Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2018-2023 Oracle. All Rights Reserved. * Author: Darrick J. Wong <djwong@kernel.org> */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_btree.h" #include "xfs_btree_staging.h" #include "xfs_bit.h" #include "xfs_log_format.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_inode.h" #include "xfs_alloc.h" #include "xfs_ialloc.h" #include "xfs_ialloc_btree.h" #include "xfs_icache.h" #include "xfs_rmap.h" #include "xfs_rmap_btree.h" #include "xfs_log.h" #include "xfs_trans_priv.h" #include "xfs_error.h" #include "xfs_health.h" #include "xfs_ag.h" #include "scrub/xfs_scrub.h" #include "scrub/scrub.h" #include "scrub/common.h" #include "scrub/btree.h" #include "scrub/trace.h" #include "scrub/repair.h" #include "scrub/bitmap.h" #include "scrub/agb_bitmap.h" #include "scrub/xfile.h" #include "scrub/xfarray.h" #include "scrub/newbt.h" #include "scrub/reap.h" /* * Inode Btree Repair * ================== * * A quick refresher of inode btrees on a v5 filesystem: * * - Inode records are read into memory in units of 'inode clusters'. However * many inodes fit in a cluster buffer is the smallest number of inodes that * can be allocated or freed. Clusters are never smaller than one fs block * though they can span multiple blocks. The size (in fs blocks) is * computed with xfs_icluster_size_fsb(). The fs block alignment of a * cluster is computed with xfs_ialloc_cluster_alignment(). * * - Each inode btree record can describe a single 'inode chunk'. The chunk * size is defined to be 64 inodes. If sparse inodes are enabled, every * inobt record must be aligned to the chunk size; if not, every record must * be aligned to the start of a cluster. It is possible to construct an XFS * geometry where one inobt record maps to multiple inode clusters; it is * also possible to construct a geometry where multiple inobt records map to * different parts of one inode cluster. * * - If sparse inodes are not enabled, the smallest unit of allocation for * inode records is enough to contain one inode chunk's worth of inodes. * * - If sparse inodes are enabled, the holemask field will be active. Each * bit of the holemask represents 4 potential inodes; if set, the * corresponding space does *not* contain inodes and must be left alone. * Clusters cannot be smaller than 4 inodes. The smallest unit of allocation * of inode records is one inode cluster. * * So what's the rebuild algorithm? * * Iterate the reverse mapping records looking for OWN_INODES and OWN_INOBT * records. The OWN_INOBT records are the old inode btree blocks and will be * cleared out after we've rebuilt the tree. Each possible inode cluster * within an OWN_INODES record will be read in; for each possible inobt record * associated with that cluster, compute the freemask calculated from the * i_mode data in the inode chunk. For sparse inodes the holemask will be * calculated by creating the properly aligned inobt record and punching out * any chunk that's missing. Inode allocations and frees grab the AGI first, * so repair protects itself from concurrent access by locking the AGI. * * Once we've reconstructed all the inode records, we can create new inode * btree roots and reload the btrees. We rebuild both inode trees at the same * time because they have the same rmap owner and it would be more