Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
 * All Rights Reserved.
 */
#include <linux/iversion.h>

#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_inode.h"
#include "xfs_dir2.h"
#include "xfs_attr.h"
#include "xfs_bit.h"
#include "xfs_trans_space.h"
#include "xfs_trans.h"
#include "xfs_buf_item.h"
#include "xfs_inode_item.h"
#include "xfs_iunlink_item.h"
#include "xfs_ialloc.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_errortag.h"
#include "xfs_error.h"
#include "xfs_quota.h"
#include "xfs_filestream.h"
#include "xfs_trace.h"
#include "xfs_icache.h"
#include "xfs_symlink.h"
#include "xfs_trans_priv.h"
#include "xfs_log.h"
#include "xfs_bmap_btree.h"
#include "xfs_reflink.h"
#include "xfs_ag.h"
#include "xfs_log_priv.h"
#include "xfs_health.h"
#include "xfs_pnfs.h"
#include "xfs_parent.h"
#include "xfs_xattr.h"
#include "xfs_inode_util.h"

struct kmem_cache *xfs_inode_cache;

/*
 * These two are wrapper routines around the xfs_ilock() routine used to
 * centralize some grungy code.  They are used in places that wish to lock the
 * inode solely for reading the extents.  The reason these places can't just
 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
 * bringing in of the extents from disk for a file in b-tree format.  If the
 * inode is in b-tree format, then we need to lock the inode exclusively until
 * the extents are read in.  Locking it exclusively all the time would limit
 * our parallelism unnecessarily, though.  What we do instead is check to see
 * if the extents have been read in yet, and only lock the inode exclusively
 * if they have not.
 *
 * The functions return a value which should be given to the corresponding
 * xfs_iunlock() call.
 */
uint
xfs_ilock_data_map_shared(
	struct xfs_inode	*ip)
{
	uint			lock_mode = XFS_ILOCK_SHARED;

	if (xfs_need_iread_extents(&ip->i_df))
		lock_mode = XFS_ILOCK_EXCL;
	xfs_ilock(ip, lock_mode);
	return lock_mode;
}

uint
xfs_ilock_attr_map_shared(
	struct xfs_inode	*ip)
{
	uint			lock_mode = XFS_ILOCK_SHARED;

	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
		lock_mode = XFS_ILOCK_EXCL;
	xfs_ilock(ip, lock_mode);
	return lock_mode;
}

/*
 * You can't set both SHARED and EXCL for the same lock,
 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
 * to set in lock_flags.
 */
static inline void
xfs_lock_flags_assert(
	uint		lock_flags)
{
	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
	ASSERT(lock_flags != 0);
}

/*
 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
 * various combinations of the locks to be obtained.
 *
 * The 3 locks should always be ordered so that the IO lock is obtained first,
 * the mmap lock second and the ilock last in order to prevent deadlock.
 *
 * Basic locking order:
 *
 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
 *
 * mmap_lock locking order:
 *
 * i_rwsem -> page lock -> mmap_lock
 * mmap_lock -> invalidate_lock -> page_lock
 *
 * The difference in mmap_lock locking order mean that we cannot hold the
 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
 * can fault in pages during copy in/out (for buffered IO) or require the
 * mmap_lock in get_user_pages() to map the user pages into the kernel address
 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
 * fault because page faults already hold the mmap_lock.
 *
 * Hence to serialise fully against both syscall and mmap based IO, we need to
 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
 * both taken in places where we need to invalidate the page cache in a race
 * free manner (e.g. truncate, hole punch and other extent manipulation
 * functions).
 */
void
xfs_ilock(
	xfs_inode_t		*ip,
	uint			lock_flags)
{
	trace_xfs_ilock(ip, lock_flags, _RET_IP_);

	xfs_lock_flags_assert(lock_flags);

	if (lock_flags & XFS_IOLOCK_EXCL) {
		down_write_nested(&VFS_I(ip)->i_rwsem,
				  XFS_IOLOCK_DEP(lock_flags));
	} else if (lock_flags & XFS_IOLOCK_SHARED) {
		down_read_nested(&VFS_I(ip)->i_rwsem,
				 XFS_IOLOCK_DEP(lock_flags));
	}

	if (lock_flags & XFS_MMAPLOCK_EXCL) {
		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
				  XFS_MMAPLOCK_DEP(lock_flags));
	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
				 XFS_MMAPLOCK_DEP(lock_flags));
	}

	if (lock_flags & XFS_ILOCK_EXCL)
		down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
	else if (lock_flags & XFS_ILOCK_SHARED)
		down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
}

/*
 * This is just like xfs_ilock(), except that the caller
 * is guaranteed not to sleep.  It returns 1 if it gets
 * the requested locks and 0 otherwise.  If the IO lock is
 * obtained but the inode lock cannot be, then the IO lock
 * is dropped before returning.
 *
 * ip -- the inode being locked
 * lock_flags -- this parameter indicates the inode's locks to be
 *       to be locked.  See the comment for xfs_ilock() for a list
 *	 of valid values.
 */
int
xfs_ilock_nowait(
	xfs_inode_t		*ip,
	uint			lock_flags)
{
	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);

	xfs_lock_flags_assert(lock_flags);

	if (lock_flags & XFS_IOLOCK_EXCL) {
		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
			goto out;
	} else if (lock_flags & XFS_IOLOCK_SHARED) {
		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
			goto out;
	}

	if (lock_flags & XFS_MMAPLOCK_EXCL) {
		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
			goto out_undo_iolock;
	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
			goto out_undo_iolock;
	}

	if (lock_flags & XFS_ILOCK_EXCL) {
		if (!down_write_trylock(&ip->i_lock))
			goto out_undo_mmaplock;
	} else if (lock_flags & XFS_ILOCK_SHARED) {
		if (!down_read_trylock(&ip->i_lock))
			goto out_undo_mmaplock;
	}
	return 1;

out_undo_mmaplock:
	if (lock_flags & XFS_MMAPLOCK_EXCL)
		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
	else if (lock_flags & XFS_MMAPLOCK_SHARED)
		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
out_undo_iolock:
	if (lock_flags & XFS_IOLOCK_EXCL)
		up_write(&VFS_I(ip)->i_rwsem);
	else if (lock_flags & XFS_IOLOCK_SHARED)
		up_read(&VFS_I(ip)->i_rwsem);
out:
	return 0;
}

/*
 * xfs_iunlock() is used to drop the inode locks acquired with
 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 * that we know which locks to drop.
 *
 * ip -- the inode being unlocked
 * lock_flags -- this parameter indicates the inode's locks to be
 *       to be unlocked.  See the comment for xfs_ilock() for a list
 *	 of valid values for this parameter.
 *
 */
void
xfs_iunlock(
	xfs_inode_t		*ip,
	uint			lock_flags)
{
	xfs_lock_flags_assert(lock_flags);

	if (lock_flags & XFS_IOLOCK_EXCL)
		up_write(&VFS_I(ip)->i_rwsem);
	else if (lock_flags & XFS_IOLOCK_SHARED)
		up_read(&VFS_I(ip)->i_rwsem);

	if (lock_flags & XFS_MMAPLOCK_EXCL)
		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
	else if (lock_flags & XFS_MMAPLOCK_SHARED)
		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);

	if (lock_flags & XFS_ILOCK_EXCL)
		up_write(&ip->i_lock);
	else if (lock_flags & XFS_ILOCK_SHARED)
		up_read(&ip->i_lock);

	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
}

/*
 * give up write locks.  the i/o lock cannot be held nested
 * if it is being demoted.
 */
void
xfs_ilock_demote(
	xfs_inode_t		*ip,
	uint			lock_flags)
{
	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
	ASSERT((lock_flags &
		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);

	if (lock_flags & XFS_ILOCK_EXCL)
		downgrade_write(&ip->i_lock);
	if (lock_flags & XFS_MMAPLOCK_EXCL)
		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
	if (lock_flags & XFS_IOLOCK_EXCL)
		downgrade_write(&VFS_I(ip)->i_rwsem);

	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
}

void
xfs_assert_ilocked(
	struct xfs_inode	*ip,
	uint			lock_flags)
{
	/*
	 * Sometimes we assert the ILOCK is held exclusively, but we're in
	 * a workqueue, so lockdep doesn't know we're the owner.
	 */
	if (lock_flags & XFS_ILOCK_SHARED)
		rwsem_assert_held(&ip->i_lock);
	else if (lock_flags & XFS_ILOCK_EXCL)
		rwsem_assert_held_write_nolockdep(&ip->i_lock);

	if (lock_flags & XFS_MMAPLOCK_SHARED)
		rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
	else if (lock_flags & XFS_MMAPLOCK_EXCL)
		rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);

	if (lock_flags & XFS_IOLOCK_SHARED)
		rwsem_assert_held(&VFS_I(ip)->i_rwsem);
	else if (lock_flags & XFS_IOLOCK_EXCL)
		rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
}

/*
 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 * errors and warnings.
 */
#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
static bool
xfs_lockdep_subclass_ok(
	int subclass)
{
	return subclass < MAX_LOCKDEP_SUBCLASSES;
}
#else
#define xfs_lockdep_subclass_ok(subclass)	(true)
#endif

/*
 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 * value. This can be called for any type of inode lock combination, including
 * parent locking. Care must be taken to ensure we don't overrun the subclass
 * storage fields in the class mask we build.
 */
static inline uint
xfs_lock_inumorder(
	uint	lock_mode,
	uint	subclass)
{
	uint	class = 0;

	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
			      XFS_ILOCK_RTSUM)));
	ASSERT(xfs_lockdep_subclass_ok(subclass));

	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
		class += subclass << XFS_IOLOCK_SHIFT;
	}

	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
		class += subclass << XFS_MMAPLOCK_SHIFT;
	}

	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
		class += subclass << XFS_ILOCK_SHIFT;
	}

	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
}

/*
 * The following routine will lock n inodes in exclusive mode.  We assume the
 * caller calls us with the inodes in i_ino order.
 *
 * We need to detect deadlock where an inode that we lock is in the AIL and we
 * start waiting for another inode that is locked by a thread in a long running
 * transaction (such as truncate). This can result in deadlock since the long
 * running trans might need to wait for the inode we just locked in order to
 * push the tail and free space in the log.
 *
 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 * lock more than one at a time, lockdep will report false positives saying we
 * have violated locking orders.
 */
void
xfs_lock_inodes(
	struct xfs_inode	**ips,
	int			inodes,
	uint			lock_mode)
{
	int			attempts = 0;
	uint			i;
	int			j;
	bool			try_lock;
	struct xfs_log_item	*lp;

