Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (C) 2020 Invensense, Inc.
 */

#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/delay.h>
#include <linux/math64.h>

#include <linux/iio/buffer.h>
#include <linux/iio/common/inv_sensors_timestamp.h>
#include <linux/iio/iio.h>
#include <linux/iio/kfifo_buf.h>

#include "inv_icm42600.h"
#include "inv_icm42600_temp.h"
#include "inv_icm42600_buffer.h"

#define INV_ICM42600_GYRO_CHAN(_modifier, _index, _ext_info)		\
	{								\
		.type = IIO_ANGL_VEL,					\
		.modified = 1,						\
		.channel2 = _modifier,					\
		.info_mask_separate =					\
			BIT(IIO_CHAN_INFO_RAW) |			\
			BIT(IIO_CHAN_INFO_CALIBBIAS),			\
		.info_mask_shared_by_type =				\
			BIT(IIO_CHAN_INFO_SCALE),			\
		.info_mask_shared_by_type_available =			\
			BIT(IIO_CHAN_INFO_SCALE) |			\
			BIT(IIO_CHAN_INFO_CALIBBIAS),			\
		.info_mask_shared_by_all =				\
			BIT(IIO_CHAN_INFO_SAMP_FREQ),			\
		.info_mask_shared_by_all_available =			\
			BIT(IIO_CHAN_INFO_SAMP_FREQ),			\
		.scan_index = _index,					\
		.scan_type = {						\
			.sign = 's',					\
			.realbits = 16,					\
			.storagebits = 16,				\
			.endianness = IIO_BE,				\
		},							\
		.ext_info = _ext_info,					\
	}

enum inv_icm42600_gyro_scan {
	INV_ICM42600_GYRO_SCAN_X,
	INV_ICM42600_GYRO_SCAN_Y,
	INV_ICM42600_GYRO_SCAN_Z,
	INV_ICM42600_GYRO_SCAN_TEMP,
	INV_ICM42600_GYRO_SCAN_TIMESTAMP,
};

static const struct iio_chan_spec_ext_info inv_icm42600_gyro_ext_infos[] = {
	IIO_MOUNT_MATRIX(IIO_SHARED_BY_ALL, inv_icm42600_get_mount_matrix),
	{},
};

static const struct iio_chan_spec inv_icm42600_gyro_channels[] = {
	INV_ICM42600_GYRO_CHAN(IIO_MOD_X, INV_ICM42600_GYRO_SCAN_X,
			       inv_icm42600_gyro_ext_infos),
	INV_ICM42600_GYRO_CHAN(IIO_MOD_Y, INV_ICM42600_GYRO_SCAN_Y,
			       inv_icm42600_gyro_ext_infos),
	INV_ICM42600_GYRO_CHAN(IIO_MOD_Z, INV_ICM42600_GYRO_SCAN_Z,
			       inv_icm42600_gyro_ext_infos),
	INV_ICM42600_TEMP_CHAN(INV_ICM42600_GYRO_SCAN_TEMP),
	IIO_CHAN_SOFT_TIMESTAMP(INV_ICM42600_GYRO_SCAN_TIMESTAMP),
};

/*
 * IIO buffer data: size must be a power of 2 and timestamp aligned
 * 16 bytes: 6 bytes angular velocity, 2 bytes temperature, 8 bytes timestamp
 */
struct inv_icm42600_gyro_buffer {
	struct inv_icm42600_fifo_sensor_data gyro;
	int16_t temp;
	int64_t timestamp __aligned(8);
};

#define INV_ICM42600_SCAN_MASK_GYRO_3AXIS				\
	(BIT(INV_ICM42600_GYRO_SCAN_X) |				\
	BIT(INV_ICM42600_GYRO_SCAN_Y) |					\
	BIT(INV_ICM42600_GYRO_SCAN_Z))

