// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2020 Invensense, Inc.
*/
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/delay.h>
#include <linux/math64.h>
#include <linux/iio/buffer.h>
#include <linux/iio/common/inv_sensors_timestamp.h>
#include <linux/iio/iio.h>
#include <linux/iio/kfifo_buf.h>
#include "inv_icm42600.h"
#include "inv_icm42600_temp.h"
#include "inv_icm42600_buffer.h"
#define INV_ICM42600_GYRO_CHAN(_modifier, _index, _ext_info) \
{ \
.type = IIO_ANGL_VEL, \
.modified = 1, \
.channel2 = _modifier, \
.info_mask_separate = \
BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_CALIBBIAS), \
.info_mask_shared_by_type = \
BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_type_available = \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_CALIBBIAS), \
.info_mask_shared_by_all = \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.info_mask_shared_by_all_available = \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.scan_index = _index, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_BE, \
}, \
.ext_info = _ext_info, \
}
enum inv_icm42600_gyro_scan {
INV_ICM42600_GYRO_SCAN_X,
INV_ICM42600_GYRO_SCAN_Y,
INV_ICM42600_GYRO_SCAN_Z,
INV_ICM42600_GYRO_SCAN_TEMP,
INV_ICM42600_GYRO_SCAN_TIMESTAMP,
};
static const struct iio_chan_spec_ext_info inv_icm42600_gyro_ext_infos[] = {
IIO_MOUNT_MATRIX(IIO_SHARED_BY_ALL, inv_icm42600_get_mount_matrix),
{},
};
static const struct iio_chan_spec inv_icm42600_gyro_channels[] = {
INV_ICM42600_GYRO_CHAN(IIO_MOD_X, INV_ICM42600_GYRO_SCAN_X,
inv_icm42600_gyro_ext_infos),
INV_ICM42600_GYRO_CHAN(IIO_MOD_Y, INV_ICM42600_GYRO_SCAN_Y,
inv_icm42600_gyro_ext_infos),
INV_ICM42600_GYRO_CHAN(IIO_MOD_Z, INV_ICM42600_GYRO_SCAN_Z,
inv_icm42600_gyro_ext_infos),
INV_ICM42600_TEMP_CHAN(INV_ICM42600_GYRO_SCAN_TEMP),
IIO_CHAN_SOFT_TIMESTAMP(INV_ICM42600_GYRO_SCAN_TIMESTAMP),
};
/*
* IIO buffer data: size must be a power of 2 and timestamp aligned
* 16 bytes: 6 bytes angular velocity, 2 bytes temperature, 8 bytes timestamp
*/
struct inv_icm42600_gyro_buffer {
struct inv_icm42600_fifo_sensor_data gyro;
int16_t temp;
int64_t timestamp __aligned(8);
};
#define INV_ICM42600_SCAN_MASK_GYRO_3AXIS \
(BIT(INV_ICM42600_GYRO_SCAN_X) | \
BIT(INV_ICM42600_GYRO_SCAN_Y) | \
BIT(INV_ICM42600_GYRO_SCAN_Z))
#define INV_ICM42600_SCAN_MASK_TEMP BIT(INV_ICM42600_GYRO_SCAN_TEMP)
static const unsigned long inv_icm42600_gyro_scan_masks[] = {
/* 3-axis gyro + temperature */
INV_ICM42600_SCAN_MASK_GYRO_3AXIS | INV_ICM42600_SCAN_MASK_TEMP,
0,
};
/* enable gyroscope sensor and FIFO write */
static int inv_icm42600_gyro_update_scan_mode(struct iio_dev *indio_dev,
const unsigned long *scan_mask)
{
struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev);