	/*
	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
	 * support an arbitrary depth of locking here, but absolute limits on
	 * inodes depend on the type of locking and the limits placed by
	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
	 * the asserts.
	 */
	ASSERT(ips && inodes >= 2 && inodes <= 5);
	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
			    XFS_ILOCK_EXCL));
	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
			      XFS_ILOCK_SHARED)));
	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);

	if (lock_mode & XFS_IOLOCK_EXCL) {
		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));

again:
	try_lock = false;
	i = 0;
	for (; i < inodes; i++) {
		ASSERT(ips[i]);

		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
			continue;

		/*
		 * If try_lock is not set yet, make sure all locked inodes are
		 * not in the AIL.  If any are, set try_lock to be used later.
		 */
		if (!try_lock) {
			for (j = (i - 1); j >= 0 && !try_lock; j--) {
				lp = &ips[j]->i_itemp->ili_item;
				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
					try_lock = true;
			}
		}

		/*
		 * If any of the previous locks we have locked is in the AIL,
		 * we must TRY to get the second and subsequent locks. If
		 * we can't get any, we must release all we have
		 * and try again.
		 */
		if (!try_lock) {
			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
			continue;
		}

		/* try_lock means we have an inode locked that is in the AIL. */
		ASSERT(i != 0);
		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
			continue;

		/*
		 * Unlock all previous guys and try again.  xfs_iunlock will try
		 * to push the tail if the inode is in the AIL.
		 */
		attempts++;
		for (j = i - 1; j >= 0; j--) {
			/*
			 * Check to see if we've already unlocked this one.  Not
			 * the first one going back, and the inode ptr is the
			 * same.
			 */
			if (j != (i - 1) && ips[j] == ips[j + 1])
				continue;

			xfs_iunlock(ips[j], lock_mode);
		}

		if ((attempts % 5) == 0) {
			delay(1); /* Don't just spin the CPU */
		}
		goto again;
	}
}

/*
 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
 * mmaplock must be double-locked separately since we use i_rwsem and
 * invalidate_lock for that. We now support taking one lock EXCL and the
 * other SHARED.
 */
void
xfs_lock_two_inodes(
	struct xfs_inode	*ip0,
	uint			ip0_mode,
	struct xfs_inode	*ip1,
	uint			ip1_mode)
{
	int			attempts = 0;
	struct xfs_log_item	*lp;

	ASSERT(hweight32(ip0_mode) == 1);
	ASSERT(hweight32(ip1_mode) == 1);
	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
	ASSERT(ip0->i_ino != ip1->i_ino);

	if (ip0->i_ino > ip1->i_ino) {
		swap(ip0, ip1);
		swap(ip0_mode, ip1_mode);
	}

 again:
	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));

	/*
	 * If the first lock we have locked is in the AIL, we must TRY to get
	 * the second lock. If we can't get it, we must release the first one
	 * and try again.
	 */
	lp = &ip0->i_itemp->ili_item;
	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
			xfs_iunlock(ip0, ip0_mode);
			if ((++attempts % 5) == 0)
				delay(1); /* Don't just spin the CPU */
			goto again;
		}
	} else {
		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
	}
}

/*
 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 * ci_name->name will point to a the actual name (caller must free) or
 * will be set to NULL if an exact match is found.
 */
int
xfs_lookup(
	struct xfs_inode	*dp,
	const struct xfs_name	*name,
	struct xfs_inode	**ipp,
	struct xfs_name		*ci_name)
{
	xfs_ino_t		inum;
	int			error;

	trace_xfs_lookup(dp, name);

	if (xfs_is_shutdown(dp->i_mount))
		return -EIO;
	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
		return -EIO;

	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
	if (error)
		goto out_unlock;

	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
	if (error)
		goto out_free_name;

	return 0;

out_free_name:
	if (ci_name)
		kfree(ci_name->name);
out_unlock:
	*ipp = NULL;
	return error;
}

/*
 * Initialise a newly allocated inode and return the in-core inode to the
 * caller locked exclusively.
 *
 * Caller is responsible for unlocking the inode manually upon return
 */
int
xfs_icreate(
	struct xfs_trans	*tp,
	xfs_ino_t		ino,
	const struct xfs_icreate_args *args,
	struct xfs_inode	**ipp)
{
	struct xfs_mount	*mp = tp->t_mountp;
	struct xfs_inode	*ip = NULL;
	int			error;

	/*
	 * Get the in-core inode with the lock held exclusively to prevent
	 * others from looking at until we're done.
	 */
	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
	if (error)
		return error;

	ASSERT(ip != NULL);
	xfs_trans_ijoin(tp, ip, 0);
	xfs_inode_init(tp, args, ip);

	/* now that we have an i_mode we can setup the inode structure */
	xfs_setup_inode(ip);

	*ipp = ip;
	return 0;
}

/* Return dquots for the ids that will be assigned to a new file. */
int
xfs_icreate_dqalloc(
	const struct xfs_icreate_args	*args,
	struct xfs_dquot		**udqpp,
	struct xfs_dquot		**gdqpp,
	struct xfs_dquot		**pdqpp)
{
	struct inode			*dir = VFS_I(args->pip);
	kuid_t				uid = GLOBAL_ROOT_UID;
	kgid_t				gid = GLOBAL_ROOT_GID;
	prid_t				prid = 0;
	unsigned int			flags = XFS_QMOPT_QUOTALL;

	if (args->idmap) {
		/*
		 * The uid/gid computation code must match what the VFS uses to
		 * assign i_[ug]id.  INHERIT adjusts the gid computation for
		 * setgid/grpid systems.
		 */
		uid = mapped_fsuid(args->idmap, i_user_ns(dir));
		gid = mapped_fsgid(args->idmap, i_user_ns(dir));
		prid = xfs_get_initial_prid(args->pip);
		flags |= XFS_QMOPT_INHERIT;
	}

	*udqpp = *gdqpp = *pdqpp = NULL;

	return xfs_qm_vop_dqalloc(args->pip, uid, gid, prid, flags, udqpp,
			gdqpp, pdqpp);
}

int
xfs_create(
	const struct xfs_icreate_args *args,
	struct xfs_name		*name,
	struct xfs_inode	**ipp)
{
	struct xfs_inode	*dp = args->pip;
	struct xfs_dir_update	du = {
		.dp		= dp,
		.name		= name,
	};
	struct xfs_mount	*mp = dp->i_mount;
	struct xfs_trans	*tp = NULL;
	struct xfs_dquot	*udqp;
	struct xfs_dquot	*gdqp;
	struct xfs_dquot	*pdqp;
	struct xfs_trans_res	*tres;
	xfs_ino_t		ino;
	bool			unlock_dp_on_error = false;
	bool			is_dir = S_ISDIR(args->mode);
	uint			resblks;
	int			error;

	trace_xfs_create(dp, name);

	if (xfs_is_shutdown(mp))
		return -EIO;
	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
		return -EIO;

	/* Make sure that we have allocated dquot(s) on disk. */
	error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
	if (error)
		return error;

	if (is_dir) {
		resblks = xfs_mkdir_space_res(mp, name->len);
		tres = &M_RES(mp)->tr_mkdir;
	} else {
		resblks = xfs_create_space_res(mp, name->len);
		tres = &M_RES(mp)->tr_create;
	}

	error = xfs_parent_start(mp, &du.ppargs);
	if (error)
		goto out_release_dquots;

	/*
	 * Initially assume that the file does not exist and
	 * reserve the resources for that case.  If that is not
	 * the case we'll drop the one we have and get a more
	 * appropriate transaction later.
	 */
	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
			&tp);
	if (error == -ENOSPC) {
		/* flush outstanding delalloc blocks and retry */
		xfs_flush_inodes(mp);
		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
				resblks, &tp);
	}
	if (error)
		goto out_parent;

	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
	unlock_dp_on_error = true;

	/*
	 * A newly created regular or special file just has one directory
	 * entry pointing to them, but a directory also the "." entry
	 * pointing to itself.
	 */
	error = xfs_dialloc(&tp, dp->i_ino, args->mode, &ino);
	if (!error)
		error = xfs_icreate(tp, ino, args, &du.ip);
	if (error)
		goto out_trans_cancel;

	/*
	 * Now we join the directory inode to the transaction.  We do not do it
	 * earlier because xfs_dialloc might commit the previous transaction
	 * (and release all the locks).  An error from here on will result in
	 * the transaction cancel unlocking dp so don't do it explicitly in the
	 * error path.
	 */
	xfs_trans_ijoin(tp, dp, 0);

	error = xfs_dir_create_child(tp, resblks, &du);
	if (error)
		goto out_trans_cancel;

	/*
	 * If this is a synchronous mount, make sure that the
	 * create transaction goes to disk before returning to
	 * the user.
	 */
	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
		xfs_trans_set_sync(tp);

	/*
	 * Attach the dquot(s) to the inodes and modify them incore.
	 * These ids of the inode couldn't have changed since the new
	 * inode has been locked ever since it was created.
	 */
	xfs_qm_vop_create_dqattach(tp, du.ip, udqp, gdqp, pdqp);

	error = xfs_trans_commit(tp);
	if (error)
		goto out_release_inode;

	xfs_qm_dqrele(udqp);
	xfs_qm_dqrele(gdqp);
	xfs_qm_dqrele(pdqp);

	*ipp = du.ip;
	xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
	xfs_iunlock(dp, XFS_ILOCK_EXCL);
	xfs_parent_finish(mp, du.ppargs);
	return 0;

 out_trans_cancel:
	xfs_trans_cancel(tp);
 out_release_inode:
	/*
	 * Wait until after the current transaction is aborted to finish the
	 * setup of the inode and release the inode.  This prevents recursive
	 * transactions and deadlocks from xfs_inactive.
	 */
	if (du.ip) {
		xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
		xfs_finish_inode_setup(du.ip);
		xfs_irele(du.ip);
	}
 out_parent:
	xfs_parent_finish(mp, du.ppargs);
 out_release_dquots:
	xfs_qm_dqrele(udqp);
	xfs_qm_dqrele(gdqp);
	xfs_qm_dqrele(pdqp);

	if (unlock_dp_on_error)
		xfs_iunlock(dp, XFS_ILOCK_EXCL);
	return error;
}

int
xfs_create_tmpfile(
	const struct xfs_icreate_args *args,
	struct xfs_inode	**ipp)
{
	struct xfs_inode	*dp = args->pip;
	struct xfs_mount	*mp = dp->i_mount;
	struct xfs_inode	*ip = NULL;
	struct xfs_trans	*tp = NULL;
	struct xfs_dquot	*udqp;
	struct xfs_dquot	*gdqp;
	struct xfs_dquot	*pdqp;
	struct xfs_trans_res	*tres;
	xfs_ino_t		ino;
	uint			resblks;
	int			error;