#define INV_ICM42600_SCAN_MASK_TEMP	BIT(INV_ICM42600_GYRO_SCAN_TEMP)

static const unsigned long inv_icm42600_gyro_scan_masks[] = {
	/* 3-axis gyro + temperature */
	INV_ICM42600_SCAN_MASK_GYRO_3AXIS | INV_ICM42600_SCAN_MASK_TEMP,
	0,
};

/* enable gyroscope sensor and FIFO write */
static int inv_icm42600_gyro_update_scan_mode(struct iio_dev *indio_dev,
					      const unsigned long *scan_mask)
{
	struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
	struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev);
	struct inv_sensors_timestamp *ts = &gyro_st->ts;
	struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
	unsigned int fifo_en = 0;
	unsigned int sleep_gyro = 0;
	unsigned int sleep_temp = 0;
	unsigned int sleep;
	int ret;

	mutex_lock(&st->lock);

	if (*scan_mask & INV_ICM42600_SCAN_MASK_TEMP) {
		/* enable temp sensor */
		ret = inv_icm42600_set_temp_conf(st, true, &sleep_temp);
		if (ret)
			goto out_unlock;
		fifo_en |= INV_ICM42600_SENSOR_TEMP;
	}

	if (*scan_mask & INV_ICM42600_SCAN_MASK_GYRO_3AXIS) {
		/* enable gyro sensor */
		conf.mode = INV_ICM42600_SENSOR_MODE_LOW_NOISE;
		ret = inv_icm42600_set_gyro_conf(st, &conf, &sleep_gyro);
		if (ret)
			goto out_unlock;
		fifo_en |= INV_ICM42600_SENSOR_GYRO;
	}

	/* update data FIFO write */
	inv_sensors_timestamp_apply_odr(ts, 0, 0, 0);
	ret = inv_icm42600_buffer_set_fifo_en(st, fifo_en | st->fifo.en);

out_unlock:
	mutex_unlock(&st->lock);
	/* sleep maximum required time */
	sleep = max(sleep_gyro, sleep_temp);
	if (sleep)
		msleep(sleep);
	return ret;
}

static int inv_icm42600_gyro_read_sensor(struct inv_icm42600_state *st,
					 struct iio_chan_spec const *chan,
					 int16_t *val)
{
	struct device *dev = regmap_get_device(st->map);
	struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
	unsigned int reg;
	__be16 *data;
	int ret;

	if (chan->type != IIO_ANGL_VEL)
		return -EINVAL;

	switch (chan->channel2) {
	case IIO_MOD_X:
		reg = INV_ICM42600_REG_GYRO_DATA_X;
		break;
	case IIO_MOD_Y:
		reg = INV_ICM42600_REG_GYRO_DATA_Y;
		break;
	case IIO_MOD_Z:
		reg = INV_ICM42600_REG_GYRO_DATA_Z;
		break;
	default:
		return -EINVAL;
	}

	pm_runtime_get_sync(dev);
	mutex_lock(&st->lock);

	/* enable gyro sensor */
	conf.mode = INV_ICM42600_SENSOR_MODE_LOW_NOISE;
	ret = inv_icm42600_set_gyro_conf(st, &conf, NULL);
	if (ret)
		goto exit;

	/* read gyro register data */
	data = (__be16 *)&st->buffer[0];
	ret = regmap_bulk_read(st->map, reg, data, sizeof(*data));
	if (ret)
		goto exit;

	*val = (int16_t)be16_to_cpup(data);
	if (*val == INV_ICM42600_DATA_INVALID)
		ret = -EINVAL;
exit:
	mutex_unlock(&st->lock);
	pm_runtime_mark_last_busy(dev);
	pm_runtime_put_autosuspend(dev);
	return ret;
}

