a CPU SOME pressure number of
 * 100%, since *somebody* is waiting on a runqueue at all
 * times. However, that is clearly not the amount of contention the
 * workload is experiencing: only one out of 256 possible execution
 * threads will be contended at any given time, or about 0.4%.
 *
 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
 * given time *one* of the tasks is delayed due to a lack of memory.
 * Again, looking purely at the task state would yield a memory FULL
 * pressure number of 0%, since *somebody* is always making forward
 * progress. But again this wouldn't capture the amount of execution
 * potential lost, which is 1 out of 4 CPUs, or 25%.
 *
 * To calculate wasted potential (pressure) with multiple processors,
 * we have to base our calculation on the number of non-idle tasks in
 * conjunction with the number of available CPUs, which is the number
 * of potential execution threads. SOME becomes then the proportion of
 * delayed tasks to possible threads, and FULL is the share of possible
 * threads that are unproductive due to delays:
 *
 *	threads = min(nr_nonidle_tasks, nr_cpus)
 *	   SOME = min(nr_delayed_tasks / threads, 1)
 *	   FULL = (threads - min(nr_productive_tasks, threads)) / threads
 *
 * For the 257 number crunchers on 256 CPUs, this yields:
 *
 *	threads = min(257, 256)
 *	   SOME = min(1 / 256, 1)             = 0.4%
 *	   FULL = (256 - min(256, 256)) / 256 = 0%
 *
 * For the 1 out of 4 memory-delayed tasks, this yields:
 *
 *	threads = min(4, 4)
 *	   SOME = min(1 / 4, 1)               = 25%
 *	   FULL = (4 - min(3, 4)) / 4         = 25%
 *
 * [ Substitute nr_cpus with 1, and you can see that it's a natural
 *   extension of the single-CPU model. ]
 *
 *			Implementation
 *
 * To assess the precise time spent in each such state, we would have
 * to freeze the system on task changes and start/stop the state
 * clocks accordingly. Obviously that doesn't scale in practice.
 *
 * Because the scheduler aims to distribute the compute load evenly
 * among the available CPUs, we can track task state locally to each
 * CPU and, at much lower frequency, extrapolate the global state for
 * the cumulative stall times and the running averages.
 *
 * For each runqueue, we track:
 *
 *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
 *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu])
 *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
 *
 * and then periodically aggregate:
 *
 *	tNONIDLE = sum(tNONIDLE[i])
 *
 *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
 *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
 *
 *	   %SOME = tSOME / period
 *	   %FULL = tFULL / period
 *
 * This gives us an approximation of pressure that is practical
 * cost-wise, yet way more sensitive and accurate than periodic
 * sampling of the aggregate task states would be.
 */

static int psi_bug __read_mostly;

DEFINE_STATIC_KEY_FALSE(psi_disabled);
static DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);

#ifdef CONFIG_PSI_DEFAULT_DISABLED
static bool psi_enable;
#else
static bool psi_enable = true;
#endif
static int __init setup_psi(char *str)
{
	return kstrtobool(str, &psi_enable) == 0;
}
__setup("psi=", setup_psi);

/* Running averages - we need to be higher-res than loadavg */
#define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
#define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
#define EXP_60s		1981		/* 1/exp(2s/60s) */
#define EXP_300s	2034		/* 1/exp(2s/300s) */

/* PSI trigger definitions */
#define WINDOW_MAX_US 10000000	/* Max window size is 10s */
#define UPDATES_PER_WINDOW 10	/* 10 updates per window */

/* Sampling frequency in nanoseconds */
static u64 psi_period __read_mostly;

/* System-level pressure and stall tracking */
static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
struct psi_group psi_system = {
	.pcpu = &system_group_pcpu,
};

static void psi_avgs_work(struct work_struct *work);

static void poll_timer_fn(struct timer_list *t);

static void group_init(struct psi_group *group)
{
	int cpu;

	group->enabled = true;
	for_each_possible_cpu(cpu)
		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
	group->avg_last_update = sched_clock();
	group->avg_next_update = group->avg_last_update + psi_period;
	mutex_init(&group->avgs_lock);

	/* Init avg trigger-related members */
	INIT_LIST_HEAD(&group->avg_triggers);
	memset(group->avg_nr_triggers, 0, sizeof(group->avg_nr_triggers));
	INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);

	/* Init rtpoll trigger-related members */
	atomic_set(&group->rtpoll_scheduled, 0);
	mutex_init(&group->rtpoll_trigger_lock);
	INIT_LIST_HEAD(&group->rtpoll_triggers);
	group->rtpoll_min_period = U32_MAX;
	group->rtpoll_next_update = ULLONG_MAX;
	init_waitqueue_head(&group->rtpoll_wait);
	timer_setup(&group->rtpoll_timer, poll_timer_fn, 0);
	rcu_assign_pointer(group->rtpoll_task, NULL);
}

void __init psi_init(void)
{
	if (!psi_enable) {
		static_branch_enable(&psi_disabled);
		static_branch_disable(&psi_cgroups_enabled);
		return;
	}

	if (!cgroup_psi_enabled())
		static_branch_disable(&psi_cgroups_enabled);

	psi_period = jiffies_to_nsecs(PSI_FREQ);
	group_init(&psi_system);
}

static u32 test_states(unsigned int *tasks, u32 state_mask)
{
	const bool oncpu = state_mask & PSI_ONCPU;

	if (tasks[NR_IOWAIT]) {
		state_mask |= BIT(PSI_IO_SOME);
		if (!tasks[NR_RUNNING])
			state_mask |= BIT(PSI_IO_FULL);
	}

	if (tasks[NR_MEMSTALL]) {
		state_mask |= BIT(PSI_MEM_SOME);
		if (tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING])
			state_mask |= BIT(PSI_MEM_FULL);
	}

	if (tasks[NR_RUNNING] > oncpu)
		state_mask |= BIT(PSI_CPU_SOME);

	if (tasks[NR_RUNNING] && !oncpu)
		state_mask |= BIT(PSI_CPU_FULL);

	if (tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || tasks[NR_RUNNING])
		state_mask |= BIT(PSI_NONIDLE);

	return state_mask;
}

static void get_recent_times(struct psi_group *group, int cpu,
			     enum psi_aggregators aggregator, u32 *times,
			     u32 *pchanged_states)
{
	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
	int current_cpu = raw_smp_processor_id();
	unsigned int tasks[NR_PSI_TASK_COUNTS];
	u64 now, state_start;
	enum psi_states s;
	unsigned int seq;
	u32 state_mask;

