Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 | // SPDX-License-Identifier: GPL-2.0-only /* * Activity LED trigger * * Copyright (C) 2017 Willy Tarreau <w@1wt.eu> * Partially based on Atsushi Nemoto's ledtrig-heartbeat.c. */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/kernel_stat.h> #include <linux/leds.h> #include <linux/module.h> #include <linux/panic_notifier.h> #include <linux/reboot.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/timer.h> #include "../leds.h" static int panic_detected; struct activity_data { struct timer_list timer; struct led_classdev *led_cdev; u64 last_used; u64 last_boot; int time_left; int state; int invert; }; static void led_activity_function(struct timer_list *t) { struct activity_data *activity_data = from_timer(activity_data, t, timer); struct led_classdev *led_cdev = activity_data->led_cdev; unsigned int target; unsigned int usage; int delay; u64 curr_used; u64 curr_boot; s32 diff_used; s32 diff_boot; int cpus; int i; if (test_and_clear_bit(LED_BLINK_BRIGHTNESS_CHANGE, &led_cdev->work_flags)) led_cdev->blink_brightness = led_cdev->new_blink_brightness; if (unlikely(panic_detected)) { /* full brightness in case of panic */ led_set_brightness_nosleep(led_cdev, led_cdev->blink_brightness); return; } cpus = 0; curr_used = 0; for_each_possible_cpu(i) { struct kernel_cpustat kcpustat; kcpustat_cpu_fetch(&kcpustat, i); curr_used += kcpustat.cpustat[CPUTIME_USER] + kcpustat.cpustat[CPUTIME_NICE] + kcpustat.cpustat[CPUTIME_SYSTEM] + kcpustat.cpustat[CPUTIME_SOFTIRQ] + kcpustat.cpustat[CPUTIME_IRQ]; cpus++; } /* We come here every 100ms in the worst case, so that's 100M ns of * cumulated time. By dividing by 2^16, we get the time resolution * down to 16us, ensuring we won't overflow 32-bit computations below * even up to 3k CPUs, while keeping divides cheap on smaller systems. */ curr_boot = ktime_get_boottime_ns() * cpus; diff_boot = (curr_boot - activity_data->last_boot) >> 16; diff_used = (curr_used - activity_data->last_used) >> 16; activity_data->last_boot = curr_boot; activity_data->last_used = curr_used; if (diff_boot <= 0 || diff_used < 0) usage = 0; else if (diff_used >= diff_boot) usage = 100; else usage = 100 * diff_used / diff_boot; /* * Now we know the total boot_time multiplied by the number of CPUs, and * the total idle+wait time for all CPUs. We'll compare how they evolved * since last call. The % of overall CPU usage is : * * 1 - delta_idle / delta_boot * * What we want is that when the CPU usage is zero, the LED must blink * slowly with very faint flashes that are detectable but not disturbing * (typically 10ms every second, or 10ms ON, 990ms OFF). Then we want * blinking frequency to increase up to the point where the load is * enough to saturate one core in multi-core systems or 50% in single * core systems. At this point it should reach 10 Hz with a 10/90 duty * cycle (10ms ON, 90ms OFF). After this point, the blinking frequency * remains stable (10 Hz) and only the duty cycle increases to report * the activity, up to the point where we have 90ms ON, 10ms OFF when * all cores are saturated. It's important that the LED never stays in * a steady state so that it's easy to distinguish an idle or saturated * machine from a hung one. * * This gives us : * - a target CPU usage of min(50%, 100%/#CPU) for a 10% duty cycle * (10ms ON, 90ms OFF) * - below target : * ON_ms = 10 * OFF_ms = 90 + (1 - usage/target) * 900 * - above target : * ON_ms = 10 + (usage-target)/(100%-target) * 80 * OFF_ms = 90 - (usage-target)/(100%-target) * 80 * * In order to keep a good responsiveness, we cap the sleep time to * 100 ms and keep track of the sleep time left. This allows us to * quickly change it if needed. */ activity_data->time_left -= 100; if (activity_data->time_left <= 0) { activity_data->time_left = 0; activity_data->state = !activity_data->state; led_set_brightness_nosleep(led_cdev, (activity_data->state ^ activity_data->invert) ? led_cdev->blink_brightness : LED_OFF); } target = (cpus > 1) ? (100 / cpus) : 50; if (usage < target) delay = activity_data->state ? 