/* IIO format int + nano */
static const int inv_icm42600_gyro_scale[] = {
	/* +/- 2000dps => 0.001065264 rad/s */
	[2 * INV_ICM42600_GYRO_FS_2000DPS] = 0,
	[2 * INV_ICM42600_GYRO_FS_2000DPS + 1] = 1065264,
	/* +/- 1000dps => 0.000532632 rad/s */
	[2 * INV_ICM42600_GYRO_FS_1000DPS] = 0,
	[2 * INV_ICM42600_GYRO_FS_1000DPS + 1] = 532632,
	/* +/- 500dps => 0.000266316 rad/s */
	[2 * INV_ICM42600_GYRO_FS_500DPS] = 0,
	[2 * INV_ICM42600_GYRO_FS_500DPS + 1] = 266316,
	/* +/- 250dps => 0.000133158 rad/s */
	[2 * INV_ICM42600_GYRO_FS_250DPS] = 0,
	[2 * INV_ICM42600_GYRO_FS_250DPS + 1] = 133158,
	/* +/- 125dps => 0.000066579 rad/s */
	[2 * INV_ICM42600_GYRO_FS_125DPS] = 0,
	[2 * INV_ICM42600_GYRO_FS_125DPS + 1] = 66579,
	/* +/- 62.5dps => 0.000033290 rad/s */
	[2 * INV_ICM42600_GYRO_FS_62_5DPS] = 0,
	[2 * INV_ICM42600_GYRO_FS_62_5DPS + 1] = 33290,
	/* +/- 31.25dps => 0.000016645 rad/s */
	[2 * INV_ICM42600_GYRO_FS_31_25DPS] = 0,
	[2 * INV_ICM42600_GYRO_FS_31_25DPS + 1] = 16645,
	/* +/- 15.625dps => 0.000008322 rad/s */
	[2 * INV_ICM42600_GYRO_FS_15_625DPS] = 0,
	[2 * INV_ICM42600_GYRO_FS_15_625DPS + 1] = 8322,
};
static const int inv_icm42686_gyro_scale[] = {
	/* +/- 4000dps => 0.002130529 rad/s */
	[2 * INV_ICM42686_GYRO_FS_4000DPS] = 0,
	[2 * INV_ICM42686_GYRO_FS_4000DPS + 1] = 2130529,
	/* +/- 2000dps => 0.001065264 rad/s */
	[2 * INV_ICM42686_GYRO_FS_2000DPS] = 0,
	[2 * INV_ICM42686_GYRO_FS_2000DPS + 1] = 1065264,
	/* +/- 1000dps => 0.000532632 rad/s */
	[2 * INV_ICM42686_GYRO_FS_1000DPS] = 0,
	[2 * INV_ICM42686_GYRO_FS_1000DPS + 1] = 532632,
	/* +/- 500dps => 0.000266316 rad/s */
	[2 * INV_ICM42686_GYRO_FS_500DPS] = 0,
	[2 * INV_ICM42686_GYRO_FS_500DPS + 1] = 266316,
	/* +/- 250dps => 0.000133158 rad/s */
	[2 * INV_ICM42686_GYRO_FS_250DPS] = 0,
	[2 * INV_ICM42686_GYRO_FS_250DPS + 1] = 133158,
	/* +/- 125dps => 0.000066579 rad/s */
	[2 * INV_ICM42686_GYRO_FS_125DPS] = 0,
	[2 * INV_ICM42686_GYRO_FS_125DPS + 1] = 66579,
	/* +/- 62.5dps => 0.000033290 rad/s */
	[2 * INV_ICM42686_GYRO_FS_62_5DPS] = 0,
	[2 * INV_ICM42686_GYRO_FS_62_5DPS + 1] = 33290,
	/* +/- 31.25dps => 0.000016645 rad/s */
	[2 * INV_ICM42686_GYRO_FS_31_25DPS] = 0,
	[2 * INV_ICM42686_GYRO_FS_31_25DPS + 1] = 16645,
};

static int inv_icm42600_gyro_read_scale(struct iio_dev *indio_dev,
					int *val, int *val2)
{
	struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
	struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev);
	unsigned int idx;

	idx = st->conf.gyro.fs;