	*pchanged_states = 0;

	/* Snapshot a coherent view of the CPU state */
	do {
		seq = read_seqcount_begin(&groupc->seq);
		now = cpu_clock(cpu);
		memcpy(times, groupc->times, sizeof(groupc->times));
		state_mask = groupc->state_mask;
		state_start = groupc->state_start;
		if (cpu == current_cpu)
			memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
	} while (read_seqcount_retry(&groupc->seq, seq));

	/* Calculate state time deltas against the previous snapshot */
	for (s = 0; s < NR_PSI_STATES; s++) {
		u32 delta;
		/*
		 * In addition to already concluded states, we also
		 * incorporate currently active states on the CPU,
		 * since states may last for many sampling periods.
		 *
		 * This way we keep our delta sampling buckets small
		 * (u32) and our reported pressure close to what's
		 * actually happening.
		 */
		if (state_mask & (1 << s))
			times[s] += now - state_start;

		delta = times[s] - groupc->times_prev[aggregator][s];
		groupc->times_prev[aggregator][s] = times[s];

		times[s] = delta;
		if (delta)
			*pchanged_states |= (1 << s);
	}

	/*
	 * When collect_percpu_times() from the avgs_work, we don't want to
	 * re-arm avgs_work when all CPUs are IDLE. But the current CPU running
	 * this avgs_work is never IDLE, cause avgs_work can't be shut off.
	 * So for the current CPU, we need to re-arm avgs_work only when
	 * (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0), for other CPUs
	 * we can just check PSI_NONIDLE delta.
	 */
	if (current_work() == &group->avgs_work.work) {
		bool reschedule;

		if (cpu == current_cpu)
			reschedule = tasks[NR_RUNNING] +
				     tasks[NR_IOWAIT] +
				     tasks[NR_MEMSTALL] > 1;
		else
			reschedule = *pchanged_states & (1 << PSI_NONIDLE);

		if (reschedule)
			*pchanged_states |= PSI_STATE_RESCHEDULE;
	}
}

static void calc_avgs(unsigned long avg[3], int missed_periods,
		      u64 time, u64 period)
{
	unsigned long pct;

	/* Fill in zeroes for periods of no activity */
	if (missed_periods) {
		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
	}

	/* Sample the most recent active period */
	pct = div_u64(time * 100, period);
	pct *= FIXED_1;
	avg[0] = calc_load(avg[0], EXP_10s, pct);
	avg[1] = calc_load(avg[1], EXP_60s, pct);
	avg[2] = calc_load(avg[2], EXP_300s, pct);
}

static void collect_percpu_times(struct psi_group *group,
				 enum psi_aggregators aggregator,
				 u32 *pchanged_states)
{
	u64 deltas[NR_PSI_STATES - 1] = { 0, };
	unsigned long nonidle_total = 0;
	u32 changed_states = 0;
	int cpu;
	int s;

	/*
	 * Collect the per-cpu time buckets and average them into a
	 * single time sample that is normalized to wall clock time.
	 *
	 * For averaging, each CPU is weighted by its non-idle time in
	 * the sampling period. This eliminates artifacts from uneven
	 * loading, or even entirely idle CPUs.
	 */
	for_each_possible_cpu(cpu) {
		u32 times[NR_PSI_STATES];
		u32 nonidle;
		u32 cpu_changed_states;

		get_recent_times(group, cpu, aggregator, times,
				&cpu_changed_states);
		changed_states |= cpu_changed_states;

		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
		nonidle_total += nonidle;

		for (s = 0; s < PSI_NONIDLE; s++)
			deltas[s] += (u64)times[s] * nonidle;
	}

	/*
	 * Integrate the sample into the running statistics that are
	 * reported to userspace: the cumulative stall times and the
	 * decaying averages.
	 *
	 * Pressure percentages are sampled at PSI_FREQ. We might be
	 * called more often when the user polls more frequently than
	 * that; we might be called less often when there is no task
	 * activity, thus no data, and clock ticks are sporadic. The
	 * below handles both.
	 */

	/* total= */
	for (s = 0; s < NR_PSI_STATES - 1; s++)
		group->total[aggregator][s] +=
				div_u64(deltas[s], max(nonidle_total, 1UL));

	if (pchanged_states)
		*pchanged_states = changed_states;
}

/* Trigger tracking window manipulations */
static void window_reset(struct psi_window *win, u64 now, u64 value,
			 u64 prev_growth)
{
	win->start_time = now;
	win->start_value = value;
	win->prev_growth = prev_growth;
}

/*
 * PSI growth tracking window update and growth calculation routine.
 *
 * This approximates a sliding tracking window by interpolating
 * partially elapsed windows using historical growth data from the
 * previous intervals. This minimizes memory requirements (by not storing
 * all the intermediate values in the previous window) and simplifies
 * the calculations. It works well because PSI signal changes only in
 * positive direction and over relatively small window sizes the growth
 * is close to linear.
 */
static u64 window_update(struct psi_window *win, u64 now, u64 value)
{
	u64 elapsed;
	u64 growth;

	elapsed = now - win->start_time;
	growth = value - win->start_value;
	/*
	 * After each tracking window passes win->start_value and
	 * win->start_time get reset and win->prev_growth stores
	 * the average per-window growth of the previous window.
	 * win->prev_growth is then used to interpolate additional
	 * growth from the previous window assuming it was linear.
	 */
	if (elapsed > win->size)
		window_reset(win, now, value, growth);
	else {
		u32 remaining;

		remaining = win->size - elapsed;
		growth += div64_u64(win->prev_growth * remaining, win->size);
	}

	return growth;
}

static void update_triggers(struct psi_group *group, u64 now,
						   enum psi_aggregators aggregator)
{
	struct psi_trigger *t;
	u64 *total = group->total[aggregator];
	struct list_head *triggers;
	u64 *aggregator_total;

	if (aggregator == PSI_AVGS) {
		triggers = &group->avg_triggers;
		aggregator_total = group->avg_total;
	} else {
		triggers = &group->rtpoll_triggers;
		aggregator_total = group->rtpoll_total;
	}