	ASSERT(args->flags & XFS_ICREATE_TMPFILE);

	if (xfs_is_shutdown(mp))
		return -EIO;

	/* Make sure that we have allocated dquot(s) on disk. */
	error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
	if (error)
		return error;

	resblks = XFS_IALLOC_SPACE_RES(mp);
	tres = &M_RES(mp)->tr_create_tmpfile;

	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
			&tp);
	if (error)
		goto out_release_dquots;

	error = xfs_dialloc(&tp, dp->i_ino, args->mode, &ino);
	if (!error)
		error = xfs_icreate(tp, ino, args, &ip);
	if (error)
		goto out_trans_cancel;

	if (xfs_has_wsync(mp))
		xfs_trans_set_sync(tp);

	/*
	 * Attach the dquot(s) to the inodes and modify them incore.
	 * These ids of the inode couldn't have changed since the new
	 * inode has been locked ever since it was created.
	 */
	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);

	error = xfs_iunlink(tp, ip);
	if (error)
		goto out_trans_cancel;

	error = xfs_trans_commit(tp);
	if (error)
		goto out_release_inode;

	xfs_qm_dqrele(udqp);
	xfs_qm_dqrele(gdqp);
	xfs_qm_dqrele(pdqp);

	*ipp = ip;
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return 0;

 out_trans_cancel:
	xfs_trans_cancel(tp);
 out_release_inode:
	/*
	 * Wait until after the current transaction is aborted to finish the
	 * setup of the inode and release the inode.  This prevents recursive
	 * transactions and deadlocks from xfs_inactive.
	 */
	if (ip) {
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		xfs_finish_inode_setup(ip);
		xfs_irele(ip);
	}
 out_release_dquots:
	xfs_qm_dqrele(udqp);
	xfs_qm_dqrele(gdqp);
	xfs_qm_dqrele(pdqp);

	return error;
}

int
xfs_link(
	struct xfs_inode	*tdp,
	struct xfs_inode	*sip,
	struct xfs_name		*target_name)
{
	struct xfs_dir_update	du = {
		.dp		= tdp,
		.name		= target_name,
		.ip		= sip,
	};
	struct xfs_mount	*mp = tdp->i_mount;
	struct xfs_trans	*tp;
	int			error, nospace_error = 0;
	int			resblks;

	trace_xfs_link(tdp, target_name);

	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));

	if (xfs_is_shutdown(mp))
		return -EIO;
	if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
		return -EIO;

	error = xfs_qm_dqattach(sip);
	if (error)
		goto std_return;

	error = xfs_qm_dqattach(tdp);
	if (error)
		goto std_return;

	error = xfs_parent_start(mp, &du.ppargs);
	if (error)
		goto std_return;

	resblks = xfs_link_space_res(mp, target_name->len);
	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
			&tp, &nospace_error);
	if (error)
		goto out_parent;

	/*
	 * We don't allow reservationless or quotaless hardlinking when parent
	 * pointers are enabled because we can't back out if the xattrs must
	 * grow.
	 */
	if (du.ppargs && nospace_error) {
		error = nospace_error;
		goto error_return;
	}

	/*
	 * If we are using project inheritance, we only allow hard link
	 * creation in our tree when the project IDs are the same; else
	 * the tree quota mechanism could be circumvented.
	 */
	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
		     tdp->i_projid != sip->i_projid)) {
		/*
		 * Project quota setup skips special files which can
		 * leave inodes in a PROJINHERIT directory without a
		 * project ID set. We need to allow links to be made
		 * to these "project-less" inodes because userspace
		 * expects them to succeed after project ID setup,
		 * but everything else should be rejected.
		 */
		if (!special_file(VFS_I(sip)->i_mode) ||
		    sip->i_projid != 0) {
			error = -EXDEV;
			goto error_return;
		}
	}

	error = xfs_dir_add_child(tp, resblks, &du);
	if (error)
		goto error_return;

	/*
	 * If this is a synchronous mount, make sure that the
	 * link transaction goes to disk before returning to
	 * the user.
	 */
	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
		xfs_trans_set_sync(tp);

	error = xfs_trans_commit(tp);
	xfs_iunlock(tdp, XFS_ILOCK_EXCL);
	xfs_iunlock(sip, XFS_ILOCK_EXCL);
	xfs_parent_finish(mp, du.ppargs);
	return error;

 error_return:
	xfs_trans_cancel(tp);
	xfs_iunlock(tdp, XFS_ILOCK_EXCL);
	xfs_iunlock(sip, XFS_ILOCK_EXCL);
 out_parent:
	xfs_parent_finish(mp, du.ppargs);
 std_return:
	if (error == -ENOSPC && nospace_error)
		error = nospace_error;
	return error;
}

/* Clear the reflink flag and the cowblocks tag if possible. */
static void
xfs_itruncate_clear_reflink_flags(
	struct xfs_inode	*ip)
{
	struct xfs_ifork	*dfork;
	struct xfs_ifork	*cfork;

	if (!xfs_is_reflink_inode(ip))
		return;
	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
	if (cfork->if_bytes == 0)
		xfs_inode_clear_cowblocks_tag(ip);
}

/*
 * Free up the underlying blocks past new_size.  The new size must be smaller
 * than the current size.  This routine can be used both for the attribute and
 * data fork, and does not modify the inode size, which is left to the caller.
 *
 * The transaction passed to this routine must have made a permanent log
 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
 * given transaction and start new ones, so make sure everything involved in
 * the transaction is tidy before calling here.  Some transaction will be
 * returned to the caller to be committed.  The incoming transaction must
 * already include the inode, and both inode locks must be held exclusively.
 * The inode must also be "held" within the transaction.  On return the inode
 * will be "held" within the returned transaction.  This routine does NOT
 * require any disk space to be reserved for it within the transaction.
 *
 * If we get an error, we must return with the inode locked and linked into the
 * current transaction. This keeps things simple for the higher level code,
 * because it always knows that the inode is locked and held in the transaction
 * that returns to it whether errors occur or not.  We don't mark the inode
 * dirty on error so that transactions can be easily aborted if possible.
 */
int
xfs_itruncate_extents_flags(
	struct xfs_trans	**tpp,
	struct xfs_inode	*ip,
	int			whichfork,
	xfs_fsize_t		new_size,
	int			flags)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp = *tpp;
	xfs_fileoff_t		first_unmap_block;
	int			error = 0;

	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
	if (atomic_read(&VFS_I(ip)->i_count))
		xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
	ASSERT(new_size <= XFS_ISIZE(ip));
	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
	ASSERT(ip->i_itemp != NULL);
	ASSERT(ip->i_itemp->ili_lock_flags == 0);
	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));

	trace_xfs_itruncate_extents_start(ip, new_size);

	flags |= xfs_bmapi_aflag(whichfork);

	/*
	 * Since it is possible for space to become allocated beyond
	 * the end of the file (in a crash where the space is allocated
	 * but the inode size is not yet updated), simply remove any
	 * blocks which show up between the new EOF and the maximum
	 * possible file size.
	 *
	 * We have to free all the blocks to the bmbt maximum offset, even if
	 * the page cache can't scale that far.
	 */
	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
		return 0;
	}

	error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
			XFS_MAX_FILEOFF);
	if (error)
		goto out;

	if (whichfork == XFS_DATA_FORK) {
		/* Remove all pending CoW reservations. */
		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
				first_unmap_block, XFS_MAX_FILEOFF, true);
		if (error)
			goto out;

		xfs_itruncate_clear_reflink_flags(ip);
	}

	/*
	 * Always re-log the inode so that our permanent transaction can keep
	 * on rolling it forward in the log.
	 */
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);

	trace_xfs_itruncate_extents_end(ip, new_size);

out:
	*tpp = tp;
	return error;
}

int
xfs_release(
	xfs_inode_t	*ip)
{
	xfs_mount_t	*mp = ip->i_mount;
	int		error = 0;

	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
		return 0;

	/* If this is a read-only mount, don't do this (would generate I/O) */
	if (xfs_is_readonly(mp))
		return 0;

	if (!xfs_is_shutdown(mp)) {
		int truncated;

		/*
		 * If we previously truncated this file and removed old data
		 * in the process, we want to initiate "early" writeout on
		 * the last close.  This is an attempt to combat the notorious
		 * NULL files problem which is particularly noticeable from a
		 * truncate down, buffered (re-)write (delalloc), followed by
		 * a crash.  What we are effectively doing here is
		 * significantly reducing the time window where we'd otherwise
		 * be exposed to that problem.
		 */
		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
		if (truncated) {
			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
			if (ip->i_delayed_blks > 0) {
				error = filemap_flush(VFS_I(ip)->i_mapping);
				if (error)
					return error;
			}
		}
	}

	if (VFS_I(ip)->i_nlink == 0)
		return 0;

	/*
	 * If we can't get the iolock just skip truncating the blocks past EOF
	 * because we could deadlock with the mmap_lock otherwise. We'll get
	 * another chance to drop them once the last reference to the inode is
	 * dropped, so we'll never leak blocks permanently.
	 */
	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
		return 0;

	if (xfs_can_free_eofblocks(ip)) {
		/*
		 * Check if the inode is being opened, written and closed
		 * frequently and we have delayed allocation blocks outstanding
		 * (e.g. streaming writes from the NFS server), truncating the
		 * blocks past EOF will cause fragmentation to occur.
		 *
		 * In this case don't do the truncation, but we have to be
		 * careful how we detect this case. Blocks beyond EOF show up as
		 * i_delayed_blks even when the inode is clean, so we need to
		 * truncate them away first before checking for a dirty release.
		 * Hence on the first dirty close we will still remove the
		 * speculative allocation, but after that we will leave it in
		 * place.
		 */
		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
			goto out_unlock;

		error = xfs_free_eofblocks(ip);
		if (error)
			goto out_unlock;

		/* delalloc blocks after truncation means it really is dirty */
		if (ip->i_delayed_blks)
			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
	}

out_unlock:
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
	return error;
}