	*val = gyro_st->scales[2 * idx];
	*val2 = gyro_st->scales[2 * idx + 1];
	return IIO_VAL_INT_PLUS_NANO;
}

static int inv_icm42600_gyro_write_scale(struct iio_dev *indio_dev,
					 int val, int val2)
{
	struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
	struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev);
	struct device *dev = regmap_get_device(st->map);
	unsigned int idx;
	struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
	int ret;

	for (idx = 0; idx < gyro_st->scales_len; idx += 2) {
		if (val == gyro_st->scales[idx] &&
		    val2 == gyro_st->scales[idx + 1])
			break;
	}
	if (idx >= gyro_st->scales_len)
		return -EINVAL;

	conf.fs = idx / 2;

	pm_runtime_get_sync(dev);
	mutex_lock(&st->lock);

	ret = inv_icm42600_set_gyro_conf(st, &conf, NULL);

	mutex_unlock(&st->lock);
	pm_runtime_mark_last_busy(dev);
	pm_runtime_put_autosuspend(dev);

	return ret;
}

/* IIO format int + micro */
static const int inv_icm42600_gyro_odr[] = {
	/* 12.5Hz */
	12, 500000,
	/* 25Hz */
	25, 0,
	/* 50Hz */
	50, 0,
	/* 100Hz */
	100, 0,
	/* 200Hz */
	200, 0,
	/* 1kHz */
	1000, 0,
	/* 2kHz */
	2000, 0,
	/* 4kHz */
	4000, 0,
};

static const int inv_icm42600_gyro_odr_conv[] = {
	INV_ICM42600_ODR_12_5HZ,
	INV_ICM42600_ODR_25HZ,
	INV_ICM42600_ODR_50HZ,
	INV_ICM42600_ODR_100HZ,
	INV_ICM42600_ODR_200HZ,
	INV_ICM42600_ODR_1KHZ_LN,
	INV_ICM42600_ODR_2KHZ_LN,
	INV_ICM42600_ODR_4KHZ_LN,
};

static int inv_icm42600_gyro_read_odr(struct inv_icm42600_state *st,
				      int *val, int *val2)
{
	unsigned int odr;
	unsigned int i;

	odr = st->conf.gyro.odr;

	for (i = 0; i < ARRAY_SIZE(inv_icm42600_gyro_odr_conv); ++i) {
		if (inv_icm42600_gyro_odr_conv[i] == odr)
			break;
	}
	if (i >= ARRAY_SIZE(inv_icm42600_gyro_odr_conv))
		return -EINVAL;

	*val = inv_icm42600_gyro_odr[2 * i];
	*val2 = inv_icm42600_gyro_odr[2 * i + 1];

	return IIO_VAL_INT_PLUS_MICRO;
}

static int inv_icm42600_gyro_write_odr(struct iio_dev *indio_dev,
				       int val, int val2)
{
	struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
	struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev);
	struct inv_sensors_timestamp *ts = &gyro_st->ts;
	struct device *dev = regmap_get_device(st->map);
	unsigned int idx;
	struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
	int ret;

	for (idx = 0; idx < ARRAY_SIZE(inv_icm42600_gyro_odr); idx += 2) {
		if (val == inv_icm42600_gyro_odr[idx] &&
		    val2 == inv_icm42600_gyro_odr[idx + 1])
			break;
	}
	if (idx >= ARRAY_SIZE(inv_icm42600_gyro_odr))
		return -EINVAL;

	conf.odr = inv_icm42600_gyro_odr_conv[idx / 2];

	pm_runtime_get_sync(dev);
	mutex_lock(&st->lock);

	ret = inv_sensors_timestamp_update_odr(ts, inv_icm42600_odr_to_period(conf.odr),
					       iio_buffer_enabled(indio_dev));
	if (ret)
		goto out_unlock;

	ret = inv_icm42600_set_gyro_conf(st, &conf, NULL);
	if (ret)
		goto out_unlock;
	inv_icm42600_buffer_update_fifo_period(st);
	inv_icm42600_buffer_update_watermark(st);

out_unlock:
	mutex_unlock(&st->lock);
	pm_runtime_mark_last_busy(dev);
	pm_runtime_put_autosuspend(dev);