	/*
	 * On subsequent updates, calculate growth deltas and let
	 * watchers know when their specified thresholds are exceeded.
	 */
	list_for_each_entry(t, triggers, node) {
		u64 growth;
		bool new_stall;

		new_stall = aggregator_total[t->state] != total[t->state];

		/* Check for stall activity or a previous threshold breach */
		if (!new_stall && !t->pending_event)
			continue;
		/*
		 * Check for new stall activity, as well as deferred
		 * events that occurred in the last window after the
		 * trigger had already fired (we want to ratelimit
		 * events without dropping any).
		 */
		if (new_stall) {
			/* Calculate growth since last update */
			growth = window_update(&t->win, now, total[t->state]);
			if (!t->pending_event) {
				if (growth < t->threshold)
					continue;

				t->pending_event = true;
			}
		}
		/* Limit event signaling to once per window */
		if (now < t->last_event_time + t->win.size)
			continue;

		/* Generate an event */
		if (cmpxchg(&t->event, 0, 1) == 0) {
			if (t->of)
				kernfs_notify(t->of->kn);
			else
				wake_up_interruptible(&t->event_wait);
		}
		t->last_event_time = now;
		/* Reset threshold breach flag once event got generated */
		t->pending_event = false;
	}
}

static u64 update_averages(struct psi_group *group, u64 now)
{
	unsigned long missed_periods = 0;
	u64 expires, period;
	u64 avg_next_update;
	int s;

	/* avgX= */
	expires = group->avg_next_update;
	if (now - expires >= psi_period)
		missed_periods = div_u64(now - expires, psi_period);

	/*
	 * The periodic clock tick can get delayed for various
	 * reasons, especially on loaded systems. To avoid clock
	 * drift, we schedule the clock in fixed psi_period intervals.
	 * But the deltas we sample out of the per-cpu buckets above
	 * are based on the actual time elapsing between clock ticks.
	 */
	avg_next_update = expires + ((1 + missed_periods) * psi_period);
	period = now - (group->avg_last_update + (missed_periods * psi_period));
	group->avg_last_update = now;

	for (s = 0; s < NR_PSI_STATES - 1; s++) {
		u32 sample;

		sample = group->total[PSI_AVGS][s] - group->avg_total[s];
		/*
		 * Due to the lockless sampling of the time buckets,
		 * recorded time deltas can slip into the next period,
		 * which under full pressure can result in samples in
		 * excess of the period length.
		 *
		 * We don't want to report non-sensical pressures in
		 * excess of 100%, nor do we want to drop such events
		 * on the floor. Instead we punt any overage into the
		 * future until pressure subsides. By doing this we
		 * don't underreport the occurring pressure curve, we
		 * just report it delayed by one period length.
		 *
		 * The error isn't cumulative. As soon as another
		 * delta slips from a period P to P+1, by definition
		 * it frees up its time T in P.
		 */
		if (sample > period)
			sample = period;
		group->avg_total[s] += sample;
		calc_avgs(group->avg[s], missed_periods, sample, period);
	}

	return avg_next_update;
}

static void psi_avgs_work(struct work_struct *work)
{
	struct delayed_work *dwork;
	struct psi_group *group;
	u32 changed_states;
	u64 now;

	dwork = to_delayed_work(work);
	group = container_of(dwork, struct psi_group, avgs_work);

	mutex_lock(&group->avgs_lock);

	now = sched_clock();

	collect_percpu_times(group, PSI_AVGS, &changed_states);
	/*
	 * If there is task activity, periodically fold the per-cpu
	 * times and feed samples into the running averages. If things
	 * are idle and there is no data to process, stop the clock.
	 * Once restarted, we'll catch up the running averages in one
	 * go - see calc_avgs() and missed_periods.
	 */
	if (now >= group->avg_next_update) {
		update_triggers(group, now, PSI_AVGS);
		group->avg_next_update = update_averages(group, now);
	}

	if (changed_states & PSI_STATE_RESCHEDULE) {
		schedule_delayed_work(dwork, nsecs_to_jiffies(
				group->avg_next_update - now) + 1);
	}

	mutex_unlock(&group->avgs_lock);
}

static void init_rtpoll_triggers(struct psi_group *group, u64 now)
{
	struct psi_trigger *t;

	list_for_each_entry(t, &group->rtpoll_triggers, node)
		window_reset(&t->win, now,
				group->total[PSI_POLL][t->state], 0);
	memcpy(group->rtpoll_total, group->total[PSI_POLL],
		   sizeof(group->rtpoll_total));
	group->rtpoll_next_update = now + group->rtpoll_min_period;
}

/* Schedule rtpolling if it's not already scheduled or forced. */
static void psi_schedule_rtpoll_work(struct psi_group *group, unsigned long delay,
				   bool force)
{
	struct task_struct *task;

	/*
	 * atomic_xchg should be called even when !force to provide a
	 * full memory barrier (see the comment inside psi_rtpoll_work).
	 */
	if (atomic_xchg(&group->rtpoll_scheduled, 1) && !force)
		return;

	rcu_read_lock();

	task = rcu_dereference(group->rtpoll_task);
	/*
	 * kworker might be NULL in case psi_trigger_destroy races with
	 * psi_task_change (hotpath) which can't use locks
	 */
	if (likely(task))
		mod_timer(&group->rtpoll_timer, jiffies + delay);
	else
		atomic_set(&group->rtpoll_scheduled, 0);

	rcu_read_unlock();
}

static void psi_rtpoll_work(struct psi_group *group)
{
	bool force_reschedule = false;
	u32 changed_states;
	u64 now;

	mutex_lock(&group->rtpoll_trigger_lock);

	now = sched_clock();

