Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
 * This is a SIMD SHA-1 implementation. It requires the Intel(R) Supplemental
 * SSE3 instruction set extensions introduced in Intel Core Microarchitecture
 * processors. CPUs supporting Intel(R) AVX extensions will get an additional
 * boost.
 *
 * This work was inspired by the vectorized implementation of Dean Gaudet.
 * Additional information on it can be found at:
 *    http://www.arctic.org/~dean/crypto/sha1.html
 *
 * It was improved upon with more efficient vectorization of the message
 * scheduling. This implementation has also been optimized for all current and
 * several future generations of Intel CPUs.
 *
 * See this article for more information about the implementation details:
 *   http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/
 *
 * Copyright (C) 2010, Intel Corp.
 *   Authors: Maxim Locktyukhin <maxim.locktyukhin@intel.com>
 *            Ronen Zohar <ronen.zohar@intel.com>
 *
 * Converted to AT&T syntax and adapted for inclusion in the Linux kernel:
 *   Author: Mathias Krause <minipli@googlemail.com>
 */

#include <linux/linkage.h>
#include <linux/cfi_types.h>

#define CTX	%rdi	// arg1
#define BUF	%rsi	// arg2
#define CNT	%rdx	// arg3

#define REG_A	%ecx
#define REG_B	%esi
#define REG_C	%edi
#define REG_D	%r12d
#define REG_E	%edx

#define REG_T1	%eax
#define REG_T2	%ebx

#define K_BASE		%r8
#define HASH_PTR	%r9
#define BUFFER_PTR	%r10
#define BUFFER_END	%r11

#define W_TMP1	%xmm0
#define W_TMP2	%xmm9

#define W0	%xmm1
#define W4	%xmm2
#define W8	%xmm3
#define W12	%xmm4
#define W16	%xmm5
#define W20	%xmm6
#define W24	%xmm7
#define W28	%xmm8

#define XMM_SHUFB_BSWAP	%xmm10

/* we keep window of 64 w[i]+K pre-calculated values in a circular buffer */
#define WK(t)	(((t) & 15) * 4)(%rsp)
#define W_PRECALC_AHEAD	16

/*
 * This macro implements the SHA-1 function's body for single 64-byte block
 * param: function's name
 */
.macro SHA1_VECTOR_ASM  name
	SYM_TYPED_FUNC_START(\name)

	push	%rbx
	push	%r12
	push	%rbp
	mov	%rsp, %rbp

	sub	$64, %rsp		# allocate workspace
	and	$~15, %rsp		# align stack

	mov	CTX, HASH_PTR
	mov	BUF, BUFFER_PTR

	shl	$6, CNT			# multiply by 64
	add	BUF, CNT
	mov	CNT, BUFFER_END

	lea	K_XMM_AR(%rip), K_BASE
	xmm_mov	BSWAP_SHUFB_CTL(%rip), XMM_SHUFB_BSWAP

	SHA1_PIPELINED_MAIN_BODY

	# cleanup workspace
	mov	$8, %ecx
	mov	%rsp, %rdi
	xor	%eax, %eax
	rep stosq

	mov	%rbp, %rsp		# deallocate workspace
	pop	%rbp
	pop	%r12
	pop	%rbx
	RET

	SYM_FUNC_END(\name)
.endm

/*
 * This macro implements 80 rounds of SHA-1 for one 64-byte block
 */
.macro SHA1_PIPELINED_MAIN_BODY
	INIT_REGALLOC

	mov	  (HASH_PTR), A
	mov	 4(HASH_PTR), B
	mov	 8(HASH_PTR), C
	mov	12(HASH_PTR), D
	mov	16(HASH_PTR), E