	return ret;
}

/*
 * Calibration bias values, IIO range format int + nano.
 * Value is limited to +/-64dps coded on 12 bits signed. Step is 1/32 dps.
 */
static int inv_icm42600_gyro_calibbias[] = {
	-1, 117010721,		/* min: -1.117010721 rad/s */
	0, 545415,		/* step: 0.000545415 rad/s */
	1, 116465306,		/* max: 1.116465306 rad/s */
};

static int inv_icm42600_gyro_read_offset(struct inv_icm42600_state *st,
					 struct iio_chan_spec const *chan,
					 int *val, int *val2)
{
	struct device *dev = regmap_get_device(st->map);
	int64_t val64;
	int32_t bias;
	unsigned int reg;
	int16_t offset;
	uint8_t data[2];
	int ret;

	if (chan->type != IIO_ANGL_VEL)
		return -EINVAL;

	switch (chan->channel2) {
	case IIO_MOD_X:
		reg = INV_ICM42600_REG_OFFSET_USER0;
		break;
	case IIO_MOD_Y:
		reg = INV_ICM42600_REG_OFFSET_USER1;
		break;
	case IIO_MOD_Z:
		reg = INV_ICM42600_REG_OFFSET_USER3;
		break;
	default:
		return -EINVAL;
	}

	pm_runtime_get_sync(dev);
	mutex_lock(&st->lock);

	ret = regmap_bulk_read(st->map, reg, st->buffer, sizeof(data));
	memcpy(data, st->buffer, sizeof(data));

	mutex_unlock(&st->lock);
	pm_runtime_mark_last_busy(dev);
	pm_runtime_put_autosuspend(dev);
	if (ret)
		return ret;

	/* 12 bits signed value */
	switch (chan->channel2) {
	case IIO_MOD_X:
		offset = sign_extend32(((data[1] & 0x0F) << 8) | data[0], 11);
		break;
	case IIO_MOD_Y:
		offset = sign_extend32(((data[0] & 0xF0) << 4) | data[1], 11);
		break;
	case IIO_MOD_Z:
		offset = sign_extend32(((data[1] & 0x0F) << 8) | data[0], 11);
		break;
	default:
		return -EINVAL;
	}

	/*
	 * convert raw offset to dps then to rad/s
	 * 12 bits signed raw max 64 to dps: 64 / 2048
	 * dps to rad: Pi / 180
	 * result in nano (1000000000)
	 * (offset * 64 * Pi * 1000000000) / (2048 * 180)
	 */
	val64 = (int64_t)offset * 64LL * 3141592653LL;
	/* for rounding, add + or - divisor (2048 * 180) divided by 2 */
	if (val64 >= 0)
		val64 += 2048 * 180 / 2;
	else
		val64 -= 2048 * 180 / 2;
	bias = div_s64(val64, 2048 * 180);
	*val = bias / 1000000000L;
	*val2 = bias % 1000000000L;

	return IIO_VAL_INT_PLUS_NANO;
}

static int inv_icm42600_gyro_write_offset(struct inv_icm42600_state *st,
					  struct iio_chan_spec const *chan,
					  int val, int val2)
{
	struct device *dev = regmap_get_device(st->map);
	int64_t val64, min, max;
	unsigned int reg, regval;
	int16_t offset;
	int ret;

	if (chan->type != IIO_ANGL_VEL)
		return -EINVAL;

	switch (chan->channel2) {
	case IIO_MOD_X:
		reg = INV_ICM42600_REG_OFFSET_USER0;
		break;
	case IIO_MOD_Y:
		reg = INV_ICM42600_REG_OFFSET_USER1;
		break;
	case IIO_MOD_Z:
		reg = INV_ICM42600_REG_OFFSET_USER3;
		break;
	default:
		return -EINVAL;
	}