	if (now > group->rtpoll_until) {
		/*
		 * We are either about to start or might stop rtpolling if no
		 * state change was recorded. Resetting rtpoll_scheduled leaves
		 * a small window for psi_group_change to sneak in and schedule
		 * an immediate rtpoll_work before we get to rescheduling. One
		 * potential extra wakeup at the end of the rtpolling window
		 * should be negligible and rtpoll_next_update still keeps
		 * updates correctly on schedule.
		 */
		atomic_set(&group->rtpoll_scheduled, 0);
		/*
		 * A task change can race with the rtpoll worker that is supposed to
		 * report on it. To avoid missing events, ensure ordering between
		 * rtpoll_scheduled and the task state accesses, such that if the
		 * rtpoll worker misses the state update, the task change is
		 * guaranteed to reschedule the rtpoll worker:
		 *
		 * rtpoll worker:
		 *   atomic_set(rtpoll_scheduled, 0)
		 *   smp_mb()
		 *   LOAD states
		 *
		 * task change:
		 *   STORE states
		 *   if atomic_xchg(rtpoll_scheduled, 1) == 0:
		 *     schedule rtpoll worker
		 *
		 * The atomic_xchg() implies a full barrier.
		 */
		smp_mb();
	} else {
		/* The rtpolling window is not over, keep rescheduling */
		force_reschedule = true;
	}


	collect_percpu_times(group, PSI_POLL, &changed_states);

	if (changed_states & group->rtpoll_states) {
		/* Initialize trigger windows when entering rtpolling mode */
		if (now > group->rtpoll_until)
			init_rtpoll_triggers(group, now);

		/*
		 * Keep the monitor active for at least the duration of the
		 * minimum tracking window as long as monitor states are
		 * changing.
		 */
		group->rtpoll_until = now +
			group->rtpoll_min_period * UPDATES_PER_WINDOW;
	}

	if (now > group->rtpoll_until) {
		group->rtpoll_next_update = ULLONG_MAX;
		goto out;
	}

	if (now >= group->rtpoll_next_update) {
		if (changed_states & group->rtpoll_states) {
			update_triggers(group, now, PSI_POLL);
			memcpy(group->rtpoll_total, group->total[PSI_POLL],
				   sizeof(group->rtpoll_total));
		}
		group->rtpoll_next_update = now + group->rtpoll_min_period;
	}

	psi_schedule_rtpoll_work(group,
		nsecs_to_jiffies(group->rtpoll_next_update - now) + 1,
		force_reschedule);

out:
	mutex_unlock(&group->rtpoll_trigger_lock);
}

static int psi_rtpoll_worker(void *data)
{
	struct psi_group *group = (struct psi_group *)data;

	sched_set_fifo_low(current);

	while (true) {
		wait_event_interruptible(group->rtpoll_wait,
				atomic_cmpxchg(&group->rtpoll_wakeup, 1, 0) ||
				kthread_should_stop());
		if (kthread_should_stop())
			break;

		psi_rtpoll_work(group);
	}
	return 0;
}

static void poll_timer_fn(struct timer_list *t)
{
	struct psi_group *group = from_timer(group, t, rtpoll_timer);

	atomic_set(&group->rtpoll_wakeup, 1);
	wake_up_interruptible(&group->rtpoll_wait);
}

static void record_times(struct psi_group_cpu *groupc, u64 now)
{
	u32 delta;

	delta = now - groupc->state_start;
	groupc->state_start = now;

	if (groupc->state_mask & (1 << PSI_IO_SOME)) {
		groupc->times[PSI_IO_SOME] += delta;
		if (groupc->state_mask & (1 << PSI_IO_FULL))
			groupc->times[PSI_IO_FULL] += delta;
	}

	if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
		groupc->times[PSI_MEM_SOME] += delta;
		if (groupc->state_mask & (1 << PSI_MEM_FULL))
			groupc->times[PSI_MEM_FULL] += delta;
	}

	if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
		groupc->times[PSI_CPU_SOME] += delta;
		if (groupc->state_mask & (1 << PSI_CPU_FULL))
			groupc->times[PSI_CPU_FULL] += delta;
	}

	if (groupc->state_mask & (1 << PSI_NONIDLE))
		groupc->times[PSI_NONIDLE] += delta;
}

static void psi_group_change(struct psi_group *group, int cpu,
			     unsigned int clear, unsigned int set,
			     bool wake_clock)
{
	struct psi_group_cpu *groupc;
	unsigned int t, m;
	u32 state_mask;
	u64 now;

	lockdep_assert_rq_held(cpu_rq(cpu));
	groupc = per_cpu_ptr(group->pcpu, cpu);

	/*
	 * First we update the task counts according to the state
	 * change requested through the @clear and @set bits.
	 *
	 * Then if the cgroup PSI stats accounting enabled, we
	 * assess the aggregate resource states this CPU's tasks
	 * have been in since the last change, and account any
	 * SOME and FULL time these may have resulted in.
	 */
	write_seqcount_begin(&groupc->seq);
	now = cpu_clock(cpu);

	/*
	 * Start with TSK_ONCPU, which doesn't have a corresponding
	 * task count - it's just a boolean flag directly encoded in
	 * the state mask. Clear, set, or carry the current state if
	 * no changes are requested.
	 */
	if (unlikely(clear & TSK_ONCPU)) {
		state_mask = 0;
		clear &= ~TSK_ONCPU;
	} else if (unlikely(set & TSK_ONCPU)) {
		state_mask = PSI_ONCPU;
		set &= ~TSK_ONCPU;
	} else {
		state_mask = groupc->state_mask & PSI_ONCPU;
	}

	/*
	 * The rest of the state mask is calculated based on the task
	 * counts. Update those first, then construct the mask.
	 */
	for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
		if (!(m & (1 << t)))
			continue;
		if (groupc->tasks[t]) {
			groupc->tasks[t]--;
		} else if (!psi_bug) {
			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
					cpu, t, groupc->tasks[0],
					groupc->tasks[1], groupc->tasks[2],
					groupc->tasks[3], clear, set);
			psi_bug = 1;
		}
	}

	for (t = 0; set; set &= ~(1 << t), t++)
		if (set & (1 << t))
			groupc->tasks[t]++;

	if (!group->enabled) {
		/*
		 * On the first group change after disabling PSI, conclude
		 * the current state and flush its time. This is unlikely
		 * to matter to the user, but aggregation (get_recent_times)
		 * may have already incorporated the live state into times_prev;
		 * avoid a delta sample underflow when PSI is later re-enabled.
		 */
		if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE)))
			record_times(groupc, now);

		groupc->state_mask = state_mask;

		write_seqcount_end(&groupc->seq);
		return;
	}

	state_mask = test_states(groupc->tasks, state_mask);