struct inv_sensors_timestamp *ts = &gyro_st->ts;
struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
unsigned int fifo_en = 0;
unsigned int sleep_gyro = 0;
unsigned int sleep_temp = 0;
unsigned int sleep;
int ret;
mutex_lock(&st->lock);
if (*scan_mask & INV_ICM42600_SCAN_MASK_TEMP) {
/* enable temp sensor */
ret = inv_icm42600_set_temp_conf(st, true, &sleep_temp);
if (ret)
goto out_unlock;
fifo_en |= INV_ICM42600_SENSOR_TEMP;
}
if (*scan_mask & INV_ICM42600_SCAN_MASK_GYRO_3AXIS) {
/* enable gyro sensor */
conf.mode = INV_ICM42600_SENSOR_MODE_LOW_NOISE;
ret = inv_icm42600_set_gyro_conf(st, &conf, &sleep_gyro);
if (ret)
goto out_unlock;
fifo_en |= INV_ICM42600_SENSOR_GYRO;
}
/* update data FIFO write */
inv_sensors_timestamp_apply_odr(ts, 0, 0, 0);
ret = inv_icm42600_buffer_set_fifo_en(st, fifo_en | st->fifo.en);
out_unlock:
mutex_unlock(&st->lock);
/* sleep maximum required time */
sleep = max(sleep_gyro, sleep_temp);
if (sleep)
msleep(sleep);
return ret;
}
static int inv_icm42600_gyro_read_sensor(struct inv_icm42600_state *st,
struct iio_chan_spec const *chan,
int16_t *val)
{
struct device *dev = regmap_get_device(st->map);
struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
unsigned int reg;
__be16 *data;
int ret;
if (chan->type != IIO_ANGL_VEL)
return -EINVAL;
switch (chan->channel2) {
case IIO_MOD_X:
reg = INV_ICM42600_REG_GYRO_DATA_X;
break;
case IIO_MOD_Y:
reg = INV_ICM42600_REG_GYRO_DATA_Y;
break;
case IIO_MOD_Z:
reg = INV_ICM42600_REG_GYRO_DATA_Z;
break;
default:
return -EINVAL;
}
pm_runtime_get_sync(dev);
mutex_lock(&st->lock);
/* enable gyro sensor */
conf.mode = INV_ICM42600_SENSOR_MODE_LOW_NOISE;
ret = inv_icm42600_set_gyro_conf(st, &conf, NULL);
if (ret)
goto exit;
/* read gyro register data */
data = (__be16 *)&st->buffer[0];
ret = regmap_bulk_read(st->map, reg, data, sizeof(*data));
if (ret)
goto exit;
*val = (int16_t)be16_to_cpup(data);
if (*val == INV_ICM42600_DATA_INVALID)
ret = -EINVAL;
exit:
mutex_unlock(&st->lock);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
}
/* IIO format int + nano */
static const int inv_icm42600_gyro_scale[] = {
/* +/- 2000dps => 0.001065264 rad/s */
[2 * INV_ICM42600_GYRO_FS_2000DPS] = 0,
[2 * INV_ICM42600_GYRO_FS_2000DPS + 1] = 1065264,
/* +/- 1000dps => 0.000532632 rad/s */
[2 * INV_ICM42600_GYRO_FS_1000DPS] = 0,
[2 * INV_ICM42600_GYRO_FS_1000DPS + 1] = 532632,
/* +/- 500dps => 0.000266316 rad/s */
[2 * INV_ICM42600_GYRO_FS_500DPS] = 0,
[2 * INV_ICM42600_GYRO_FS_500DPS + 1] = 266316,
/* +/- 250dps => 0.000133158 rad/s */
[2 * INV_ICM42600_GYRO_FS_250DPS] = 0,
[2 * INV_ICM42600_GYRO_FS_250DPS + 1] = 133158,
/* +/- 125dps => 0.000066579 rad/s */
[2 * INV_ICM42600_GYRO_FS_125DPS] = 0,
[2 * INV_ICM42600_GYRO_FS_125DPS + 1] = 66579,
/* +/- 62.5dps => 0.000033290 rad/s */