	/* inv_icm42600_gyro_calibbias: min - step - max in nano */
	min = (int64_t)inv_icm42600_gyro_calibbias[0] * 1000000000LL +
	      (int64_t)inv_icm42600_gyro_calibbias[1];
	max = (int64_t)inv_icm42600_gyro_calibbias[4] * 1000000000LL +
	      (int64_t)inv_icm42600_gyro_calibbias[5];
	val64 = (int64_t)val * 1000000000LL + (int64_t)val2;
	if (val64 < min || val64 > max)
		return -EINVAL;

	/*
	 * convert rad/s to dps then to raw value
	 * rad to dps: 180 / Pi
	 * dps to raw 12 bits signed, max 64: 2048 / 64
	 * val in nano (1000000000)
	 * val * 180 * 2048 / (Pi * 1000000000 * 64)
	 */
	val64 = val64 * 180LL * 2048LL;
	/* for rounding, add + or - divisor (3141592653 * 64) divided by 2 */
	if (val64 >= 0)
		val64 += 3141592653LL * 64LL / 2LL;
	else
		val64 -= 3141592653LL * 64LL / 2LL;
	offset = div64_s64(val64, 3141592653LL * 64LL);

	/* clamp value limited to 12 bits signed */
	if (offset < -2048)
		offset = -2048;
	else if (offset > 2047)
		offset = 2047;

	pm_runtime_get_sync(dev);
	mutex_lock(&st->lock);

	switch (chan->channel2) {
	case IIO_MOD_X:
		/* OFFSET_USER1 register is shared */
		ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER1,
				  &regval);
		if (ret)
			goto out_unlock;
		st->buffer[0] = offset & 0xFF;
		st->buffer[1] = (regval & 0xF0) | ((offset & 0xF00) >> 8);
		break;
	case IIO_MOD_Y:
		/* OFFSET_USER1 register is shared */
		ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER1,
				  &regval);
		if (ret)
			goto out_unlock;
		st->buffer[0] = ((offset & 0xF00) >> 4) | (regval & 0x0F);
		st->buffer[1] = offset & 0xFF;
		break;
	case IIO_MOD_Z:
		/* OFFSET_USER4 register is shared */
		ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER4,
				  &regval);
		if (ret)
			goto out_unlock;
		st->buffer[0] = offset & 0xFF;
		st->buffer[1] = (regval & 0xF0) | ((offset & 0xF00) >> 8);
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
	}

	ret = regmap_bulk_write(st->map, reg, st->buffer, 2);

out_unlock:
	mutex_unlock(&st->lock);
	pm_runtime_mark_last_busy(dev);
	pm_runtime_put_autosuspend(dev);
	return ret;
}

static int inv_icm42600_gyro_read_raw(struct iio_dev *indio_dev,
				      struct iio_chan_spec const *chan,
				      int *val, int *val2, long mask)
{
	struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
	int16_t data;
	int ret;

	switch (chan->type) {
	case IIO_ANGL_VEL:
		break;
	case IIO_TEMP:
		return inv_icm42600_temp_read_raw(indio_dev, chan, val, val2, mask);
	default:
		return -EINVAL;
	}

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		ret = iio_device_claim_direct_mode(indio_dev);
		if (ret)
			return ret;
		ret = inv_icm42600_gyro_read_sensor(st, chan, &data);
		iio_device_release_direct_mode(indio_dev);
		if (ret)
			return ret;
		*val = data;
		return IIO_VAL_INT;
	case IIO_CHAN_INFO_SCALE:
		return inv_icm42600_gyro_read_scale(indio_dev, val, val2);
	case IIO_CHAN_INFO_SAMP_FREQ:
		return inv_icm42600_gyro_read_odr(st, val, val2);
	case IIO_CHAN_INFO_CALIBBIAS:
		return inv_icm42600_gyro_read_offset(st, chan, val, val2);
	default:
		return -EINVAL;
	}
}

static int inv_icm42600_gyro_read_avail(struct iio_dev *indio_dev,
					struct iio_chan_spec const *chan,
					const int **vals,
					int *type, int *length, long mask)
{
	struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev);

	if (chan->type != IIO_ANGL_VEL)
		return -EINVAL;