  .set i, 0
  .rept W_PRECALC_AHEAD
	W_PRECALC i
    .set i, (i+1)
  .endr

.align 4
1:
	RR F1,A,B,C,D,E,0
	RR F1,D,E,A,B,C,2
	RR F1,B,C,D,E,A,4
	RR F1,E,A,B,C,D,6
	RR F1,C,D,E,A,B,8

	RR F1,A,B,C,D,E,10
	RR F1,D,E,A,B,C,12
	RR F1,B,C,D,E,A,14
	RR F1,E,A,B,C,D,16
	RR F1,C,D,E,A,B,18

	RR F2,A,B,C,D,E,20
	RR F2,D,E,A,B,C,22
	RR F2,B,C,D,E,A,24
	RR F2,E,A,B,C,D,26
	RR F2,C,D,E,A,B,28

	RR F2,A,B,C,D,E,30
	RR F2,D,E,A,B,C,32
	RR F2,B,C,D,E,A,34
	RR F2,E,A,B,C,D,36
	RR F2,C,D,E,A,B,38

	RR F3,A,B,C,D,E,40
	RR F3,D,E,A,B,C,42
	RR F3,B,C,D,E,A,44
	RR F3,E,A,B,C,D,46
	RR F3,C,D,E,A,B,48

	RR F3,A,B,C,D,E,50
	RR F3,D,E,A,B,C,52
	RR F3,B,C,D,E,A,54
	RR F3,E,A,B,C,D,56
	RR F3,C,D,E,A,B,58

	add	$64, BUFFER_PTR		# move to the next 64-byte block
	cmp	BUFFER_END, BUFFER_PTR	# if the current is the last one use
	cmovae	K_BASE, BUFFER_PTR	# dummy source to avoid buffer overrun

	RR F4,A,B,C,D,E,60
	RR F4,D,E,A,B,C,62
	RR F4,B,C,D,E,A,64
	RR F4,E,A,B,C,D,66
	RR F4,C,D,E,A,B,68

	RR F4,A,B,C,D,E,70
	RR F4,D,E,A,B,C,72
	RR F4,B,C,D,E,A,74
	RR F4,E,A,B,C,D,76
	RR F4,C,D,E,A,B,78

	UPDATE_HASH   (HASH_PTR), A
	UPDATE_HASH  4(HASH_PTR), B
	UPDATE_HASH  8(HASH_PTR), C
	UPDATE_HASH 12(HASH_PTR), D
	UPDATE_HASH 16(HASH_PTR), E

	RESTORE_RENAMED_REGS
	cmp	K_BASE, BUFFER_PTR	# K_BASE means, we reached the end
	jne	1b
.endm

.macro INIT_REGALLOC
  .set A, REG_A
  .set B, REG_B
  .set C, REG_C
  .set D, REG_D
  .set E, REG_E
  .set T1, REG_T1
  .set T2, REG_T2
.endm

.macro RESTORE_RENAMED_REGS
	# order is important (REG_C is where it should be)
	mov	B, REG_B
	mov	D, REG_D
	mov	A, REG_A
	mov	E, REG_E
.endm

.macro SWAP_REG_NAMES  a, b
  .set _T, \a
  .set \a, \b
  .set \b, _T
.endm

.macro F1  b, c, d
	mov	\c, T1
	SWAP_REG_NAMES \c, T1
	xor	\d, T1
	and	\b, T1
	xor	\d, T1
.endm

.macro F2  b, c, d
	mov	\d, T1
	SWAP_REG_NAMES \d, T1
	xor	\c, T1
	xor	\b, T1
.endm

.macro F3  b, c ,d
	mov	\c, T1
	SWAP_REG_NAMES \c, T1
	mov	\b, T2
	or	\b, T1
	and	\c, T2
	and	\d, T1
	or	T2, T1
.endm

.macro F4  b, c, d
	F2 \b, \c, \d
.endm

.macro UPDATE_HASH  hash, val
	add	\hash, \val
	mov	\val, \hash
.endm

/*
 * RR does two rounds of SHA-1 back to back with W[] pre-calc
 *   t1 = F(b, c, d);   e += w(i)
 *   e += t1;           b <<= 30;   d  += w(i+1);
 *   t1 = F(a, b, c);
 *   d += t1;           a <<= 5;
 *   e += a;
 *   t1 = e;            a >>= 7;
 *   t1 <<= 5;
 *   d += t1;
 */
.macro RR  F, a, b, c, d, e, round
	add	WK(\round), \e
	\F   \b, \c, \d		# t1 = F(b, c, d);
	W_PRECALC (\round + W_PRECALC_AHEAD)
	rol	$30, \b
	add	T1, \e
	add	WK(\round + 1), \d

	\F   \a, \b, \c
	W_PRECALC (\round + W_PRECALC_AHEAD + 1)
	rol	$5, \a
	add	\a, \e
	add	T1, \d
	ror	$7, \a		# (a <<r 5) >>r 7) => a <<r 30)

	mov	\e, T1
	SWAP_REG_NAMES \e, T1

	rol	$5, T1
	add	T1, \d

	# write:  \a, \b
	# rotate: \a<=\d, \b<=\e, \c<=\a, \d<=\b, \e<=\c
.endm

.macro W_PRECALC  r
  .set i, \r

  .if (i < 20)
    .set K_XMM, 0
  .elseif (i < 40)
    .set K_XMM, 16
  .elseif (i < 60)
    .set K_XMM, 32
  .elseif (i < 80)
    .set K_XMM, 48
  .endif