	/*
	 * Since we care about lost potential, a memstall is FULL
	 * when there are no other working tasks, but also when
	 * the CPU is actively reclaiming and nothing productive
	 * could run even if it were runnable. So when the current
	 * task in a cgroup is in_memstall, the corresponding groupc
	 * on that cpu is in PSI_MEM_FULL state.
	 */
	if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall))
		state_mask |= (1 << PSI_MEM_FULL);

	record_times(groupc, now);

	groupc->state_mask = state_mask;

	write_seqcount_end(&groupc->seq);

	if (state_mask & group->rtpoll_states)
		psi_schedule_rtpoll_work(group, 1, false);

	if (wake_clock && !delayed_work_pending(&group->avgs_work))
		schedule_delayed_work(&group->avgs_work, PSI_FREQ);
}

static inline struct psi_group *task_psi_group(struct task_struct *task)
{
#ifdef CONFIG_CGROUPS
	if (static_branch_likely(&psi_cgroups_enabled))
		return cgroup_psi(task_dfl_cgroup(task));
#endif
	return &psi_system;
}

static void psi_flags_change(struct task_struct *task, int clear, int set)
{
	if (((task->psi_flags & set) ||
	     (task->psi_flags & clear) != clear) &&
	    !psi_bug) {
		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
				task->pid, task->comm, task_cpu(task),
				task->psi_flags, clear, set);
		psi_bug = 1;
	}

	task->psi_flags &= ~clear;
	task->psi_flags |= set;
}

void psi_task_change(struct task_struct *task, int clear, int set)
{
	int cpu = task_cpu(task);
	struct psi_group *group;

	if (!task->pid)
		return;

	psi_flags_change(task, clear, set);

	group = task_psi_group(task);
	do {
		psi_group_change(group, cpu, clear, set, true);
	} while ((group = group->parent));
}

void psi_task_switch(struct task_struct *prev, struct task_struct *next,
		     bool sleep)
{
	struct psi_group *group, *common = NULL;
	int cpu = task_cpu(prev);

	if (next->pid) {
		psi_flags_change(next, 0, TSK_ONCPU);
		/*
		 * Set TSK_ONCPU on @next's cgroups. If @next shares any
		 * ancestors with @prev, those will already have @prev's
		 * TSK_ONCPU bit set, and we can stop the iteration there.
		 */
		group = task_psi_group(next);
		do {
			if (per_cpu_ptr(group->pcpu, cpu)->state_mask &
			    PSI_ONCPU) {
				common = group;
				break;
			}

			psi_group_change(group, cpu, 0, TSK_ONCPU, true);
		} while ((group = group->parent));
	}

	if (prev->pid) {
		int clear = TSK_ONCPU, set = 0;
		bool wake_clock = true;

		/*
		 * When we're going to sleep, psi_dequeue() lets us
		 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and
		 * TSK_IOWAIT here, where we can combine it with
		 * TSK_ONCPU and save walking common ancestors twice.
		 */
		if (sleep) {
			clear |= TSK_RUNNING;
			if (prev->in_memstall)
				clear |= TSK_MEMSTALL_RUNNING;
			if (prev->in_iowait)
				set |= TSK_IOWAIT;

			/*
			 * Periodic aggregation shuts off if there is a period of no
			 * task changes, so we wake it back up if necessary. However,
			 * don't do this if the task change is the aggregation worker
			 * itself going to sleep, or we'll ping-pong forever.
			 */
			if (unlikely((prev->flags & PF_WQ_WORKER) &&
				     wq_worker_last_func(prev) == psi_avgs_work))
				wake_clock = false;
		}

		psi_flags_change(prev, clear, set);

		group = task_psi_group(prev);
		do {
			if (group == common)
				break;
			psi_group_change(group, cpu, clear, set, wake_clock);
		} while ((group = group->parent));

		/*
		 * TSK_ONCPU is handled up to the common ancestor. If there are
		 * any other differences between the two tasks (e.g. prev goes
		 * to sleep, or only one task is memstall), finish propagating
		 * those differences all the way up to the root.
		 */
		if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) {
			clear &= ~TSK_ONCPU;
			for (; group; group = group->parent)
				psi_group_change(group, cpu, clear, set, wake_clock);
		}
	}
}

#ifdef CONFIG_IRQ_TIME_ACCOUNTING
void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev)
{
	int cpu = task_cpu(curr);
	struct psi_group *group;
	struct psi_group_cpu *groupc;
	s64 delta;
	u64 irq;

	if (static_branch_likely(&psi_disabled))
		return;

	if (!curr->pid)
		return;

	lockdep_assert_rq_held(rq);
	group = task_psi_group(curr);
	if (prev && task_psi_group(prev) == group)
		return;

	irq = irq_time_read(cpu);
	delta = (s64)(irq - rq->psi_irq_time);
	if (delta < 0)
		return;
	rq->psi_irq_time = irq;

	do {
		u64 now;

		if (!group->enabled)
			continue;

		groupc = per_cpu_ptr(group->pcpu, cpu);

		write_seqcount_begin(&groupc->seq);
		now = cpu_clock(cpu);

		record_times(groupc, now);
		groupc->times[PSI_IRQ_FULL] += delta;

		write_seqcount_end(&groupc->seq);

		if (group->rtpoll_states & (1 << PSI_IRQ_FULL))
			psi_schedule_rtpoll_work(group, 1, false);
	} while ((group = group->parent));
}
#endif