	switch (mask) {
	case IIO_CHAN_INFO_SCALE:
		*vals = gyro_st->scales;
		*type = IIO_VAL_INT_PLUS_NANO;
		*length = gyro_st->scales_len;
		return IIO_AVAIL_LIST;
	case IIO_CHAN_INFO_SAMP_FREQ:
		*vals = inv_icm42600_gyro_odr;
		*type = IIO_VAL_INT_PLUS_MICRO;
		*length = ARRAY_SIZE(inv_icm42600_gyro_odr);
		return IIO_AVAIL_LIST;
	case IIO_CHAN_INFO_CALIBBIAS:
		*vals = inv_icm42600_gyro_calibbias;
		*type = IIO_VAL_INT_PLUS_NANO;
		return IIO_AVAIL_RANGE;
	default:
		return -EINVAL;
	}
}

static int inv_icm42600_gyro_write_raw(struct iio_dev *indio_dev,
				       struct iio_chan_spec const *chan,
				       int val, int val2, long mask)
{
	struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
	int ret;

	if (chan->type != IIO_ANGL_VEL)
		return -EINVAL;

	switch (mask) {
	case IIO_CHAN_INFO_SCALE:
		ret = iio_device_claim_direct_mode(indio_dev);
		if (ret)
			return ret;
		ret = inv_icm42600_gyro_write_scale(indio_dev, val, val2);
		iio_device_release_direct_mode(indio_dev);
		return ret;
	case IIO_CHAN_INFO_SAMP_FREQ:
		return inv_icm42600_gyro_write_odr(indio_dev, val, val2);
	case IIO_CHAN_INFO_CALIBBIAS:
		ret = iio_device_claim_direct_mode(indio_dev);
		if (ret)
			return ret;
		ret = inv_icm42600_gyro_write_offset(st, chan, val, val2);
		iio_device_release_direct_mode(indio_dev);
		return ret;
	default:
		return -EINVAL;
	}
}

static int inv_icm42600_gyro_write_raw_get_fmt(struct iio_dev *indio_dev,
					       struct iio_chan_spec const *chan,
					       long mask)
{
	if (chan->type != IIO_ANGL_VEL)
		return -EINVAL;

	switch (mask) {
	case IIO_CHAN_INFO_SCALE:
		return IIO_VAL_INT_PLUS_NANO;
	case IIO_CHAN_INFO_SAMP_FREQ:
		return IIO_VAL_INT_PLUS_MICRO;
	case IIO_CHAN_INFO_CALIBBIAS:
		return IIO_VAL_INT_PLUS_NANO;
	default:
		return -EINVAL;
	}
}

static int inv_icm42600_gyro_hwfifo_set_watermark(struct iio_dev *indio_dev,
						  unsigned int val)
{
	struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
	int ret;

	mutex_lock(&st->lock);

	st->fifo.watermark.gyro = val;
	ret = inv_icm42600_buffer_update_watermark(st);

	mutex_unlock(&st->lock);

	return ret;
}

static int inv_icm42600_gyro_hwfifo_flush(struct iio_dev *indio_dev,
					  unsigned int count)
{
	struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
	int ret;

	if (count == 0)
		return 0;

	mutex_lock(&st->lock);

	ret = inv_icm42600_buffer_hwfifo_flush(st, count);
	if (!ret)
		ret = st->fifo.nb.gyro;

	mutex_unlock(&st->lock);

	return ret;
}

static const struct iio_info inv_icm42600_gyro_info = {
	.read_raw = inv_icm42600_gyro_read_raw,
	.read_avail = inv_icm42600_gyro_read_avail,
	.write_raw = inv_icm42600_gyro_write_raw,
	.write_raw_get_fmt = inv_icm42600_gyro_write_raw_get_fmt,
	.debugfs_reg_access = inv_icm42600_debugfs_reg,
	.update_scan_mode = inv_icm42600_gyro_update_scan_mode,
	.hwfifo_set_watermark = inv_icm42600_gyro_hwfifo_set_watermark,
	.hwfifo_flush_to_buffer = inv_icm42600_gyro_hwfifo_flush,
};