  .if ((i < 16) || ((i >= 80) && (i < (80 + W_PRECALC_AHEAD))))
    .set i, ((\r) % 80)	    # pre-compute for the next iteration
    .if (i == 0)
	W_PRECALC_RESET
    .endif
	W_PRECALC_00_15
  .elseif (i<32)
	W_PRECALC_16_31
  .elseif (i < 80)   // rounds 32-79
	W_PRECALC_32_79
  .endif
.endm

.macro W_PRECALC_RESET
  .set W,          W0
  .set W_minus_04, W4
  .set W_minus_08, W8
  .set W_minus_12, W12
  .set W_minus_16, W16
  .set W_minus_20, W20
  .set W_minus_24, W24
  .set W_minus_28, W28
  .set W_minus_32, W
.endm

.macro W_PRECALC_ROTATE
  .set W_minus_32, W_minus_28
  .set W_minus_28, W_minus_24
  .set W_minus_24, W_minus_20
  .set W_minus_20, W_minus_16
  .set W_minus_16, W_minus_12
  .set W_minus_12, W_minus_08
  .set W_minus_08, W_minus_04
  .set W_minus_04, W
  .set W,          W_minus_32
.endm

.macro W_PRECALC_SSSE3

.macro W_PRECALC_00_15
	W_PRECALC_00_15_SSSE3
.endm
.macro W_PRECALC_16_31
	W_PRECALC_16_31_SSSE3
.endm
.macro W_PRECALC_32_79
	W_PRECALC_32_79_SSSE3
.endm

/* message scheduling pre-compute for rounds 0-15 */
.macro W_PRECALC_00_15_SSSE3
  .if ((i & 3) == 0)
	movdqu	(i*4)(BUFFER_PTR), W_TMP1
  .elseif ((i & 3) == 1)
	pshufb	XMM_SHUFB_BSWAP, W_TMP1
	movdqa	W_TMP1, W
  .elseif ((i & 3) == 2)
	paddd	(K_BASE), W_TMP1
  .elseif ((i & 3) == 3)
	movdqa  W_TMP1, WK(i&~3)
	W_PRECALC_ROTATE
  .endif
.endm

/* message scheduling pre-compute for rounds 16-31
 *
 * - calculating last 32 w[i] values in 8 XMM registers
 * - pre-calculate K+w[i] values and store to mem, for later load by ALU add
 *   instruction
 *
 * some "heavy-lifting" vectorization for rounds 16-31 due to w[i]->w[i-3]
 * dependency, but improves for 32-79
 */
.macro W_PRECALC_16_31_SSSE3
  # blended scheduling of vector and scalar instruction streams, one 4-wide
  # vector iteration / 4 scalar rounds
  .if ((i & 3) == 0)
	movdqa	W_minus_12, W
	palignr	$8, W_minus_16, W	# w[i-14]
	movdqa	W_minus_04, W_TMP1
	psrldq	$4, W_TMP1		# w[i-3]
	pxor	W_minus_08, W
  .elseif ((i & 3) == 1)
	pxor	W_minus_16, W_TMP1
	pxor	W_TMP1, W
	movdqa	W, W_TMP2
	movdqa	W, W_TMP1
	pslldq	$12, W_TMP2
  .elseif ((i & 3) == 2)
	psrld	$31, W
	pslld	$1, W_TMP1
	por	W, W_TMP1
	movdqa	W_TMP2, W
	psrld	$30, W_TMP2
	pslld	$2, W
  .elseif ((i & 3) == 3)
	pxor	W, W_TMP1
	pxor	W_TMP2, W_TMP1
	movdqa	W_TMP1, W
	paddd	K_XMM(K_BASE), W_TMP1
	movdqa	W_TMP1, WK(i&~3)
	W_PRECALC_ROTATE
  .endif
.endm

/* message scheduling pre-compute for rounds 32-79
 *
 * in SHA-1 specification: w[i] = (w[i-3] ^ w[i-8]  ^ w[i-14] ^ w[i-16]) rol 1
 * instead we do equal:    w[i] = (w[i-6] ^ w[i-16] ^ w[i-28] ^ w[i-32]) rol 2
 * allows more efficient vectorization since w[i]=>w[i-3] dependency is broken
 */
.macro W_PRECALC_32_79_SSSE3
  .if ((i & 3) == 0)
	movdqa	W_minus_04, W_TMP1
	pxor	W_minus_28, W		# W is W_minus_32 before xor
	palignr	$8, W_minus_08, W_TMP1
  .elseif ((i & 3) == 1)
	pxor	W_minus_16, W
	pxor	W_TMP1, W
	movdqa	W, W_TMP1
  .elseif ((i & 3) == 2)
	psrld	$30, W
	pslld	$2, W_TMP1
	por	W, W_TMP1
  .elseif ((i & 3) == 3)
	movdqa	W_TMP1, W
	paddd	K_XMM(K_BASE), W_TMP1
	movdqa	W_TMP1, WK(i&~3)
	W_PRECALC_ROTATE
  .endif
.endm