/*
 * Mark all the buffers attached to this directory stale.  In theory we should
 * never be freeing a directory with any blocks at all, but this covers the
 * case where we've recovered a directory swap with a "temporary" directory
 * created by online repair and now need to dump it.
 */
STATIC void
xfs_inactive_dir(
	struct xfs_inode	*dp)
{
	struct xfs_iext_cursor	icur;
	struct xfs_bmbt_irec	got;
	struct xfs_mount	*mp = dp->i_mount;
	struct xfs_da_geometry	*geo = mp->m_dir_geo;
	struct xfs_ifork	*ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK);
	xfs_fileoff_t		off;

	/*
	 * Invalidate each directory block.  All directory blocks are of
	 * fsbcount length and alignment, so we only need to walk those same
	 * offsets.  We hold the only reference to this inode, so we must wait
	 * for the buffer locks.
	 */
	for_each_xfs_iext(ifp, &icur, &got) {
		for (off = round_up(got.br_startoff, geo->fsbcount);
		     off < got.br_startoff + got.br_blockcount;
		     off += geo->fsbcount) {
			struct xfs_buf	*bp = NULL;
			xfs_fsblock_t	fsbno;
			int		error;

			fsbno = (off - got.br_startoff) + got.br_startblock;
			error = xfs_buf_incore(mp->m_ddev_targp,
					XFS_FSB_TO_DADDR(mp, fsbno),
					XFS_FSB_TO_BB(mp, geo->fsbcount),
					XBF_LIVESCAN, &bp);
			if (error)
				continue;

			xfs_buf_stale(bp);
			xfs_buf_relse(bp);
		}
	}
}

/*
 * xfs_inactive_truncate
 *
 * Called to perform a truncate when an inode becomes unlinked.
 */
STATIC int
xfs_inactive_truncate(
	struct xfs_inode *ip)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp;
	int			error;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
	if (error) {
		ASSERT(xfs_is_shutdown(mp));
		return error;
	}
	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	/*
	 * Log the inode size first to prevent stale data exposure in the event
	 * of a system crash before the truncate completes. See the related
	 * comment in xfs_vn_setattr_size() for details.
	 */
	ip->i_disk_size = 0;
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);

	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
	if (error)
		goto error_trans_cancel;

	ASSERT(ip->i_df.if_nextents == 0);

	error = xfs_trans_commit(tp);
	if (error)
		goto error_unlock;

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return 0;

error_trans_cancel:
	xfs_trans_cancel(tp);
error_unlock:
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;
}

/*
 * xfs_inactive_ifree()
 *
 * Perform the inode free when an inode is unlinked.
 */
STATIC int
xfs_inactive_ifree(
	struct xfs_inode *ip)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp;
	int			error;

	/*
	 * We try to use a per-AG reservation for any block needed by the finobt
	 * tree, but as the finobt feature predates the per-AG reservation
	 * support a degraded file system might not have enough space for the
	 * reservation at mount time.  In that case try to dip into the reserved
	 * pool and pray.
	 *
	 * Send a warning if the reservation does happen to fail, as the inode
	 * now remains allocated and sits on the unlinked list until the fs is
	 * repaired.
	 */
	if (unlikely(mp->m_finobt_nores)) {
		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
				&tp);
	} else {
		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
	}
	if (error) {
		if (error == -ENOSPC) {
			xfs_warn_ratelimited(mp,
			"Failed to remove inode(s) from unlinked list. "
			"Please free space, unmount and run xfs_repair.");
		} else {
			ASSERT(xfs_is_shutdown(mp));
		}
		return error;
	}

	/*
	 * We do not hold the inode locked across the entire rolling transaction
	 * here. We only need to hold it for the first transaction that
	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
	 * here breaks the relationship between cluster buffer invalidation and
	 * stale inode invalidation on cluster buffer item journal commit
	 * completion, and can result in leaving dirty stale inodes hanging
	 * around in memory.
	 *
	 * We have no need for serialising this inode operation against other
	 * operations - we freed the inode and hence reallocation is required
	 * and that will serialise on reallocating the space the deferops need
	 * to free. Hence we can unlock the inode on the first commit of
	 * the transaction rather than roll it right through the deferops. This
	 * avoids relogging the XFS_ISTALE inode.
	 *
	 * We check that xfs_ifree() hasn't grown an internal transaction roll
	 * by asserting that the inode is still locked when it returns.
	 */
	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);

	error = xfs_ifree(tp, ip);
	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
	if (error) {
		/*
		 * If we fail to free the inode, shut down.  The cancel
		 * might do that, we need to make sure.  Otherwise the
		 * inode might be lost for a long time or forever.
		 */
		if (!xfs_is_shutdown(mp)) {
			xfs_notice(mp, "%s: xfs_ifree returned error %d",
				__func__, error);
			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
		}
		xfs_trans_cancel(tp);
		return error;
	}

	/*
	 * Credit the quota account(s). The inode is gone.
	 */
	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);

	return xfs_trans_commit(tp);
}

/*
 * Returns true if we need to update the on-disk metadata before we can free
 * the memory used by this inode.  Updates include freeing post-eof
 * preallocations; freeing COW staging extents; and marking the inode free in
 * the inobt if it is on the unlinked list.
 */
bool
xfs_inode_needs_inactive(
	struct xfs_inode	*ip)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);

	/*
	 * If the inode is already free, then there can be nothing
	 * to clean up here.
	 */
	if (VFS_I(ip)->i_mode == 0)
		return false;

	/*
	 * If this is a read-only mount, don't do this (would generate I/O)
	 * unless we're in log recovery and cleaning the iunlinked list.
	 */
	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
		return false;

	/* If the log isn't running, push inodes straight to reclaim. */
	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
		return false;

	/* Metadata inodes require explicit resource cleanup. */
	if (xfs_is_metadata_inode(ip))
		return false;

	/* Want to clean out the cow blocks if there are any. */
	if (cow_ifp && cow_ifp->if_bytes > 0)
		return true;

	/* Unlinked files must be freed. */
	if (VFS_I(ip)->i_nlink == 0)
		return true;

	/*
	 * This file isn't being freed, so check if there are post-eof blocks
	 * to free.
	 *
	 * Note: don't bother with iolock here since lockdep complains about
	 * acquiring it in reclaim context. We have the only reference to the
	 * inode at this point anyways.
	 */
	return xfs_can_free_eofblocks(ip);
}

/*
 * Save health status somewhere, if we're dumping an inode with uncorrected
 * errors and online repair isn't running.
 */
static inline void
xfs_inactive_health(
	struct xfs_inode	*ip)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_perag	*pag;
	unsigned int		sick;
	unsigned int		checked;

	xfs_inode_measure_sickness(ip, &sick, &checked);
	if (!sick)
		return;

	trace_xfs_inode_unfixed_corruption(ip, sick);

	if (sick & XFS_SICK_INO_FORGET)
		return;

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
	if (!pag) {
		/* There had better still be a perag structure! */
		ASSERT(0);
		return;
	}

	xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
	xfs_perag_put(pag);
}

/*
 * xfs_inactive
 *
 * This is called when the vnode reference count for the vnode
 * goes to zero.  If the file has been unlinked, then it must
 * now be truncated.  Also, we clear all of the read-ahead state
 * kept for the inode here since the file is now closed.
 */
int
xfs_inactive(
	xfs_inode_t	*ip)
{
	struct xfs_mount	*mp;
	int			error = 0;
	int			truncate = 0;

	/*
	 * If the inode is already free, then there can be nothing
	 * to clean up here.
	 */
	if (VFS_I(ip)->i_mode == 0) {
		ASSERT(ip->i_df.if_broot_bytes == 0);
		goto out;
	}

	mp = ip->i_mount;
	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));

	xfs_inactive_health(ip);

	/*
	 * If this is a read-only mount, don't do this (would generate I/O)
	 * unless we're in log recovery and cleaning the iunlinked list.
	 */
	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
		goto out;

	/* Metadata inodes require explicit resource cleanup. */
	if (xfs_is_metadata_inode(ip))
		goto out;

	/* Try to clean out the cow blocks if there are any. */
	if (xfs_inode_has_cow_data(ip))
		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);

	if (VFS_I(ip)->i_nlink != 0) {
		/*
		 * Note: don't bother with iolock here since lockdep complains
		 * about acquiring it in reclaim context. We have the only
		 * reference to the inode at this point anyways.
		 */
		if (xfs_can_free_eofblocks(ip))
			error = xfs_free_eofblocks(ip);

		goto out;
	}

	if (S_ISREG(VFS_I(ip)->i_mode) &&
	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
		truncate = 1;

	if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
		/*
		 * If this inode is being inactivated during a quotacheck and
		 * has not yet been scanned by quotacheck, we /must/ remove
		 * the dquots from the inode before inactivation changes the
		 * block and inode counts.  Most probably this is a result of
		 * reloading the incore iunlinked list to purge unrecovered
		 * unlinked inodes.
		 */
		xfs_qm_dqdetach(ip);
	} else {
		error = xfs_qm_dqattach(ip);
		if (error)
			goto out;
	}

	if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) {
		xfs_inactive_dir(ip);
		truncate = 1;
	}

	if (S_ISLNK(VFS_I(ip)->i_mode))
		error = xfs_inactive_symlink(ip);
	else if (truncate)
		error = xfs_inactive_truncate(ip);
	if (error)
		goto out;

	/*
	 * If there are attributes associated with the file then blow them away
	 * now.  The code calls a routine that recursively deconstructs the
	 * attribute fork. If also blows away the in-core attribute fork.
	 */
	if (xfs_inode_has_attr_fork(ip)) {
		error = xfs_attr_inactive(ip);
		if (error)
			goto out;
	}

	ASSERT(ip->i_forkoff == 0);

	/*
	 * Free the inode.
	 */
	error = xfs_inactive_ifree(ip);

out:
	/*
	 * We're done making metadata updates for this inode, so we can release
	 * the attached dquots.
	 */
	xfs_qm_dqdetach(ip);
	return error;
}

/*
 * Find an inode on the unlinked list. This does not take references to the
 * inode as we have existence guarantees by holding the AGI buffer lock and that
 * only unlinked, referenced inodes can be on the unlinked inode list.  If we
 * don't find the inode in cache, then let the caller handle the situation.
 */
struct xfs_inode *
xfs_iunlink_lookup(
	struct xfs_perag	*pag,
	xfs_agino_t		agino)
{
	struct xfs_inode	*ip;

	rcu_read_lock();
	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
	if (!ip) {
		/* Caller can handle inode not being in memory. */
		rcu_read_unlock();
		return NULL;
	}