/**
 * psi_memstall_enter - mark the beginning of a memory stall section
 * @flags: flags to handle nested sections
 *
 * Marks the calling task as being stalled due to a lack of memory,
 * such as waiting for a refault or performing reclaim.
 */
void psi_memstall_enter(unsigned long *flags)
{
	struct rq_flags rf;
	struct rq *rq;

	if (static_branch_likely(&psi_disabled))
		return;

	*flags = current->in_memstall;
	if (*flags)
		return;
	/*
	 * in_memstall setting & accounting needs to be atomic wrt
	 * changes to the task's scheduling state, otherwise we can
	 * race with CPU migration.
	 */
	rq = this_rq_lock_irq(&rf);

	current->in_memstall = 1;
	psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);

	rq_unlock_irq(rq, &rf);
}
EXPORT_SYMBOL_GPL(psi_memstall_enter);

/**
 * psi_memstall_leave - mark the end of an memory stall section
 * @flags: flags to handle nested memdelay sections
 *
 * Marks the calling task as no longer stalled due to lack of memory.
 */
void psi_memstall_leave(unsigned long *flags)
{
	struct rq_flags rf;
	struct rq *rq;

	if (static_branch_likely(&psi_disabled))
		return;

	if (*flags)
		return;
	/*
	 * in_memstall clearing & accounting needs to be atomic wrt
	 * changes to the task's scheduling state, otherwise we could
	 * race with CPU migration.
	 */
	rq = this_rq_lock_irq(&rf);

	current->in_memstall = 0;
	psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0);

	rq_unlock_irq(rq, &rf);
}
EXPORT_SYMBOL_GPL(psi_memstall_leave);

#ifdef CONFIG_CGROUPS
int psi_cgroup_alloc(struct cgroup *cgroup)
{
	if (!static_branch_likely(&psi_cgroups_enabled))
		return 0;

	cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL);
	if (!cgroup->psi)
		return -ENOMEM;

	cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu);
	if (!cgroup->psi->pcpu) {
		kfree(cgroup->psi);
		return -ENOMEM;
	}
	group_init(cgroup->psi);
	cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup));
	return 0;
}

void psi_cgroup_free(struct cgroup *cgroup)
{
	if (!static_branch_likely(&psi_cgroups_enabled))
		return;

	cancel_delayed_work_sync(&cgroup->psi->avgs_work);
	free_percpu(cgroup->psi->pcpu);
	/* All triggers must be removed by now */
	WARN_ONCE(cgroup->psi->rtpoll_states, "psi: trigger leak\n");
	kfree(cgroup->psi);
}

/**
 * cgroup_move_task - move task to a different cgroup
 * @task: the task
 * @to: the target css_set
 *
 * Move task to a new cgroup and safely migrate its associated stall
 * state between the different groups.
 *
 * This function acquires the task's rq lock to lock out concurrent
 * changes to the task's scheduling state and - in case the task is
 * running - concurrent changes to its stall state.
 */
void cgroup_move_task(struct task_struct *task, struct css_set *to)
{
	unsigned int task_flags;
	struct rq_flags rf;
	struct rq *rq;

	if (!static_branch_likely(&psi_cgroups_enabled)) {
		/*
		 * Lame to do this here, but the scheduler cannot be locked
		 * from the outside, so we move cgroups from inside sched/.
		 */
		rcu_assign_pointer(task->cgroups, to);
		return;
	}

	rq = task_rq_lock(task, &rf);

	/*
	 * We may race with schedule() dropping the rq lock between
	 * deactivating prev and switching to next. Because the psi
	 * updates from the deactivation are deferred to the switch
	 * callback to save cgroup tree updates, the task's scheduling
	 * state here is not coherent with its psi state:
	 *
	 * schedule()                   cgroup_move_task()
	 *   rq_lock()
	 *   deactivate_task()
	 *     p->on_rq = 0
	 *     psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
	 *   pick_next_task()
	 *     rq_unlock()
	 *                                rq_lock()
	 *                                psi_task_change() // old cgroup
	 *                                task->cgroups = to
	 *                                psi_task_change() // new cgroup
	 *                                rq_unlock()
	 *     rq_lock()
	 *   psi_sched_switch() // does deferred updates in new cgroup
	 *
	 * Don't rely on the scheduling state. Use psi_flags instead.
	 */
	task_flags = task->psi_flags;

	if (task_flags)
		psi_task_change(task, task_flags, 0);

	/* See comment above */
	rcu_assign_pointer(task->cgroups, to);

	if (task_flags)
		psi_task_change(task, 0, task_flags);

	task_rq_unlock(rq, task, &rf);
}

void psi_cgroup_restart(struct psi_group *group)
{
	int cpu;

	/*
	 * After we disable psi_group->enabled, we don't actually
	 * stop percpu tasks accounting in each psi_group_cpu,
	 * instead only stop test_states() loop, record_times()
	 * and averaging worker, see psi_group_change() for details.
	 *
	 * When disable cgroup PSI, this function has nothing to sync
	 * since cgroup pressure files are hidden and percpu psi_group_cpu
	 * would see !psi_group->enabled and only do task accounting.
	 *
	 * When re-enable cgroup PSI, this function use psi_group_change()
	 * to get correct state mask from test_states() loop on tasks[],
	 * and restart groupc->state_start from now, use .clear = .set = 0
	 * here since no task status really changed.
	 */
	if (!group->enabled)
		return;

	for_each_possible_cpu(cpu) {
		struct rq *rq = cpu_rq(cpu);
		struct rq_flags rf;

		rq_lock_irq(rq, &rf);
		psi_group_change(group, cpu, 0, 0, true);
		rq_unlock_irq(rq, &rf);
	}
}
#endif /* CONFIG_CGROUPS */

int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
{
	bool only_full = false;
	int full;
	u64 now;

	if (static_branch_likely(&psi_disabled))
		return -EOPNOTSUPP;

	/* Update averages before reporting them */
	mutex_lock(&group->avgs_lock);
	now = sched_clock();
	collect_percpu_times(group, PSI_AVGS, NULL);
	if (now >= group->avg_next_update)
		group->avg_next_update = update_averages(group, now);
	mutex_unlock(&group->avgs_lock);