complex to * figure out if the other tree isn't in need of a rebuild and which OWN_INOBT * blocks it owns. We have all the data we need to build both, so dump * everything and start over. * * We use the prefix 'xrep_ibt' because we rebuild both inode btrees at once. */ struct xrep_ibt { /* Record under construction. */ struct xfs_inobt_rec_incore rie; /* new inobt information */ struct xrep_newbt new_inobt; /* new finobt information */ struct xrep_newbt new_finobt; /* Old inode btree blocks we found in the rmap. */ struct xagb_bitmap old_iallocbt_blocks; /* Reconstructed inode records. */ struct xfarray *inode_records; struct xfs_scrub *sc; /* Number of inodes assigned disk space. */ unsigned int icount; /* Number of inodes in use. */ unsigned int iused; /* Number of finobt records needed. */ unsigned int finobt_recs; /* get_records()'s position in the inode record array. */ xfarray_idx_t array_cur; }; /* * Is this inode in use? If the inode is in memory we can tell from i_mode, * otherwise we have to check di_mode in the on-disk buffer. We only care * that the high (i.e. non-permission) bits of _mode are zero. This should be * safe because repair keeps all AG headers locked until the end, and process * trying to perform an inode allocation/free must lock the AGI. * * @cluster_ag_base is the inode offset of the cluster within the AG. * @cluster_bp is the cluster buffer. * @cluster_index is the inode offset within the inode cluster. */ STATIC int xrep_ibt_check_ifree( struct xrep_ibt *ri, xfs_agino_t cluster_ag_base, struct xfs_buf *cluster_bp, unsigned int cluster_index, bool *inuse) { struct xfs_scrub *sc = ri->sc; struct xfs_mount *mp = sc->mp; struct xfs_dinode *dip; xfs_ino_t fsino; xfs_agino_t agino; xfs_agnumber_t agno = ri->sc->sa.pag->pag_agno; unsigned int cluster_buf_base; unsigned int offset; int error; agino = cluster_ag_base + cluster_index; fsino = XFS_AGINO_TO_INO(mp, agno, agino); /* Inode uncached or half assembled, read disk buffer */ cluster_buf_base = XFS_INO_TO_OFFSET(mp, cluster_ag_base); offset = (cluster_buf_base + cluster_index) * mp->m_sb.sb_inodesize; if (offset >= BBTOB(cluster_bp->b_length)) return -EFSCORRUPTED; dip = xfs_buf_offset(cluster_bp, offset); if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) return -EFSCORRUPTED; if (dip->di_version >= 3 && be64_to_cpu(dip->di_ino) != fsino) return -EFSCORRUPTED; /* Will the in-core inode tell us if it's in use? */ error = xchk_inode_is_allocated(sc, agino, inuse); if (!error) return 0; *inuse = dip->di_mode != 0; return 0; } /* Stash the accumulated inobt record for rebuilding. */ STATIC int xrep_ibt_stash( struct xrep_ibt *ri) { int error = 0; if (xchk_should_terminate(ri->sc, &error)) return error; ri->rie.ir_freecount = xfs_inobt_rec_freecount(&ri->rie); if (xfs_inobt_check_irec(ri->sc->sa.pag, &ri->rie) != NULL) return -EFSCORRUPTED; if (ri->rie.ir_freecount > 0) ri->finobt_recs++; trace_xrep_ibt_found(ri->sc->mp, ri->sc->sa.pag->pag_agno, &ri->rie); error = xfarray_append(ri->inode_records, &ri->rie); if (error) return error; ri->rie.ir_startino = NULLAGINO; return 0; } /* * Given an extent of inodes and an inode cluster buffer, calculate the * location of the corresponding inobt record (creating it if necessary), * then update the parts of the holemask and freemask of that record that * correspond