	/*
	 * Inode in RCU freeing limbo should not happen.  Warn about this and
	 * let the caller handle the failure.
	 */
	if (WARN_ON_ONCE(!ip->i_ino)) {
		rcu_read_unlock();
		return NULL;
	}
	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
	rcu_read_unlock();
	return ip;
}

/*
 * Load the inode @next_agino into the cache and set its prev_unlinked pointer
 * to @prev_agino.  Caller must hold the AGI to synchronize with other changes
 * to the unlinked list.
 */
int
xfs_iunlink_reload_next(
	struct xfs_trans	*tp,
	struct xfs_buf		*agibp,
	xfs_agino_t		prev_agino,
	xfs_agino_t		next_agino)
{
	struct xfs_perag	*pag = agibp->b_pag;
	struct xfs_mount	*mp = pag->pag_mount;
	struct xfs_inode	*next_ip = NULL;
	xfs_ino_t		ino;
	int			error;

	ASSERT(next_agino != NULLAGINO);

#ifdef DEBUG
	rcu_read_lock();
	next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
	ASSERT(next_ip == NULL);
	rcu_read_unlock();
#endif

	xfs_info_ratelimited(mp,
 "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.",
			next_agino, pag->pag_agno);

	/*
	 * Use an untrusted lookup just to be cautious in case the AGI has been
	 * corrupted and now points at a free inode.  That shouldn't happen,
	 * but we'd rather shut down now since we're already running in a weird
	 * situation.
	 */
	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino);
	error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip);
	if (error) {
		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
		return error;
	}

	/* If this is not an unlinked inode, something is very wrong. */
	if (VFS_I(next_ip)->i_nlink != 0) {
		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
		error = -EFSCORRUPTED;
		goto rele;
	}

	next_ip->i_prev_unlinked = prev_agino;
	trace_xfs_iunlink_reload_next(next_ip);
rele:
	ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
	if (xfs_is_quotacheck_running(mp) && next_ip)
		xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
	xfs_irele(next_ip);
	return error;
}

/*
 * Look up the inode number specified and if it is not already marked XFS_ISTALE
 * mark it stale. We should only find clean inodes in this lookup that aren't
 * already stale.
 */
static void
xfs_ifree_mark_inode_stale(
	struct xfs_perag	*pag,
	struct xfs_inode	*free_ip,
	xfs_ino_t		inum)
{
	struct xfs_mount	*mp = pag->pag_mount;
	struct xfs_inode_log_item *iip;
	struct xfs_inode	*ip;

retry:
	rcu_read_lock();
	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));

	/* Inode not in memory, nothing to do */
	if (!ip) {
		rcu_read_unlock();
		return;
	}

	/*
	 * because this is an RCU protected lookup, we could find a recently
	 * freed or even reallocated inode during the lookup. We need to check
	 * under the i_flags_lock for a valid inode here. Skip it if it is not
	 * valid, the wrong inode or stale.
	 */
	spin_lock(&ip->i_flags_lock);
	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
		goto out_iflags_unlock;

	/*
	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
	 * other inodes that we did not find in the list attached to the buffer
	 * and are not already marked stale. If we can't lock it, back off and
	 * retry.
	 */
	if (ip != free_ip) {
		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
			spin_unlock(&ip->i_flags_lock);
			rcu_read_unlock();
			delay(1);
			goto retry;
		}
	}
	ip->i_flags |= XFS_ISTALE;

	/*
	 * If the inode is flushing, it is already attached to the buffer.  All
	 * we needed to do here is mark the inode stale so buffer IO completion
	 * will remove it from the AIL.
	 */
	iip = ip->i_itemp;
	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
		ASSERT(iip->ili_last_fields);
		goto out_iunlock;
	}

	/*
	 * Inodes not attached to the buffer can be released immediately.
	 * Everything else has to go through xfs_iflush_abort() on journal
	 * commit as the flock synchronises removal of the inode from the
	 * cluster buffer against inode reclaim.
	 */
	if (!iip || list_empty(&iip->ili_item.li_bio_list))
		goto out_iunlock;

	__xfs_iflags_set(ip, XFS_IFLUSHING);
	spin_unlock(&ip->i_flags_lock);
	rcu_read_unlock();

	/* we have a dirty inode in memory that has not yet been flushed. */
	spin_lock(&iip->ili_lock);
	iip->ili_last_fields = iip->ili_fields;
	iip->ili_fields = 0;
	iip->ili_fsync_fields = 0;
	spin_unlock(&iip->ili_lock);
	ASSERT(iip->ili_last_fields);

	if (ip != free_ip)
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return;

out_iunlock:
	if (ip != free_ip)
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
out_iflags_unlock:
	spin_unlock(&ip->i_flags_lock);
	rcu_read_unlock();
}

/*
 * A big issue when freeing the inode cluster is that we _cannot_ skip any
 * inodes that are in memory - they all must be marked stale and attached to
 * the cluster buffer.
 */
static int
xfs_ifree_cluster(
	struct xfs_trans	*tp,
	struct xfs_perag	*pag,
	struct xfs_inode	*free_ip,
	struct xfs_icluster	*xic)
{
	struct xfs_mount	*mp = free_ip->i_mount;
	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
	struct xfs_buf		*bp;
	xfs_daddr_t		blkno;
	xfs_ino_t		inum = xic->first_ino;
	int			nbufs;
	int			i, j;
	int			ioffset;
	int			error;

	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;

	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
		/*
		 * The allocation bitmap tells us which inodes of the chunk were
		 * physically allocated. Skip the cluster if an inode falls into
		 * a sparse region.
		 */
		ioffset = inum - xic->first_ino;
		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
			continue;
		}

		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
					 XFS_INO_TO_AGBNO(mp, inum));

		/*
		 * We obtain and lock the backing buffer first in the process
		 * here to ensure dirty inodes attached to the buffer remain in
		 * the flushing state while we mark them stale.
		 *
		 * If we scan the in-memory inodes first, then buffer IO can
		 * complete before we get a lock on it, and hence we may fail
		 * to mark all the active inodes on the buffer stale.
		 */
		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
				mp->m_bsize * igeo->blocks_per_cluster,
				XBF_UNMAPPED, &bp);
		if (error)
			return error;

		/*
		 * This buffer may not have been correctly initialised as we
		 * didn't read it from disk. That's not important because we are
		 * only using to mark the buffer as stale in the log, and to
		 * attach stale cached inodes on it.
		 *
		 * For the inode that triggered the cluster freeing, this
		 * attachment may occur in xfs_inode_item_precommit() after we
		 * have marked this buffer stale.  If this buffer was not in
		 * memory before xfs_ifree_cluster() started, it will not be
		 * marked XBF_DONE and this will cause problems later in
		 * xfs_inode_item_precommit() when we trip over a (stale, !done)
		 * buffer to attached to the transaction.
		 *
		 * Hence we have to mark the buffer as XFS_DONE here. This is
		 * safe because we are also marking the buffer as XBF_STALE and
		 * XFS_BLI_STALE. That means it will never be dispatched for
		 * IO and it won't be unlocked until the cluster freeing has
		 * been committed to the journal and the buffer unpinned. If it
		 * is written, we want to know about it, and we want it to
		 * fail. We can acheive this by adding a write verifier to the
		 * buffer.
		 */
		bp->b_flags |= XBF_DONE;
		bp->b_ops = &xfs_inode_buf_ops;

		/*
		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
		 * too. This requires lookups, and will skip inodes that we've
		 * already marked XFS_ISTALE.
		 */
		for (i = 0; i < igeo->inodes_per_cluster; i++)
			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);

		xfs_trans_stale_inode_buf(tp, bp);
		xfs_trans_binval(tp, bp);
	}
	return 0;
}

/*
 * This is called to return an inode to the inode free list.  The inode should
 * already be truncated to 0 length and have no pages associated with it.  This
 * routine also assumes that the inode is already a part of the transaction.
 *
 * The on-disk copy of the inode will have been added to the list of unlinked
 * inodes in the AGI. We need to remove the inode from that list atomically with
 * respect to freeing it here.
 */
int
xfs_ifree(
	struct xfs_trans	*tp,
	struct xfs_inode	*ip)
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_perag	*pag;
	struct xfs_icluster	xic = { 0 };
	struct xfs_inode_log_item *iip = ip->i_itemp;
	int			error;

	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
	ASSERT(VFS_I(ip)->i_nlink == 0);
	ASSERT(ip->i_df.if_nextents == 0);
	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
	ASSERT(ip->i_nblocks == 0);

	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));

	error = xfs_inode_uninit(tp, pag, ip, &xic);
	if (error)
		goto out;

	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);

	/* Don't attempt to replay owner changes for a deleted inode */
	spin_lock(&iip->ili_lock);
	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
	spin_unlock(&iip->ili_lock);

	if (xic.deleted)
		error = xfs_ifree_cluster(tp, pag, ip, &xic);
out:
	xfs_perag_put(pag);
	return error;
}

/*
 * This is called to unpin an inode.  The caller must have the inode locked
 * in at least shared mode so that the buffer cannot be subsequently pinned
 * once someone is waiting for it to be unpinned.
 */
static void
xfs_iunpin(
	struct xfs_inode	*ip)
{
	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);

	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);

	/* Give the log a push to start the unpinning I/O */
	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);

}

static void
__xfs_iunpin_wait(
	struct xfs_inode	*ip)
{
	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);

	xfs_iunpin(ip);

	do {
		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
		if (xfs_ipincount(ip))
			io_schedule();
	} while (xfs_ipincount(ip));
	finish_wait(wq, &wait.wq_entry);
}

void
xfs_iunpin_wait(
	struct xfs_inode	*ip)
{
	if (xfs_ipincount(ip))
		__xfs_iunpin_wait(ip);
}