#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	only_full = res == PSI_IRQ;
#endif

	for (full = 0; full < 2 - only_full; full++) {
		unsigned long avg[3] = { 0, };
		u64 total = 0;
		int w;

		/* CPU FULL is undefined at the system level */
		if (!(group == &psi_system && res == PSI_CPU && full)) {
			for (w = 0; w < 3; w++)
				avg[w] = group->avg[res * 2 + full][w];
			total = div_u64(group->total[PSI_AVGS][res * 2 + full],
					NSEC_PER_USEC);
		}

		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
			   full || only_full ? "full" : "some",
			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
			   total);
	}

	return 0;
}

struct psi_trigger *psi_trigger_create(struct psi_group *group, char *buf,
				       enum psi_res res, struct file *file,
				       struct kernfs_open_file *of)
{
	struct psi_trigger *t;
	enum psi_states state;
	u32 threshold_us;
	bool privileged;
	u32 window_us;

	if (static_branch_likely(&psi_disabled))
		return ERR_PTR(-EOPNOTSUPP);

	/*
	 * Checking the privilege here on file->f_cred implies that a privileged user
	 * could open the file and delegate the write to an unprivileged one.
	 */
	privileged = cap_raised(file->f_cred->cap_effective, CAP_SYS_RESOURCE);

	if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
		state = PSI_IO_SOME + res * 2;
	else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
		state = PSI_IO_FULL + res * 2;
	else
		return ERR_PTR(-EINVAL);

#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	if (res == PSI_IRQ && --state != PSI_IRQ_FULL)
		return ERR_PTR(-EINVAL);
#endif

	if (state >= PSI_NONIDLE)
		return ERR_PTR(-EINVAL);

	if (window_us == 0 || window_us > WINDOW_MAX_US)
		return ERR_PTR(-EINVAL);

	/*
	 * Unprivileged users can only use 2s windows so that averages aggregation
	 * work is used, and no RT threads need to be spawned.
	 */
	if (!privileged && window_us % 2000000)
		return ERR_PTR(-EINVAL);

	/* Check threshold */
	if (threshold_us == 0 || threshold_us > window_us)
		return ERR_PTR(-EINVAL);

	t = kmalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		return ERR_PTR(-ENOMEM);

	t->group = group;
	t->state = state;
	t->threshold = threshold_us * NSEC_PER_USEC;
	t->win.size = window_us * NSEC_PER_USEC;
	window_reset(&t->win, sched_clock(),
			group->total[PSI_POLL][t->state], 0);

	t->event = 0;
	t->last_event_time = 0;
	t->of = of;
	if (!of)
		init_waitqueue_head(&t->event_wait);
	t->pending_event = false;
	t->aggregator = privileged ? PSI_POLL : PSI_AVGS;

	if (privileged) {
		mutex_lock(&group->rtpoll_trigger_lock);

		if (!rcu_access_pointer(group->rtpoll_task)) {
			struct task_struct *task;

			task = kthread_create(psi_rtpoll_worker, group, "psimon");
			if (IS_ERR(task)) {
				kfree(t);
				mutex_unlock(&group->rtpoll_trigger_lock);
				return ERR_CAST(task);
			}
			atomic_set(&group->rtpoll_wakeup, 0);
			wake_up_process(task);
			rcu_assign_pointer(group->rtpoll_task, task);
		}

		list_add(&t->node, &group->rtpoll_triggers);
		group->rtpoll_min_period = min(group->rtpoll_min_period,
			div_u64(t->win.size, UPDATES_PER_WINDOW));
		group->rtpoll_nr_triggers[t->state]++;
		group->rtpoll_states |= (1 << t->state);

		mutex_unlock(&group->rtpoll_trigger_lock);
	} else {
		mutex_lock(&group->avgs_lock);

		list_add(&t->node, &group->avg_triggers);
		group->avg_nr_triggers[t->state]++;

		mutex_unlock(&group->avgs_lock);
	}
	return t;
}

void psi_trigger_destroy(struct psi_trigger *t)
{
	struct psi_group *group;
	struct task_struct *task_to_destroy = NULL;

	/*
	 * We do not check psi_disabled since it might have been disabled after
	 * the trigger got created.
	 */
	if (!t)
		return;

	group = t->group;
	/*
	 * Wakeup waiters to stop polling and clear the queue to prevent it from
	 * being accessed later. Can happen if cgroup is deleted from under a
	 * polling process.
	 */
	if (t->of)
		kernfs_notify(t->of->kn);
	else
		wake_up_interruptible(&t->event_wait);

	if (t->aggregator == PSI_AVGS) {
		mutex_lock(&group->avgs_lock);
		if (!list_empty(&t->node)) {
			list_del(&t->node);
			group->avg_nr_triggers[t->state]--;
		}
		mutex_unlock(&group->avgs_lock);
	} else {
		mutex_lock(&group->rtpoll_trigger_lock);
		if (!list_empty(&t->node)) {
			struct psi_trigger *tmp;
			u64 period = ULLONG_MAX;

			list_del(&t->node);
			group->rtpoll_nr_triggers[t->state]--;
			if (!group->rtpoll_nr_triggers[t->state])
				group->rtpoll_states &= ~(1 << t->state);
			/*
			 * Reset min update period for the remaining triggers
			 * iff the destroying trigger had the min window size.
			 */
			if (group->rtpoll_min_period == div_u64(t->win.size, UPDATES_PER_WINDOW)) {
				list_for_each_entry(tmp, &group->rtpoll_triggers, node)
					period = min(period, div_u64(tmp->win.size,
							UPDATES_PER_WINDOW));
				group->rtpoll_min_period = period;
			}
			/* Destroy rtpoll_task when the last trigger is destroyed */
			if (group->rtpoll_states == 0) {
				group->rtpoll_until = 0;
				task_to_destroy = rcu_dereference_protected(
						group->rtpoll_task,
						lockdep_is_held(&group->rtpoll_trigger_lock));
				rcu_assign_pointer(group->rtpoll_task, NULL);
				del_timer(&group->rtpoll_timer);
			}
		}
		mutex_unlock(&group->rtpoll_trigger_lock);
	}