to the inode extent we were given. * * @cluster_ir_startino is the AG inode number of an inobt record that we're * proposing to create for this inode cluster. If sparse inodes are enabled, * we must round down to a chunk boundary to find the actual sparse record. * @cluster_bp is the buffer of the inode cluster. * @nr_inodes is the number of inodes to check from the cluster. */ STATIC int xrep_ibt_cluster_record( struct xrep_ibt *ri, xfs_agino_t cluster_ir_startino, struct xfs_buf *cluster_bp, unsigned int nr_inodes) { struct xfs_scrub *sc = ri->sc; struct xfs_mount *mp = sc->mp; xfs_agino_t ir_startino; unsigned int cluster_base; unsigned int cluster_index; int error = 0; ir_startino = cluster_ir_startino; if (xfs_has_sparseinodes(mp)) ir_startino = rounddown(ir_startino, XFS_INODES_PER_CHUNK); cluster_base = cluster_ir_startino - ir_startino; /* * If the accumulated inobt record doesn't map this cluster, add it to * the list and reset it. */ if (ri->rie.ir_startino != NULLAGINO && ri->rie.ir_startino + XFS_INODES_PER_CHUNK <= ir_startino) { error = xrep_ibt_stash(ri); if (error) return error; } if (ri->rie.ir_startino == NULLAGINO) { ri->rie.ir_startino = ir_startino; ri->rie.ir_free = XFS_INOBT_ALL_FREE; ri->rie.ir_holemask = 0xFFFF; ri->rie.ir_count = 0; } /* Record the whole cluster. */ ri->icount += nr_inodes; ri->rie.ir_count += nr_inodes; ri->rie.ir_holemask &= ~xfs_inobt_maskn( cluster_base / XFS_INODES_PER_HOLEMASK_BIT, nr_inodes / XFS_INODES_PER_HOLEMASK_BIT); /* Which inodes within this cluster are free? */ for (cluster_index = 0; cluster_index < nr_inodes; cluster_index++) { bool inuse = false; error = xrep_ibt_check_ifree(ri, cluster_ir_startino, cluster_bp, cluster_index, &inuse); if (error) return error; if (!inuse) continue; ri->iused++; ri->rie.ir_free &= ~XFS_INOBT_MASK(cluster_base + cluster_index); } return 0; } /* * For each inode cluster covering the physical extent recorded by the rmapbt, * we must calculate the properly aligned startino of that cluster, then * iterate each cluster to fill in used and filled masks appropriately. We * then use the (startino, used, filled) information to construct the * appropriate inode records. */ STATIC int xrep_ibt_process_cluster( struct xrep_ibt *ri, xfs_agblock_t cluster_bno) { struct xfs_imap imap; struct xfs_buf *cluster_bp; struct xfs_scrub *sc = ri->sc; struct xfs_mount *mp = sc->mp; struct xfs_ino_geometry *igeo = M_IGEO(mp); xfs_agino_t cluster_ag_base; xfs_agino_t irec_index; unsigned int nr_inodes; int error; nr_inodes = min_t(unsigned int, igeo->inodes_per_cluster, XFS_INODES_PER_CHUNK); /* * Grab the inode cluster buffer. This is safe to do with a broken * inobt because imap_to_bp directly maps the buffer without touching * either inode btree. */ imap.im_blkno = XFS_AGB_TO_DADDR(mp, sc->sa.pag->pag_agno, cluster_bno); imap.im_len = XFS_FSB_TO_BB(mp, igeo->blocks_per_cluster); imap.im_boffset = 0; error = xfs_imap_to_bp(mp, sc->tp, &imap, &cluster_bp); if (error) return error; /* * Record the contents of each possible inobt record mapping this * cluster. */ cluster_ag_base = XFS_AGB_TO_AGINO(mp, cluster_bno); for (irec_index = 0; irec_index < igeo->inodes_per_cluster; irec_index += XFS_INODES_PER_CHUNK) { error = xrep_ibt_cluster_record(ri, cluster_ag_base + irec_index, cluster_bp, nr_inodes); if (error) break; } xfs_trans_brelse(sc->tp, cluster_bp); return error; } /* Check for any obvious conflicts in the inode chunk extent. */ STATIC int xrep_ibt_check_inode_ext( struct xfs_scrub *sc, xfs_agblock_t agbno, xfs_extlen_t len) { struct xfs_mount *mp = sc->mp; struct xfs_ino_geometry *igeo = M_IGEO(mp); xfs_agino_t agino; enum xbtree_recpacking outcome; int error; /* Inode records must be within the AG. */ if (!xfs_verify_agbext(sc->sa.pag, agbno, len)) return -EFSCORRUPTED; /* The entire record must align to the inode cluster size. */ if (!IS_ALIGNED(agbno, igeo->blocks_per_cluster) || !IS_ALIGNED(agbno + len, igeo->blocks_per_cluster)) return -EFSCORRUPTED; /* * The entire record must also adhere to the inode cluster alignment * size if sparse inodes are not enabled. */ if (!xfs_has_sparseinodes(mp) && (!IS_ALIGNED(agbno, igeo->cluster_align) || !IS_ALIGNED(agbno + len, igeo->cluster_align))) return -EFSCORRUPTED; /* * On a sparse inode fs, this cluster could be part of a sparse chunk. * Sparse clusters must be aligned to sparse chunk alignment. */ if (xfs_has_sparseinodes(mp) && mp->m_sb.sb_spino_align && (!IS_ALIGNED(agbno, mp->m_sb.sb_spino_align) || !IS_ALIGNED(agbno + len, mp->m_sb.sb_spino_align))) return -EFSCORRUPTED; /* Make sure the entire range of blocks are valid AG inodes. */ agino = XFS_AGB_TO_AGINO(mp, agbno); if (!xfs_verify_agino(sc->sa.pag, agino)) return -EFSCORRUPTED; agino = XFS_AGB_TO_AGINO(mp, agbno + len) - 1; if (!xfs_verify_agino(sc->sa.pag, agino)) return -EFSCORRUPTED; /* Make sure this isn't free space. */ error = xfs_alloc_has_records(sc->sa.bno_cur, agbno, len, &outcome); if (error) return error; if (outcome != XBTREE_RECPACKING_EMPTY) return -EFSCORRUPTED; return 0; } /* Found a fragment of the old inode btrees; dispose of them later. */ STATIC int xrep_ibt_record_old_btree_blocks( struct xrep_ibt *ri, const struct xfs_rmap_irec *rec) { if (!xfs_verify_agbext(ri->sc->sa.pag, rec->rm_startblock, rec->rm_blockcount)) return -EFSCORRUPTED; return xagb_bitmap_set(&ri->old_iallocbt_blocks, rec->rm_startblock, rec->rm_blockcount); } /* Record extents that belong to inode cluster blocks. */ STATIC int xrep_ibt_record_inode_blocks( struct xrep_ibt *ri, const struct xfs_rmap_irec *rec) { struct xfs_mount *mp = ri->sc->mp; struct xfs_ino_geometry *igeo = M_IGEO(mp); xfs_agblock_t cluster_base; int error; error = xrep_ibt_check_inode_ext(ri->sc, rec->rm_startblock, rec->rm_blockcount); if (error) return error; trace_xrep_ibt_walk_rmap(mp, ri->sc->sa.pag->pag_agno, rec->rm_startblock, rec->rm_blockcount, rec->rm_owner, rec->rm_offset, rec->rm_flags); /* * Record the free/hole masks for each inode cluster that could be * mapped by this rmap record. */ for (cluster_base = 0; cluster_base < rec->rm_blockcount; cluster_base += igeo->blocks_per_cluster) { error = xrep_ibt_process_cluster(ri, rec->rm_startblock + cluster_base); if (error) return error; } return 0; } STATIC int xrep_ibt_walk_rmap( struct xfs_btree_cur *cur, const struct xfs_rmap_irec *rec, void *priv) { struct xrep_ibt *ri = priv; int error = 0; if (xchk_should_terminate(ri->sc, &error)) return error; switch (rec->rm_owner) { case XFS_RMAP_OWN_INOBT: return xrep_ibt_record_old_btree_blocks(ri, rec); case XFS_RMAP_OWN_INODES: return xrep_ibt_record_inode_blocks(ri, rec); } return 0; } /* * Iterate all