/*
 * Removing an inode from the namespace involves removing the directory entry
 * and dropping the link count on the inode. Removing the directory entry can
 * result in locking an AGF (directory blocks were freed) and removing a link
 * count can result in placing the inode on an unlinked list which results in
 * locking an AGI.
 *
 * The big problem here is that we have an ordering constraint on AGF and AGI
 * locking - inode allocation locks the AGI, then can allocate a new extent for
 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
 * removes the inode from the unlinked list, requiring that we lock the AGI
 * first, and then freeing the inode can result in an inode chunk being freed
 * and hence freeing disk space requiring that we lock an AGF.
 *
 * Hence the ordering that is imposed by other parts of the code is AGI before
 * AGF. This means we cannot remove the directory entry before we drop the inode
 * reference count and put it on the unlinked list as this results in a lock
 * order of AGF then AGI, and this can deadlock against inode allocation and
 * freeing. Therefore we must drop the link counts before we remove the
 * directory entry.
 *
 * This is still safe from a transactional point of view - it is not until we
 * get to xfs_defer_finish() that we have the possibility of multiple
 * transactions in this operation. Hence as long as we remove the directory
 * entry and drop the link count in the first transaction of the remove
 * operation, there are no transactional constraints on the ordering here.
 */
int
xfs_remove(
	struct xfs_inode	*dp,
	struct xfs_name		*name,
	struct xfs_inode	*ip)
{
	struct xfs_dir_update	du = {
		.dp		= dp,
		.name		= name,
		.ip		= ip,
	};
	struct xfs_mount	*mp = dp->i_mount;
	struct xfs_trans	*tp = NULL;
	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
	int			dontcare;
	int                     error = 0;
	uint			resblks;

	trace_xfs_remove(dp, name);

	if (xfs_is_shutdown(mp))
		return -EIO;
	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
		return -EIO;

	error = xfs_qm_dqattach(dp);
	if (error)
		goto std_return;

	error = xfs_qm_dqattach(ip);
	if (error)
		goto std_return;

	error = xfs_parent_start(mp, &du.ppargs);
	if (error)
		goto std_return;

	/*
	 * We try to get the real space reservation first, allowing for
	 * directory btree deletion(s) implying possible bmap insert(s).  If we
	 * can't get the space reservation then we use 0 instead, and avoid the
	 * bmap btree insert(s) in the directory code by, if the bmap insert
	 * tries to happen, instead trimming the LAST block from the directory.
	 *
	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
	 * the directory code can handle a reservationless update and we don't
	 * want to prevent a user from trying to free space by deleting things.
	 */
	resblks = xfs_remove_space_res(mp, name->len);
	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
			&tp, &dontcare);
	if (error) {
		ASSERT(error != -ENOSPC);
		goto out_parent;
	}

	error = xfs_dir_remove_child(tp, resblks, &du);
	if (error)
		goto out_trans_cancel;

	/*
	 * If this is a synchronous mount, make sure that the
	 * remove transaction goes to disk before returning to
	 * the user.
	 */
	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
		xfs_trans_set_sync(tp);

	error = xfs_trans_commit(tp);
	if (error)
		goto out_unlock;

	if (is_dir && xfs_inode_is_filestream(ip))
		xfs_filestream_deassociate(ip);

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	xfs_iunlock(dp, XFS_ILOCK_EXCL);
	xfs_parent_finish(mp, du.ppargs);
	return 0;

 out_trans_cancel:
	xfs_trans_cancel(tp);
 out_unlock:
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	xfs_iunlock(dp, XFS_ILOCK_EXCL);
 out_parent:
	xfs_parent_finish(mp, du.ppargs);
 std_return:
	return error;
}

static inline void
xfs_iunlock_rename(
	struct xfs_inode	**i_tab,
	int			num_inodes)
{
	int			i;

	for (i = num_inodes - 1; i >= 0; i--) {
		/* Skip duplicate inodes if src and target dps are the same */
		if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1]))
			continue;
		xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL);
	}
}

/*
 * Enter all inodes for a rename transaction into a sorted array.
 */
#define __XFS_SORT_INODES	5
STATIC void
xfs_sort_for_rename(
	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
	struct xfs_inode	*ip1,	/* in: inode of old entry */
	struct xfs_inode	*ip2,	/* in: inode of new entry */
	struct xfs_inode	*wip,	/* in: whiteout inode */
	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
	int			*num_inodes)  /* in/out: inodes in array */
{
	int			i;

	ASSERT(*num_inodes == __XFS_SORT_INODES);
	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));

	/*
	 * i_tab contains a list of pointers to inodes.  We initialize
	 * the table here & we'll sort it.  We will then use it to
	 * order the acquisition of the inode locks.
	 *
	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
	 */
	i = 0;
	i_tab[i++] = dp1;
	i_tab[i++] = dp2;
	i_tab[i++] = ip1;
	if (ip2)
		i_tab[i++] = ip2;
	if (wip)
		i_tab[i++] = wip;
	*num_inodes = i;

	xfs_sort_inodes(i_tab, *num_inodes);
}

void
xfs_sort_inodes(
	struct xfs_inode	**i_tab,
	unsigned int		num_inodes)
{
	int			i, j;

	ASSERT(num_inodes <= __XFS_SORT_INODES);

	/*
	 * Sort the elements via bubble sort.  (Remember, there are at
	 * most 5 elements to sort, so this is adequate.)
	 */
	for (i = 0; i < num_inodes; i++) {
		for (j = 1; j < num_inodes; j++) {
			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino)
				swap(i_tab[j], i_tab[j - 1]);
		}
	}
}

/*
 * xfs_rename_alloc_whiteout()
 *
 * Return a referenced, unlinked, unlocked inode that can be used as a
 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
 * crash between allocating the inode and linking it into the rename transaction
 * recovery will free the inode and we won't leak it.
 */
static int
xfs_rename_alloc_whiteout(
	struct mnt_idmap	*idmap,
	struct xfs_name		*src_name,
	struct xfs_inode	*dp,
	struct xfs_inode	**wip)
{
	struct xfs_icreate_args	args = {
		.idmap		= idmap,
		.pip		= dp,
		.mode		= S_IFCHR | WHITEOUT_MODE,
		.flags		= XFS_ICREATE_TMPFILE,
	};
	struct xfs_inode	*tmpfile;
	struct qstr		name;
	int			error;

	error = xfs_create_tmpfile(&args, &tmpfile);
	if (error)
		return error;

	name.name = src_name->name;
	name.len = src_name->len;
	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
	if (error) {
		xfs_finish_inode_setup(tmpfile);
		xfs_irele(tmpfile);
		return error;
	}

	/*
	 * Prepare the tmpfile inode as if it were created through the VFS.
	 * Complete the inode setup and flag it as linkable.  nlink is already
	 * zero, so we can skip the drop_nlink.
	 */
	xfs_setup_iops(tmpfile);
	xfs_finish_inode_setup(tmpfile);
	VFS_I(tmpfile)->i_state |= I_LINKABLE;

	*wip = tmpfile;
	return 0;
}

/*
 * xfs_rename
 */
int
xfs_rename(
	struct mnt_idmap	*idmap,
	struct xfs_inode	*src_dp,
	struct xfs_name		*src_name,
	struct xfs_inode	*src_ip,
	struct xfs_inode	*target_dp,
	struct xfs_name		*target_name,
	struct xfs_inode	*target_ip,
	unsigned int		flags)
{
	struct xfs_dir_update	du_src = {
		.dp		= src_dp,
		.name		= src_name,
		.ip		= src_ip,
	};
	struct xfs_dir_update	du_tgt = {
		.dp		= target_dp,
		.name		= target_name,
		.ip		= target_ip,
	};
	struct xfs_dir_update	du_wip = { };
	struct xfs_mount	*mp = src_dp->i_mount;
	struct xfs_trans	*tp;
	struct xfs_inode	*inodes[__XFS_SORT_INODES];
	int			i;
	int			num_inodes = __XFS_SORT_INODES;
	bool			new_parent = (src_dp != target_dp);
	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
	int			spaceres;
	bool			retried = false;
	int			error, nospace_error = 0;

	trace_xfs_rename(src_dp, target_dp, src_name, target_name);

	if ((flags & RENAME_EXCHANGE) && !target_ip)
		return -EINVAL;

	/*
	 * If we are doing a whiteout operation, allocate the whiteout inode
	 * we will be placing at the target and ensure the type is set
	 * appropriately.
	 */
	if (flags & RENAME_WHITEOUT) {
		error = xfs_rename_alloc_whiteout(idmap, src_name, target_dp,
				&du_wip.ip);
		if (error)
			return error;

		/* setup target dirent info as whiteout */
		src_name->type = XFS_DIR3_FT_CHRDEV;
	}

	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, du_wip.ip,
			inodes, &num_inodes);

	error = xfs_parent_start(mp, &du_src.ppargs);
	if (error)
		goto out_release_wip;

	if (du_wip.ip) {
		error = xfs_parent_start(mp, &du_wip.ppargs);
		if (error)
			goto out_src_ppargs;
	}

	if (target_ip) {
		error = xfs_parent_start(mp, &du_tgt.ppargs);
		if (error)
			goto out_wip_ppargs;
	}

retry:
	nospace_error = 0;
	spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL,
			target_name->len, du_wip.ip != NULL);
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
	if (error == -ENOSPC) {
		nospace_error = error;
		spaceres = 0;
		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
				&tp);
	}
	if (error)
		goto out_tgt_ppargs;

	/*
	 * We don't allow reservationless renaming when parent pointers are
	 * enabled because we can't back out if the xattrs must grow.
	 */
	if (du_src.ppargs && nospace_error) {
		error = nospace_error;
		xfs_trans_cancel(tp);
		goto out_tgt_ppargs;
	}

	/*
	 * Attach the dquots to the inodes
	 */
	error = xfs_qm_vop_rename_dqattach(inodes);
	if (error) {
		xfs_trans_cancel(tp);
		goto out_tgt_ppargs;
	}

	/*
	 * Lock all the participating inodes. Depending upon whether
	 * the target_name exists in the target directory, and
	 * whether the target directory is the same as the source
	 * directory, we can lock from 2 to 5 inodes.
	 */
	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);

	/*
	 * Join all the inodes to the transaction.
	 */
	xfs_trans_ijoin(tp, src_dp, 0);
	if (new_parent)
		xfs_trans_ijoin(tp, target_dp, 0);
	xfs_trans_ijoin(tp, src_ip, 0);
	if (target_ip)
		xfs_trans_ijoin(tp, target_ip, 0);
	if (du_wip.ip)
		xfs_trans_ijoin(tp, du_wip.ip, 0);

	/*
	 * If we are using project inheritance, we only allow renames
	 * into our tree when the project IDs are the same; else the
	 * tree quota mechanism would be circumvented.
	 */
	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
		     target_dp->i_projid != src_ip->i_projid)) {
		error = -EXDEV;
		goto out_trans_cancel;
	}

	/* RENAME_EXCHANGE is unique from here on. */
	if (flags & RENAME_EXCHANGE) {
		error = xfs_dir_exchange_children(tp, &du_src, &du_tgt,
				spaceres);
		if (error)
			goto out_trans_cancel;
		goto out_commit;
	}