[2 * INV_ICM42600_GYRO_FS_62_5DPS] = 0,
[2 * INV_ICM42600_GYRO_FS_62_5DPS + 1] = 33290,
/* +/- 31.25dps => 0.000016645 rad/s */
[2 * INV_ICM42600_GYRO_FS_31_25DPS] = 0,
[2 * INV_ICM42600_GYRO_FS_31_25DPS + 1] = 16645,
/* +/- 15.625dps => 0.000008322 rad/s */
[2 * INV_ICM42600_GYRO_FS_15_625DPS] = 0,
[2 * INV_ICM42600_GYRO_FS_15_625DPS + 1] = 8322,
};
static const int inv_icm42686_gyro_scale[] = {
/* +/- 4000dps => 0.002130529 rad/s */
[2 * INV_ICM42686_GYRO_FS_4000DPS] = 0,
[2 * INV_ICM42686_GYRO_FS_4000DPS + 1] = 2130529,
/* +/- 2000dps => 0.001065264 rad/s */
[2 * INV_ICM42686_GYRO_FS_2000DPS] = 0,
[2 * INV_ICM42686_GYRO_FS_2000DPS + 1] = 1065264,
/* +/- 1000dps => 0.000532632 rad/s */
[2 * INV_ICM42686_GYRO_FS_1000DPS] = 0,
[2 * INV_ICM42686_GYRO_FS_1000DPS + 1] = 532632,
/* +/- 500dps => 0.000266316 rad/s */
[2 * INV_ICM42686_GYRO_FS_500DPS] = 0,
[2 * INV_ICM42686_GYRO_FS_500DPS + 1] = 266316,
/* +/- 250dps => 0.000133158 rad/s */
[2 * INV_ICM42686_GYRO_FS_250DPS] = 0,
[2 * INV_ICM42686_GYRO_FS_250DPS + 1] = 133158,
/* +/- 125dps => 0.000066579 rad/s */
[2 * INV_ICM42686_GYRO_FS_125DPS] = 0,
[2 * INV_ICM42686_GYRO_FS_125DPS + 1] = 66579,
/* +/- 62.5dps => 0.000033290 rad/s */
[2 * INV_ICM42686_GYRO_FS_62_5DPS] = 0,
[2 * INV_ICM42686_GYRO_FS_62_5DPS + 1] = 33290,
/* +/- 31.25dps => 0.000016645 rad/s */
[2 * INV_ICM42686_GYRO_FS_31_25DPS] = 0,
[2 * INV_ICM42686_GYRO_FS_31_25DPS + 1] = 16645,
};
static int inv_icm42600_gyro_read_scale(struct iio_dev *indio_dev,
int *val, int *val2)
{
struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev);
unsigned int idx;
idx = st->conf.gyro.fs;
*val = gyro_st->scales[2 * idx];
*val2 = gyro_st->scales[2 * idx + 1];
return IIO_VAL_INT_PLUS_NANO;
}
static int inv_icm42600_gyro_write_scale(struct iio_dev *indio_dev,
int val, int val2)
{
struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev);
struct device *dev = regmap_get_device(st->map);
unsigned int idx;
struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
int ret;
for (idx = 0; idx < gyro_st->scales_len; idx += 2) {
if (val == gyro_st->scales[idx] &&
val2 == gyro_st->scales[idx + 1])
break;
}
if (idx >= gyro_st->scales_len)
return -EINVAL;
conf.fs = idx / 2;
pm_runtime_get_sync(dev);
mutex_lock(&st->lock);
ret = inv_icm42600_set_gyro_conf(st, &conf, NULL);
mutex_unlock(&st->lock);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
}
/* IIO format int + micro */
static const int inv_icm42600_gyro_odr[] = {
/* 12.5Hz */
12, 500000,
/* 25Hz */
25, 0,
/* 50Hz */
50, 0,
/* 100Hz */
100, 0,
/* 200Hz */
200, 0,
/* 1kHz */
1000, 0,
/* 2kHz */
2000, 0,
/* 4kHz */
4000, 0,
};
static const int inv_icm42600_gyro_odr_conv[] = {
INV_ICM42600_ODR_12_5HZ,
INV_ICM42600_ODR_25HZ,
INV_ICM42600_ODR_50HZ,