reverse mappings to find the inodes (OWN_INODES) and the inode * btrees (OWN_INOBT). Figure out if we have enough free space to reconstruct * the inode btrees. The caller must clean up the lists if anything goes * wrong. */ STATIC int xrep_ibt_find_inodes( struct xrep_ibt *ri) { struct xfs_scrub *sc = ri->sc; int error; ri->rie.ir_startino = NULLAGINO; /* Collect all reverse mappings for inode blocks. */ xrep_ag_btcur_init(sc, &sc->sa); error = xfs_rmap_query_all(sc->sa.rmap_cur, xrep_ibt_walk_rmap, ri); xchk_ag_btcur_free(&sc->sa); if (error) return error; /* If we have a record ready to go, add it to the array. */ if (ri->rie.ir_startino != NULLAGINO) return xrep_ibt_stash(ri); return 0; } /* Update the AGI counters. */ STATIC int xrep_ibt_reset_counters( struct xrep_ibt *ri) { struct xfs_scrub *sc = ri->sc; struct xfs_agi *agi = sc->sa.agi_bp->b_addr; unsigned int freecount = ri->icount - ri->iused; /* Trigger inode count recalculation */ xfs_force_summary_recalc(sc->mp); /* * The AGI header contains extra information related to the inode * btrees, so we must update those fields here. */ agi->agi_count = cpu_to_be32(ri->icount); agi->agi_freecount = cpu_to_be32(freecount); xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); /* Reinitialize with the values we just logged. */ return xrep_reinit_pagi(sc); } /* Retrieve finobt data for bulk load. */ STATIC int xrep_fibt_get_records( struct xfs_btree_cur *cur, unsigned int idx, struct xfs_btree_block *block, unsigned int nr_wanted, void *priv) { struct xfs_inobt_rec_incore *irec = &cur->bc_rec.i; struct xrep_ibt *ri = priv; union xfs_btree_rec *block_rec; unsigned int loaded; int error; for (loaded = 0; loaded < nr_wanted; loaded++, idx++) { do { error = xfarray_load(ri->inode_records, ri->array_cur++, irec); } while (error == 0 && xfs_inobt_rec_freecount(irec) == 0); if (error) return error; block_rec = xfs_btree_rec_addr(cur, idx, block); cur->bc_ops->init_rec_from_cur(cur, block_rec); } return loaded; } /* Retrieve inobt data for bulk load. */ STATIC int xrep_ibt_get_records( struct xfs_btree_cur *cur, unsigned int idx, struct xfs_btree_block *block, unsigned int nr_wanted, void *priv) { struct xfs_inobt_rec_incore *irec = &cur->bc_rec.i; struct xrep_ibt *ri = priv; union xfs_btree_rec *block_rec; unsigned int loaded; int error; for (loaded = 0; loaded < nr_wanted; loaded++, idx++) { error = xfarray_load(ri->inode_records, ri->array_cur++, irec); if (error) return error; block_rec = xfs_btree_rec_addr(cur, idx, block); cur->bc_ops->init_rec_from_cur(cur, block_rec); } return loaded; } /* Feed one of the new inobt blocks to the bulk loader. */ STATIC int xrep_ibt_claim_block( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr, void *priv) { struct xrep_ibt *ri = priv; return xrep_newbt_claim_block(cur, &ri->new_inobt, ptr); } /* Feed one of the new finobt blocks to the bulk loader. */ STATIC int xrep_fibt_claim_block( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr, void *priv) { struct xrep_ibt *ri = priv; return xrep_newbt_claim_block(cur, &ri->new_finobt, ptr); } /* Make sure the records do not overlap in inumber address space. */ STATIC int xrep_ibt_check_overlap( struct xrep_ibt *ri) { struct xfs_inobt_rec_incore irec; xfarray_idx_t cur; xfs_agino_t next_agino = 0; int error = 0; foreach_xfarray_idx(ri->inode_records, cur) { if (xchk_should_terminate(ri->sc, &error)) return error; error = xfarray_load(ri->inode_records, cur, &irec); if (error) return error; if (irec.ir_startino < next_agino) return -EFSCORRUPTED; next_agino = irec.ir_startino + XFS_INODES_PER_CHUNK; } return error; } /* Build new inode btrees and dispose of the old one. */ STATIC int xrep_ibt_build_new_trees( struct xrep_ibt *ri) { struct xfs_scrub *sc = ri->sc; struct xfs_btree_cur *ino_cur; struct xfs_btree_cur *fino_cur = NULL; xfs_fsblock_t fsbno; bool need_finobt; int error; need_finobt = xfs_has_finobt(sc->mp); /* * Create new btrees for staging all the inobt records we collected * earlier. The records were collected in order of increasing agino, * so we do not have to sort them. Ensure there are no overlapping * records. */ error = xrep_ibt_check_overlap(ri); if (error) return error; /* * The new inode btrees will not be rooted in the AGI until we've * successfully rebuilt the tree. * * Start by setting up the inobt staging cursor. */ fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.pag->pag_agno, XFS_IBT_BLOCK(sc->mp)), xrep_newbt_init_ag(&ri->new_inobt, sc, &XFS_RMAP_OINFO_INOBT, fsbno, XFS_AG_RESV_NONE); ri->new_inobt.bload.claim_block = xrep_ibt_claim_block; ri->new_inobt.bload.get_records = xrep_ibt_get_records; ino_cur = xfs_inobt_init_cursor(sc->sa.pag, NULL, NULL); xfs_btree_stage_afakeroot(ino_cur, &ri->new_inobt.afake); error = xfs_btree_bload_compute_geometry(ino_cur, &ri->new_inobt.bload, xfarray_length(ri->inode_records)); if (error) goto err_inocur; /* Set up finobt staging cursor. */ if (need_finobt) { enum xfs_ag_resv_type resv = XFS_AG_RESV_METADATA; if (sc->mp->m_finobt_nores) resv = XFS_AG_RESV_NONE; fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.pag->pag_agno, XFS_FIBT_BLOCK(sc->mp)), xrep_newbt_init_ag(&ri->new_finobt, sc, &XFS_RMAP_OINFO_INOBT, fsbno, resv); ri->new_finobt.bload.claim_block = xrep_fibt_claim_block; ri->new_finobt.bload.get_records = xrep_fibt_get_records; fino_cur = xfs_finobt_init_cursor(sc->sa.pag, NULL, NULL); xfs_btree_stage_afakeroot(fino_cur, &ri->new_finobt.afake); error = xfs_btree_bload_compute_geometry(fino_cur, &ri->new_finobt.bload, ri->finobt_recs); if (error) goto err_finocur; } /* Last chance to abort before we start committing fixes. */ if (xchk_should_terminate(sc, &error)) goto err_finocur; /* Reserve all the space we need to build the new btrees. */ error = xrep_newbt_alloc_blocks(&ri->new_inobt, ri->new_inobt.bload.nr_blocks); if (error) goto err_finocur; if (need_finobt) { error = xrep_newbt_alloc_blocks(&ri->new_finobt, ri->new_finobt.bload.nr_blocks); if (error) goto err_finocur; } /* Add all inobt records. */ ri->array_cur = XFARRAY_CURSOR_INIT; error = xfs_btree_bload(ino_cur, &ri->new_inobt.bload, ri); if (error) goto err_finocur; /* Add all finobt records. */ if (need_finobt) { ri->array_cur = XFARRAY_CURSOR_INIT; error = xfs_btree_bload(fino_cur, &ri->new_finobt.bload, ri); if (error) goto err_finocur; } /* * Install the new btrees in the AG header. After this point the old * btrees are no longer accessible and the new trees are live. */ xfs_inobt_commit_staged_btree(ino_cur, sc->tp, sc->sa.agi_bp); xfs_btree_del_cursor(ino_cur, 0); if (fino_cur) { xfs_inobt_commit_staged_btree(fino_cur, sc->tp, sc->sa.agi_bp); xfs_btree_del_cursor(fino_cur, 