.endm		// W_PRECALC_SSSE3


#define K1	0x5a827999
#define K2	0x6ed9eba1
#define K3	0x8f1bbcdc
#define K4	0xca62c1d6

.section .rodata
.align 16

K_XMM_AR:
	.long K1, K1, K1, K1
	.long K2, K2, K2, K2
	.long K3, K3, K3, K3
	.long K4, K4, K4, K4

BSWAP_SHUFB_CTL:
	.long 0x00010203
	.long 0x04050607
	.long 0x08090a0b
	.long 0x0c0d0e0f


.section .text

W_PRECALC_SSSE3
.macro xmm_mov a, b
	movdqu	\a,\b
.endm

/*
 * SSSE3 optimized implementation:
 *
 * extern "C" void sha1_transform_ssse3(struct sha1_state *state,
 *					const u8 *data, int blocks);
 *
 * Note that struct sha1_state is assumed to begin with u32 state[5].
 */
SHA1_VECTOR_ASM     sha1_transform_ssse3

.macro W_PRECALC_AVX

.purgem W_PRECALC_00_15
.macro  W_PRECALC_00_15
    W_PRECALC_00_15_AVX
.endm
.purgem W_PRECALC_16_31
.macro  W_PRECALC_16_31
    W_PRECALC_16_31_AVX
.endm
.purgem W_PRECALC_32_79
.macro  W_PRECALC_32_79
    W_PRECALC_32_79_AVX
.endm

.macro W_PRECALC_00_15_AVX
  .if ((i & 3) == 0)
	vmovdqu	(i*4)(BUFFER_PTR), W_TMP1
  .elseif ((i & 3) == 1)
	vpshufb	XMM_SHUFB_BSWAP, W_TMP1, W
  .elseif ((i & 3) == 2)
	vpaddd	(K_BASE), W, W_TMP1
  .elseif ((i & 3) == 3)
	vmovdqa	W_TMP1, WK(i&~3)
	W_PRECALC_ROTATE
  .endif
.endm

.macro W_PRECALC_16_31_AVX
  .if ((i & 3) == 0)
	vpalignr $8, W_minus_16, W_minus_12, W	# w[i-14]
	vpsrldq	$4, W_minus_04, W_TMP1		# w[i-3]
	vpxor	W_minus_08, W, W
	vpxor	W_minus_16, W_TMP1, W_TMP1
  .elseif ((i & 3) == 1)
	vpxor	W_TMP1, W, W
	vpslldq	$12, W, W_TMP2
	vpslld	$1, W, W_TMP1
  .elseif ((i & 3) == 2)
	vpsrld	$31, W, W
	vpor	W, W_TMP1, W_TMP1
	vpslld	$2, W_TMP2, W
	vpsrld	$30, W_TMP2, W_TMP2
  .elseif ((i & 3) == 3)
	vpxor	W, W_TMP1, W_TMP1
	vpxor	W_TMP2, W_TMP1, W
	vpaddd	K_XMM(K_BASE), W, W_TMP1
	vmovdqu	W_TMP1, WK(i&~3)
	W_PRECALC_ROTATE
  .endif
.endm

.macro W_PRECALC_32_79_AVX
  .if ((i & 3) == 0)
	vpalignr $8, W_minus_08, W_minus_04, W_TMP1
	vpxor	W_minus_28, W, W		# W is W_minus_32 before xor
  .elseif ((i & 3) == 1)
	vpxor	W_minus_16, W_TMP1, W_TMP1
	vpxor	W_TMP1, W, W
  .elseif ((i & 3) == 2)
	vpslld	$2, W, W_TMP1
	vpsrld	$30, W, W
	vpor	W, W_TMP1, W
  .elseif ((i & 3) == 3)
	vpaddd	K_XMM(K_BASE), W, W_TMP1
	vmovdqu	W_TMP1, WK(i&~3)
	W_PRECALC_ROTATE
  .endif
.endm

.endm    // W_PRECALC_AVX

W_PRECALC_AVX
.purgem xmm_mov
.macro xmm_mov a, b
	vmovdqu	\a,\b
.endm


/* AVX optimized implementation:
 *  extern "C" void sha1_transform_avx(struct sha1_state *state,
 *				       const u8 *data, int blocks);
 */
SHA1_VECTOR_ASM     sha1_transform_avx