10 : /* ON */ 990 - 900 * usage / target; /* OFF */ else delay = activity_data->state ? 10 + 80 * (usage - target) / (100 - target) : /* ON */ 90 - 80 * (usage - target) / (100 - target); /* OFF */ if (!activity_data->time_left || delay <= activity_data->time_left) activity_data->time_left = delay; delay = min_t(int, activity_data->time_left, 100); mod_timer(&activity_data->timer, jiffies + msecs_to_jiffies(delay)); } static ssize_t led_invert_show(struct device *dev, struct device_attribute *attr, char *buf) { struct activity_data *activity_data = led_trigger_get_drvdata(dev); return sprintf(buf, "%u\n", activity_data->invert); } static ssize_t led_invert_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct activity_data *activity_data = led_trigger_get_drvdata(dev); unsigned long state; int ret; ret = kstrtoul(buf, 0, &state); if (ret) return ret; activity_data->invert = !!state; return size; } static DEVICE_ATTR(invert, 0644, led_invert_show, led_invert_store); static struct attribute *activity_led_attrs[] = { &dev_attr_invert.attr, NULL }; ATTRIBUTE_GROUPS(activity_led); static int activity_activate(struct led_classdev *led_cdev) { struct activity_data *activity_data; activity_data = kzalloc(sizeof(*activity_data), GFP_KERNEL); if (!activity_data) return -ENOMEM; led_set_trigger_data(led_cdev, activity_data); activity_data->led_cdev = led_cdev; timer_setup(&activity_data->timer, led_activity_function, 0); if (!led_cdev->blink_brightness) led_cdev->blink_brightness = led_cdev->max_brightness; led_activity_function(&activity_data->timer); set_bit(LED_BLINK_SW, &led_cdev->work_flags); return 0; } static void activity_deactivate(struct led_classdev *led_cdev) { struct activity_data *activity_data = led_get_trigger_data(led_cdev); timer_shutdown_sync(&activity_data->timer); kfree(activity_data); clear_bit(LED_BLINK_SW, &led_cdev->work_flags); } static struct led_trigger activity_led_trigger = { .name = "activity", .activate = activity_activate, .deactivate = activity_deactivate, .groups = activity_led_groups, }; static int activity_reboot_notifier(struct notifier_block *nb, unsigned long code, void *unused) { led_trigger_unregister(&activity_led_trigger); return NOTIFY_DONE; } static int activity_panic_notifier(struct notifier_block *nb, unsigned long code, void *unused) { panic_detected = 1; return NOTIFY_DONE; } static struct notifier_block activity_reboot_nb = { .notifier_call = activity_reboot_notifier, }; static struct notifier_block activity_panic_nb = { .notifier_call = activity_panic_notifier, }; static int __init activity_init(void) { int rc = led_trigger_register(&activity_led_trigger); if (!rc) { atomic_notifier_chain_register(&panic_notifier_list, &activity_panic_nb); register_reboot_notifier(&activity_reboot_nb); } return rc; } static void __exit activity_exit(void) { unregister_reboot_notifier(&activity_reboot_nb); atomic_notifier_chain_unregister(&panic_notifier_list, &activity_panic_nb); led_trigger_unregister(&activity_led_trigger); } module_init(activity_init); module_exit(activity_exit); MODULE_AUTHOR("Willy Tarreau <w@1wt.eu>"); MODULE_DESCRIPTION("Activity LED trigger"); MODULE_LICENSE("GPL v2"); |