	/*
	 * Try to reserve quota to handle an expansion of the target directory.
	 * We'll allow the rename to continue in reservationless mode if we hit
	 * a space usage constraint.  If we trigger reservationless mode, save
	 * the errno if there isn't any free space in the target directory.
	 */
	if (spaceres != 0) {
		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
				0, false);
		if (error == -EDQUOT || error == -ENOSPC) {
			if (!retried) {
				xfs_trans_cancel(tp);
				xfs_iunlock_rename(inodes, num_inodes);
				xfs_blockgc_free_quota(target_dp, 0);
				retried = true;
				goto retry;
			}

			nospace_error = error;
			spaceres = 0;
			error = 0;
		}
		if (error)
			goto out_trans_cancel;
	}

	/*
	 * We don't allow quotaless renaming when parent pointers are enabled
	 * because we can't back out if the xattrs must grow.
	 */
	if (du_src.ppargs && nospace_error) {
		error = nospace_error;
		goto out_trans_cancel;
	}

	/*
	 * Lock the AGI buffers we need to handle bumping the nlink of the
	 * whiteout inode off the unlinked list and to handle dropping the
	 * nlink of the target inode.  Per locking order rules, do this in
	 * increasing AG order and before directory block allocation tries to
	 * grab AGFs because we grab AGIs before AGFs.
	 *
	 * The (vfs) caller must ensure that if src is a directory then
	 * target_ip is either null or an empty directory.
	 */
	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
		if (inodes[i] == du_wip.ip ||
		    (inodes[i] == target_ip &&
		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
			struct xfs_perag	*pag;
			struct xfs_buf		*bp;

			pag = xfs_perag_get(mp,
					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
			error = xfs_read_agi(pag, tp, 0, &bp);
			xfs_perag_put(pag);
			if (error)
				goto out_trans_cancel;
		}
	}

	error = xfs_dir_rename_children(tp, &du_src, &du_tgt, spaceres,
			&du_wip);
	if (error)
		goto out_trans_cancel;

	if (du_wip.ip) {
		/*
		 * Now we have a real link, clear the "I'm a tmpfile" state
		 * flag from the inode so it doesn't accidentally get misused in
		 * future.
		 */
		VFS_I(du_wip.ip)->i_state &= ~I_LINKABLE;
	}

out_commit:
	/*
	 * If this is a synchronous mount, make sure that the rename
	 * transaction goes to disk before returning to the user.
	 */
	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
		xfs_trans_set_sync(tp);

	error = xfs_trans_commit(tp);
	nospace_error = 0;
	goto out_unlock;

out_trans_cancel:
	xfs_trans_cancel(tp);
out_unlock:
	xfs_iunlock_rename(inodes, num_inodes);
out_tgt_ppargs:
	xfs_parent_finish(mp, du_tgt.ppargs);
out_wip_ppargs:
	xfs_parent_finish(mp, du_wip.ppargs);
out_src_ppargs:
	xfs_parent_finish(mp, du_src.ppargs);
out_release_wip:
	if (du_wip.ip)
		xfs_irele(du_wip.ip);
	if (error == -ENOSPC && nospace_error)
		error = nospace_error;
	return error;
}

static int
xfs_iflush(
	struct xfs_inode	*ip,
	struct xfs_buf		*bp)
{
	struct xfs_inode_log_item *iip = ip->i_itemp;
	struct xfs_dinode	*dip;
	struct xfs_mount	*mp = ip->i_mount;
	int			error;

	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
	ASSERT(iip->ili_item.li_buf == bp);

	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);

	/*
	 * We don't flush the inode if any of the following checks fail, but we
	 * do still update the log item and attach to the backing buffer as if
	 * the flush happened. This is a formality to facilitate predictable
	 * error handling as the caller will shutdown and fail the buffer.
	 */
	error = -EFSCORRUPTED;
	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
			       mp, XFS_ERRTAG_IFLUSH_1)) {
		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
		goto flush_out;
	}
	if (S_ISREG(VFS_I(ip)->i_mode)) {
		if (XFS_TEST_ERROR(
		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
		    mp, XFS_ERRTAG_IFLUSH_3)) {
			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
				"%s: Bad regular inode %llu, ptr "PTR_FMT,
				__func__, ip->i_ino, ip);
			goto flush_out;
		}
	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
		if (XFS_TEST_ERROR(
		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
		    mp, XFS_ERRTAG_IFLUSH_4)) {
			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
				"%s: Bad directory inode %llu, ptr "PTR_FMT,
				__func__, ip->i_ino, ip);
			goto flush_out;
		}
	}
	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
			"%s: detected corrupt incore inode %llu, "
			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
			__func__, ip->i_ino,
			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
			ip->i_nblocks, ip);
		goto flush_out;
	}
	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
				mp, XFS_ERRTAG_IFLUSH_6)) {
		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
			__func__, ip->i_ino, ip->i_forkoff, ip);
		goto flush_out;
	}

	/*
	 * Inode item log recovery for v2 inodes are dependent on the flushiter
	 * count for correct sequencing.  We bump the flush iteration count so
	 * we can detect flushes which postdate a log record during recovery.
	 * This is redundant as we now log every change and hence this can't
	 * happen but we need to still do it to ensure backwards compatibility
	 * with old kernels that predate logging all inode changes.
	 */
	if (!xfs_has_v3inodes(mp))
		ip->i_flushiter++;

	/*
	 * If there are inline format data / attr forks attached to this inode,
	 * make sure they are not corrupt.
	 */
	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
	    xfs_ifork_verify_local_data(ip))
		goto flush_out;
	if (xfs_inode_has_attr_fork(ip) &&
	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
	    xfs_ifork_verify_local_attr(ip))
		goto flush_out;

	/*
	 * Copy the dirty parts of the inode into the on-disk inode.  We always
	 * copy out the core of the inode, because if the inode is dirty at all
	 * the core must be.
	 */
	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);

	/* Wrap, we never let the log put out DI_MAX_FLUSH */
	if (!xfs_has_v3inodes(mp)) {
		if (ip->i_flushiter == DI_MAX_FLUSH)
			ip->i_flushiter = 0;
	}

	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
	if (xfs_inode_has_attr_fork(ip))
		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);

	/*
	 * We've recorded everything logged in the inode, so we'd like to clear
	 * the ili_fields bits so we don't log and flush things unnecessarily.
	 * However, we can't stop logging all this information until the data
	 * we've copied into the disk buffer is written to disk.  If we did we
	 * might overwrite the copy of the inode in the log with all the data
	 * after re-logging only part of it, and in the face of a crash we
	 * wouldn't have all the data we need to recover.
	 *
	 * What we do is move the bits to the ili_last_fields field.  When
	 * logging the inode, these bits are moved back to the ili_fields field.
	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
	 * we know that the information those bits represent is permanently on
	 * disk.  As long as the flush completes before the inode is logged
	 * again, then both ili_fields and ili_last_fields will be cleared.
	 */
	error = 0;
flush_out:
	spin_lock(&iip->ili_lock);
	iip->ili_last_fields = iip->ili_fields;
	iip->ili_fields = 0;
	iip->ili_fsync_fields = 0;
	set_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags);
	spin_unlock(&iip->ili_lock);

	/*
	 * Store the current LSN of the inode so that we can tell whether the
	 * item has moved in the AIL from xfs_buf_inode_iodone().
	 */
	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
				&iip->ili_item.li_lsn);

	/* generate the checksum. */
	xfs_dinode_calc_crc(mp, dip);
	if (error)
		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
	return error;
}

/*
 * Non-blocking flush of dirty inode metadata into the backing buffer.
 *
 * The caller must have a reference to the inode and hold the cluster buffer
 * locked. The function will walk across all the inodes on the cluster buffer it
 * can find and lock without blocking, and flush them to the cluster buffer.
 *
 * On successful flushing of at least one inode, the caller must write out the
 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
 * the caller needs to release the buffer. On failure, the filesystem will be
 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
 * will be returned.
 */
int
xfs_iflush_cluster(
	struct xfs_buf		*bp)
{
	struct xfs_mount	*mp = bp->b_mount;
	struct xfs_log_item	*lip, *n;
	struct xfs_inode	*ip;
	struct xfs_inode_log_item *iip;
	int			clcount = 0;
	int			error = 0;

	/*
	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
	 * will remove itself from the list.
	 */
	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
		iip = (struct xfs_inode_log_item *)lip;
		ip = iip->ili_inode;

		/*
		 * Quick and dirty check to avoid locks if possible.
		 */
		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
			continue;
		if (xfs_ipincount(ip))
			continue;

		/*
		 * The inode is still attached to the buffer, which means it is
		 * dirty but reclaim might try to grab it. Check carefully for
		 * that, and grab the ilock while still holding the i_flags_lock
		 * to guarantee reclaim will not be able to reclaim this inode
		 * once we drop the i_flags_lock.
		 */
		spin_lock(&ip->i_flags_lock);
		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
			spin_unlock(&ip->i_flags_lock);
			continue;
		}

		/*
		 * ILOCK will pin the inode against reclaim and prevent
		 * concurrent transactions modifying the inode while we are
		 * flushing the inode. If we get the lock, set the flushing
		 * state before we drop the i_flags_lock.
		 */
		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
			spin_unlock(&ip->i_flags_lock);
			continue;
		}
		__xfs_iflags_set(ip, XFS_IFLUSHING);
		spin_unlock(&ip->i_flags_lock);

		/*
		 * Abort flushing this inode if we are shut down because the
		 * inode may not currently be in the AIL. This can occur when
		 * log I/O failure unpins the inode without inserting into the
		 * AIL, leaving a dirty/unpinned inode attached to the buffer
		 * that otherwise looks like it should be flushed.
		 */
		if (xlog_is_shutdown(mp->m_log)) {
			xfs_iunpin_wait(ip);
			xfs_iflush_abort(ip);
			xfs_iunlock(ip, XFS_ILOCK_SHARED);
			error = -EIO;
			continue;
		}

		/* don't block waiting on a log force to unpin dirty inodes */
		if (xfs_ipincount(ip)) {
			xfs_iflags_clear(ip, XFS_IFLUSHING);
			xfs_iunlock(ip, XFS_ILOCK_SHARED);
			continue;
		}

		if (!xfs_inode_clean(ip))
			error = xfs_iflush(ip, bp);
		else
			xfs_iflags_clear(ip, XFS_IFLUSHING);
		xfs_iunlock(ip, XFS_ILOCK_SHARED);
		if (error)
			break;
		clcount++;
	}

	if (error) {
		/*
		 * Shutdown first so we kill the log before we release this
		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
		 * of the log, failing it before the _log_ is shut down can
		 * result in the log tail being moved forward in the journal
		 * on disk because log writes can still be taking place. Hence
		 * unpinning the tail will allow the ICREATE intent to be
		 * removed from the log an recovery will fail with uninitialised
		 * inode cluster buffers.
		 */
		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
		bp->b_flags |= XBF_ASYNC;
		xfs_buf_ioend_fail(bp);
		return error;
	}

	if (!clcount)
		return -EAGAIN;