	/*
	 * Wait for psi_schedule_rtpoll_work RCU to complete its read-side
	 * critical section before destroying the trigger and optionally the
	 * rtpoll_task.
	 */
	synchronize_rcu();
	/*
	 * Stop kthread 'psimon' after releasing rtpoll_trigger_lock to prevent
	 * a deadlock while waiting for psi_rtpoll_work to acquire
	 * rtpoll_trigger_lock
	 */
	if (task_to_destroy) {
		/*
		 * After the RCU grace period has expired, the worker
		 * can no longer be found through group->rtpoll_task.
		 */
		kthread_stop(task_to_destroy);
		atomic_set(&group->rtpoll_scheduled, 0);
	}
	kfree(t);
}

__poll_t psi_trigger_poll(void **trigger_ptr,
				struct file *file, poll_table *wait)
{
	__poll_t ret = DEFAULT_POLLMASK;
	struct psi_trigger *t;

	if (static_branch_likely(&psi_disabled))
		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;

	t = smp_load_acquire(trigger_ptr);
	if (!t)
		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;

	if (t->of)
		kernfs_generic_poll(t->of, wait);
	else
		poll_wait(file, &t->event_wait, wait);

	if (cmpxchg(&t->event, 1, 0) == 1)
		ret |= EPOLLPRI;

	return ret;
}

#ifdef CONFIG_PROC_FS
static int psi_io_show(struct seq_file *m, void *v)
{
	return psi_show(m, &psi_system, PSI_IO);
}

static int psi_memory_show(struct seq_file *m, void *v)
{
	return psi_show(m, &psi_system, PSI_MEM);
}

static int psi_cpu_show(struct seq_file *m, void *v)
{
	return psi_show(m, &psi_system, PSI_CPU);
}

static int psi_io_open(struct inode *inode, struct file *file)
{
	return single_open(file, psi_io_show, NULL);
}

static int psi_memory_open(struct inode *inode, struct file *file)
{
	return single_open(file, psi_memory_show, NULL);
}

static int psi_cpu_open(struct inode *inode, struct file *file)
{
	return single_open(file, psi_cpu_show, NULL);
}

static ssize_t psi_write(struct file *file, const char __user *user_buf,
			 size_t nbytes, enum psi_res res)
{
	char buf[32];
	size_t buf_size;
	struct seq_file *seq;
	struct psi_trigger *new;

	if (static_branch_likely(&psi_disabled))
		return -EOPNOTSUPP;

	if (!nbytes)
		return -EINVAL;

	buf_size = min(nbytes, sizeof(buf));
	if (copy_from_user(buf, user_buf, buf_size))
		return -EFAULT;

	buf[buf_size - 1] = '\0';

	seq = file->private_data;

	/* Take seq->lock to protect seq->private from concurrent writes */
	mutex_lock(&seq->lock);

	/* Allow only one trigger per file descriptor */
	if (seq->private) {
		mutex_unlock(&seq->lock);
		return -EBUSY;
	}

	new = psi_trigger_create(&psi_system, buf, res, file, NULL);
	if (IS_ERR(new)) {
		mutex_unlock(&seq->lock);
		return PTR_ERR(new);
	}

	smp_store_release(&seq->private, new);
	mutex_unlock(&seq->lock);

	return nbytes;
}

static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
			    size_t nbytes, loff_t *ppos)
{
	return psi_write(file, user_buf, nbytes, PSI_IO);
}

static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
				size_t nbytes, loff_t *ppos)
{
	return psi_write(file, user_buf, nbytes, PSI_MEM);
}

static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
			     size_t nbytes, loff_t *ppos)
{
	return psi_write(file, user_buf, nbytes, PSI_CPU);
}

static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
{
	struct seq_file *seq = file->private_data;

	return psi_trigger_poll(&seq->private, file, wait);
}

static int psi_fop_release(struct inode *inode, struct file *file)
{
	struct seq_file *seq = file->private_data;

	psi_trigger_destroy(seq->private);
	return single_release(inode, file);
}

static const struct proc_ops psi_io_proc_ops = {
	.proc_open	= psi_io_open,
	.proc_read	= seq_read,
	.proc_lseek	= seq_lseek,
	.proc_write	= psi_io_write,
	.proc_poll	= psi_fop_poll,
	.proc_release	= psi_fop_release,
};

static const struct proc_ops psi_memory_proc_ops = {
	.proc_open	= psi_memory_open,
	.proc_read	= seq_read,
	.proc_lseek	= seq_lseek,
	.proc_write	= psi_memory_write,
	.proc_poll	= psi_fop_poll,
	.proc_release	= psi_fop_release,
};

static const struct proc_ops psi_cpu_proc_ops = {
	.proc_open	= psi_cpu_open,
	.proc_read	= seq_read,
	.proc_lseek	= seq_lseek,
	.proc_write	= psi_cpu_write,
	.proc_poll	= psi_fop_poll,
	.proc_release	= psi_fop_release,
};

#ifdef CONFIG_IRQ_TIME_ACCOUNTING
static int psi_irq_show(struct seq_file *m, void *v)
{
	return psi_show(m, &psi_system, PSI_IRQ);
}

static int psi_irq_open(struct inode *inode, struct file *file)
{
	return single_open(file, psi_irq_show, NULL);
}

static ssize_t psi_irq_write(struct file *file, const char __user *user_buf,
			     size_t nbytes, loff_t *ppos)
{
	return psi_write(file, user_buf, nbytes, PSI_IRQ);
}

static const struct proc_ops psi_irq_proc_ops = {
	.proc_open	= psi_irq_open,
	.proc_read	= seq_read,
	.proc_lseek	= seq_lseek,
	.proc_write	= psi_irq_write,
	.proc_poll	= psi_fop_poll,
	.proc_release	= psi_fop_release,
};
#endif

static int __init psi_proc_init(void)
{
	if (psi_enable) {
		proc_mkdir("pressure", NULL);
		proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
		proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
		proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
		proc_create("pressure/irq", 0666, NULL, &psi_irq_proc_ops);
#endif
	}
	return 0;
}
module_init(psi_proc_init);

#endif /* CONFIG_PROC_FS */