struct iio_dev *inv_icm42600_gyro_init(struct inv_icm42600_state *st)
{
	struct device *dev = regmap_get_device(st->map);
	const char *name;
	struct inv_icm42600_sensor_state *gyro_st;
	struct inv_sensors_timestamp_chip ts_chip;
	struct iio_dev *indio_dev;
	int ret;

	name = devm_kasprintf(dev, GFP_KERNEL, "%s-gyro", st->name);
	if (!name)
		return ERR_PTR(-ENOMEM);

	indio_dev = devm_iio_device_alloc(dev, sizeof(*gyro_st));
	if (!indio_dev)
		return ERR_PTR(-ENOMEM);
	gyro_st = iio_priv(indio_dev);

	switch (st->chip) {
	case INV_CHIP_ICM42686:
		gyro_st->scales = inv_icm42686_gyro_scale;
		gyro_st->scales_len = ARRAY_SIZE(inv_icm42686_gyro_scale);
		break;
	default:
		gyro_st->scales = inv_icm42600_gyro_scale;
		gyro_st->scales_len = ARRAY_SIZE(inv_icm42600_gyro_scale);
		break;
	}

	/*
	 * clock period is 32kHz (31250ns)
	 * jitter is +/- 2% (20 per mille)
	 */
	ts_chip.clock_period = 31250;
	ts_chip.jitter = 20;
	ts_chip.init_period = inv_icm42600_odr_to_period(st->conf.accel.odr);
	inv_sensors_timestamp_init(&gyro_st->ts, &ts_chip);

	iio_device_set_drvdata(indio_dev, st);
	indio_dev->name = name;
	indio_dev->info = &inv_icm42600_gyro_info;
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->channels = inv_icm42600_gyro_channels;
	indio_dev->num_channels = ARRAY_SIZE(inv_icm42600_gyro_channels);
	indio_dev->available_scan_masks = inv_icm42600_gyro_scan_masks;
	indio_dev->setup_ops = &inv_icm42600_buffer_ops;

	ret = devm_iio_kfifo_buffer_setup(dev, indio_dev,
					  &inv_icm42600_buffer_ops);
	if (ret)
		return ERR_PTR(ret);

	ret = devm_iio_device_register(dev, indio_dev);
	if (ret)
		return ERR_PTR(ret);

	return indio_dev;
}

int inv_icm42600_gyro_parse_fifo(struct iio_dev *indio_dev)
{
	struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
	struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev);
	struct inv_sensors_timestamp *ts = &gyro_st->ts;
	ssize_t i, size;
	unsigned int no;
	const void *accel, *gyro, *timestamp;
	const int8_t *temp;
	unsigned int odr;
	int64_t ts_val;
	struct inv_icm42600_gyro_buffer buffer;

	/* parse all fifo packets */
	for (i = 0, no = 0; i < st->fifo.count; i += size, ++no) {
		size = inv_icm42600_fifo_decode_packet(&st->fifo.data[i],
				&accel, &gyro, &temp, &timestamp, &odr);
		/* quit if error or FIFO is empty */
		if (size <= 0)
			return size;

		/* skip packet if no gyro data or data is invalid */
		if (gyro == NULL || !inv_icm42600_fifo_is_data_valid(gyro))
			continue;

		/* update odr */
		if (odr & INV_ICM42600_SENSOR_GYRO)
			inv_sensors_timestamp_apply_odr(ts, st->fifo.period,
							st->fifo.nb.total, no);

		/* buffer is copied to userspace, zeroing it to avoid any data leak */
		memset(&buffer, 0, sizeof(buffer));
		memcpy(&buffer.gyro, gyro, sizeof(buffer.gyro));
		/* convert 8 bits FIFO temperature in high resolution format */
		buffer.temp = temp ? (*temp * 64) : 0;
		ts_val = inv_sensors_timestamp_pop(ts);
		iio_push_to_buffers_with_timestamp(indio_dev, &buffer, ts_val);
	}

	return 0;
}