	XFS_STATS_INC(mp, xs_icluster_flushcnt);
	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
	return 0;

}

/* Release an inode. */
void
xfs_irele(
	struct xfs_inode	*ip)
{
	trace_xfs_irele(ip, _RET_IP_);
	iput(VFS_I(ip));
}

/*
 * Ensure all commited transactions touching the inode are written to the log.
 */
int
xfs_log_force_inode(
	struct xfs_inode	*ip)
{
	xfs_csn_t		seq = 0;

	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_ipincount(ip))
		seq = ip->i_itemp->ili_commit_seq;
	xfs_iunlock(ip, XFS_ILOCK_SHARED);

	if (!seq)
		return 0;
	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
}

/*
 * Grab the exclusive iolock for a data copy from src to dest, making sure to
 * abide vfs locking order (lowest pointer value goes first) and breaking the
 * layout leases before proceeding.  The loop is needed because we cannot call
 * the blocking break_layout() with the iolocks held, and therefore have to
 * back out both locks.
 */
static int
xfs_iolock_two_inodes_and_break_layout(
	struct inode		*src,
	struct inode		*dest)
{
	int			error;

	if (src > dest)
		swap(src, dest);

retry:
	/* Wait to break both inodes' layouts before we start locking. */
	error = break_layout(src, true);
	if (error)
		return error;
	if (src != dest) {
		error = break_layout(dest, true);
		if (error)
			return error;
	}

	/* Lock one inode and make sure nobody got in and leased it. */
	inode_lock(src);
	error = break_layout(src, false);
	if (error) {
		inode_unlock(src);
		if (error == -EWOULDBLOCK)
			goto retry;
		return error;
	}

	if (src == dest)
		return 0;

	/* Lock the other inode and make sure nobody got in and leased it. */
	inode_lock_nested(dest, I_MUTEX_NONDIR2);
	error = break_layout(dest, false);
	if (error) {
		inode_unlock(src);
		inode_unlock(dest);
		if (error == -EWOULDBLOCK)
			goto retry;
		return error;
	}

	return 0;
}

static int
xfs_mmaplock_two_inodes_and_break_dax_layout(
	struct xfs_inode	*ip1,
	struct xfs_inode	*ip2)
{
	int			error;
	bool			retry;
	struct page		*page;

	if (ip1->i_ino > ip2->i_ino)
		swap(ip1, ip2);

again:
	retry = false;
	/* Lock the first inode */
	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
	if (error || retry) {
		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
		if (error == 0 && retry)
			goto again;
		return error;
	}

	if (ip1 == ip2)
		return 0;

	/* Nested lock the second inode */
	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
	/*
	 * We cannot use xfs_break_dax_layouts() directly here because it may
	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
	 * for this nested lock case.
	 */
	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
	if (page && page_ref_count(page) != 1) {
		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
		goto again;
	}

	return 0;
}

/*
 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
 * mmap activity.
 */
int
xfs_ilock2_io_mmap(
	struct xfs_inode	*ip1,
	struct xfs_inode	*ip2)
{
	int			ret;

	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
	if (ret)
		return ret;

	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
		if (ret) {
			inode_unlock(VFS_I(ip2));
			if (ip1 != ip2)
				inode_unlock(VFS_I(ip1));
			return ret;
		}
	} else
		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
					    VFS_I(ip2)->i_mapping);

	return 0;
}

/* Unlock both inodes to allow IO and mmap activity. */
void
xfs_iunlock2_io_mmap(
	struct xfs_inode	*ip1,
	struct xfs_inode	*ip2)
{
	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
		if (ip1 != ip2)
			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
	} else
		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
					      VFS_I(ip2)->i_mapping);

	inode_unlock(VFS_I(ip2));
	if (ip1 != ip2)
		inode_unlock(VFS_I(ip1));
}

/* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
void
xfs_iunlock2_remapping(
	struct xfs_inode	*ip1,
	struct xfs_inode	*ip2)
{
	xfs_iflags_clear(ip1, XFS_IREMAPPING);

	if (ip1 != ip2)
		xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);

	if (ip1 != ip2)
		inode_unlock_shared(VFS_I(ip1));
	inode_unlock(VFS_I(ip2));
}

/*
 * Reload the incore inode list for this inode.  Caller should ensure that
 * the link count cannot change, either by taking ILOCK_SHARED or otherwise
 * preventing other threads from executing.
 */
int
xfs_inode_reload_unlinked_bucket(
	struct xfs_trans	*tp,
	struct xfs_inode	*ip)
{
	struct xfs_mount	*mp = tp->t_mountp;
	struct xfs_buf		*agibp;
	struct xfs_agi		*agi;
	struct xfs_perag	*pag;
	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
	xfs_agino_t		prev_agino, next_agino;
	unsigned int		bucket;
	bool			foundit = false;
	int			error;

	/* Grab the first inode in the list */
	pag = xfs_perag_get(mp, agno);
	error = xfs_ialloc_read_agi(pag, tp, 0, &agibp);
	xfs_perag_put(pag);
	if (error)
		return error;

	/*
	 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
	 * incore unlinked list pointers for this inode.  Check once more to
	 * see if we raced with anyone else to reload the unlinked list.
	 */
	if (!xfs_inode_unlinked_incomplete(ip)) {
		foundit = true;
		goto out_agibp;
	}

	bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
	agi = agibp->b_addr;

	trace_xfs_inode_reload_unlinked_bucket(ip);

	xfs_info_ratelimited(mp,
 "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.",
			agino, agno);

	prev_agino = NULLAGINO;
	next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
	while (next_agino != NULLAGINO) {
		struct xfs_inode	*next_ip = NULL;

		/* Found this caller's inode, set its backlink. */
		if (next_agino == agino) {
			next_ip = ip;
			next_ip->i_prev_unlinked = prev_agino;
			foundit = true;
			goto next_inode;
		}

		/* Try in-memory lookup first. */
		next_ip = xfs_iunlink_lookup(pag, next_agino);
		if (next_ip)
			goto next_inode;

		/* Inode not in memory, try reloading it. */
		error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
				next_agino);
		if (error)
			break;

		/* Grab the reloaded inode. */
		next_ip = xfs_iunlink_lookup(pag, next_agino);
		if (!next_ip) {
			/* No incore inode at all?  We reloaded it... */
			ASSERT(next_ip != NULL);
			error = -EFSCORRUPTED;
			break;
		}

next_inode:
		prev_agino = next_agino;
		next_agino = next_ip->i_next_unlinked;
	}

out_agibp:
	xfs_trans_brelse(tp, agibp);
	/* Should have found this inode somewhere in the iunlinked bucket. */
	if (!error && !foundit)
		error = -EFSCORRUPTED;
	return error;
}

/* Decide if this inode is missing its unlinked list and reload it. */
int
xfs_inode_reload_unlinked(
	struct xfs_inode	*ip)
{
	struct xfs_trans	*tp;
	int			error;

	error = xfs_trans_alloc_empty(ip->i_mount, &tp);
	if (error)
		return error;

	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_inode_unlinked_incomplete(ip))
		error = xfs_inode_reload_unlinked_bucket(tp, ip);
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
	xfs_trans_cancel(tp);

	return error;
}

/* Has this inode fork been zapped by repair? */
bool
xfs_ifork_zapped(
	const struct xfs_inode	*ip,
	int			whichfork)
{
	unsigned int		datamask = 0;

	switch (whichfork) {
	case XFS_DATA_FORK:
		switch (ip->i_vnode.i_mode & S_IFMT) {
		case S_IFDIR:
			datamask = XFS_SICK_INO_DIR_ZAPPED;
			break;
		case S_IFLNK:
			datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
			break;
		}
		return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
	case XFS_ATTR_FORK:
		return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
	default:
		return false;
	}
}

/* Compute the number of data and realtime blocks used by a file. */
void
xfs_inode_count_blocks(
	struct xfs_trans	*tp,
	struct xfs_inode	*ip,
	xfs_filblks_t		*dblocks,
	xfs_filblks_t		*rblocks)
{
	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);

	*rblocks = 0;
	if (XFS_IS_REALTIME_INODE(ip))
		xfs_bmap_count_leaves(ifp, rblocks);
	*dblocks = ip->i_nblocks - *rblocks;
}

static void
xfs_wait_dax_page(
	struct inode		*inode)
{
	struct xfs_inode        *ip = XFS_I(inode);

	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
	schedule();
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
}

int
xfs_break_dax_layouts(
	struct inode		*inode,
	bool			*retry)
{
	struct page		*page;

	xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL);

	page = dax_layout_busy_page(inode->i_mapping);
	if (!page)
		return 0;

	*retry = true;
	return ___wait_var_event(&page->_refcount,
			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
			0, 0, xfs_wait_dax_page(inode));
}

int
xfs_break_layouts(
	struct inode		*inode,
	uint			*iolock,
	enum layout_break_reason reason)
{
	bool			retry;
	int			error;

	xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL);

	do {
		retry = false;
		switch (reason) {
		case BREAK_UNMAP:
			error = xfs_break_dax_layouts(inode, &retry);
			if (error || retry)
				break;
			fallthrough;
		case BREAK_WRITE:
			error = xfs_break_leased_layouts(inode, iolock, &retry);
			break;
		default:
			WARN_ON_ONCE(1);
			error = -EINVAL;
		}
	} while (error == 0 && retry);

	return error;
}

/* Returns the size of fundamental allocation unit for a file, in bytes. */
unsigned int
xfs_inode_alloc_unitsize(
	struct xfs_inode	*ip)
{
	unsigned int		blocks = 1;

	if (XFS_IS_REALTIME_INODE(ip))
		blocks = ip->i_mount->m_sb.sb_rextsize;

	return XFS_FSB_TO_B(ip->i_mount, blocks);
}

/* Should we always be using copy on write for file writes? */
bool
xfs_is_always_cow_inode(
	struct xfs_inode	*ip)
{
	return ip->i_mount->m_always_cow && xfs_has_reflink(ip->i_mount);
}