0); } /* Reset the AGI counters now that we've changed the inode roots. */ error = xrep_ibt_reset_counters(ri); if (error) goto err_finobt; /* Free unused blocks and bitmap. */ if (need_finobt) { error = xrep_newbt_commit(&ri->new_finobt); if (error) goto err_inobt; } error = xrep_newbt_commit(&ri->new_inobt); if (error) return error; return xrep_roll_ag_trans(sc); err_finocur: if (need_finobt) xfs_btree_del_cursor(fino_cur, error); err_inocur: xfs_btree_del_cursor(ino_cur, error); err_finobt: if (need_finobt) xrep_newbt_cancel(&ri->new_finobt); err_inobt: xrep_newbt_cancel(&ri->new_inobt); return error; } /* * Now that we've logged the roots of the new btrees, invalidate all of the * old blocks and free them. */ STATIC int xrep_ibt_remove_old_trees( struct xrep_ibt *ri) { struct xfs_scrub *sc = ri->sc; int error; /* * Free the old inode btree blocks if they're not in use. It's ok to * reap with XFS_AG_RESV_NONE even if the finobt had a per-AG * reservation because we reset the reservation before releasing the * AGI and AGF header buffer locks. */ error = xrep_reap_agblocks(sc, &ri->old_iallocbt_blocks, &XFS_RMAP_OINFO_INOBT, XFS_AG_RESV_NONE); if (error) return error; /* * If the finobt is enabled and has a per-AG reservation, make sure we * reinitialize the per-AG reservations. */ if (xfs_has_finobt(sc->mp) && !sc->mp->m_finobt_nores) sc->flags |= XREP_RESET_PERAG_RESV; return 0; } /* Repair both inode btrees. */ int xrep_iallocbt( struct xfs_scrub *sc) { struct xrep_ibt *ri; struct xfs_mount *mp = sc->mp; char *descr; xfs_agino_t first_agino, last_agino; int error = 0; /* We require the rmapbt to rebuild anything. */ if (!xfs_has_rmapbt(mp)) return -EOPNOTSUPP; ri = kzalloc(sizeof(struct xrep_ibt), XCHK_GFP_FLAGS); if (!ri) return -ENOMEM; ri->sc = sc; /* We rebuild both inode btrees. */ sc->sick_mask = XFS_SICK_AG_INOBT | XFS_SICK_AG_FINOBT; /* Set up enough storage to handle an AG with nothing but inodes. */ xfs_agino_range(mp, sc->sa.pag->pag_agno, &first_agino, &last_agino); last_agino /= XFS_INODES_PER_CHUNK; descr = xchk_xfile_ag_descr(sc, "inode index records"); error = xfarray_create(descr, last_agino, sizeof(struct xfs_inobt_rec_incore), &ri->inode_records); kfree(descr); if (error) goto out_ri; /* Collect the inode data and find the old btree blocks. */ xagb_bitmap_init(&ri->old_iallocbt_blocks); error = xrep_ibt_find_inodes(ri); if (error) goto out_bitmap; /* Rebuild the inode indexes. */ error = xrep_ibt_build_new_trees(ri); if (error) goto out_bitmap; /* Kill the old tree. */ error = xrep_ibt_remove_old_trees(ri); if (error) goto out_bitmap; out_bitmap: xagb_bitmap_destroy(&ri->old_iallocbt_blocks); xfarray_destroy(ri->inode_records); out_ri: kfree(ri); return error; } /* Make sure both btrees are ok after we've rebuilt them. */ int xrep_revalidate_iallocbt( struct xfs_scrub *sc) { __u32 old_type = sc->sm->sm_type; int error; /* * We must update sm_type temporarily so that the tree-to-tree cross * reference checks will work in the correct direction, and also so * that tracing will report correctly if there are more errors. */ sc->sm->sm_type = XFS_SCRUB_TYPE_INOBT; error = xchk_iallocbt(sc); if (error) goto out; if (xfs_has_finobt(sc->mp)) { sc->sm->sm_type = XFS_SCRUB_TYPE_FINOBT; error = xchk_iallocbt(sc); } out: sc->sm->sm_type = old_type; return error; } |