INV_ICM42600_ODR_100HZ,
INV_ICM42600_ODR_200HZ,
INV_ICM42600_ODR_1KHZ_LN,
INV_ICM42600_ODR_2KHZ_LN,
INV_ICM42600_ODR_4KHZ_LN,
};
static int inv_icm42600_gyro_read_odr(struct inv_icm42600_state *st,
int *val, int *val2)
{
unsigned int odr;
unsigned int i;
odr = st->conf.gyro.odr;
for (i = 0; i < ARRAY_SIZE(inv_icm42600_gyro_odr_conv); ++i) {
if (inv_icm42600_gyro_odr_conv[i] == odr)
break;
}
if (i >= ARRAY_SIZE(inv_icm42600_gyro_odr_conv))
return -EINVAL;
*val = inv_icm42600_gyro_odr[2 * i];
*val2 = inv_icm42600_gyro_odr[2 * i + 1];
return IIO_VAL_INT_PLUS_MICRO;
}
static int inv_icm42600_gyro_write_odr(struct iio_dev *indio_dev,
int val, int val2)
{
struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev);
struct inv_sensors_timestamp *ts = &gyro_st->ts;
struct device *dev = regmap_get_device(st->map);
unsigned int idx;
struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
int ret;
for (idx = 0; idx < ARRAY_SIZE(inv_icm42600_gyro_odr); idx += 2) {
if (val == inv_icm42600_gyro_odr[idx] &&
val2 == inv_icm42600_gyro_odr[idx + 1])
break;
}
if (idx >= ARRAY_SIZE(inv_icm42600_gyro_odr))
return -EINVAL;
conf.odr = inv_icm42600_gyro_odr_conv[idx / 2];
pm_runtime_get_sync(dev);
mutex_lock(&st->lock);
ret = inv_sensors_timestamp_update_odr(ts, inv_icm42600_odr_to_period(conf.odr),
iio_buffer_enabled(indio_dev));
if (ret)
goto out_unlock;
ret = inv_icm42600_set_gyro_conf(st, &conf, NULL);
if (ret)
goto out_unlock;
inv_icm42600_buffer_update_fifo_period(st);
inv_icm42600_buffer_update_watermark(st);
out_unlock:
mutex_unlock(&st->lock);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
}
/*
* Calibration bias values, IIO range format int + nano.
* Value is limited to +/-64dps coded on 12 bits signed. Step is 1/32 dps.
*/
static int inv_icm42600_gyro_calibbias[] = {
-1, 117010721, /* min: -1.117010721 rad/s */
0, 545415, /* step: 0.000545415 rad/s */
1, 116465306, /* max: 1.116465306 rad/s */
};
static int inv_icm42600_gyro_read_offset(struct inv_icm42600_state *st,
struct iio_chan_spec const *chan,
int *val, int *val2)
{
struct device *dev = regmap_get_device(st->map);
int64_t val64;
int32_t bias;
unsigned int reg;
int16_t offset;
uint8_t data[2];
int ret;
if (chan->type != IIO_ANGL_VEL)
return -EINVAL;
switch (chan->channel2) {
case IIO_MOD_X:
reg = INV_ICM42600_REG_OFFSET_USER0;
break;
case IIO_MOD_Y:
reg = INV_ICM42600_REG_OFFSET_USER1;
break;
case IIO_MOD_Z:
reg = INV_ICM42600_REG_OFFSET_USER3;
break;
default:
return -EINVAL;
}
pm_runtime_get_sync(dev);
mutex_lock(&st->lock);
ret = regmap_bulk_read(st->map, reg, st->buffer, sizeof(data));
memcpy(data, st->buffer, sizeof(data));
mutex_unlock(&st->lock);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
if (ret)
return ret;
/* 12 bits signed value */
switch (chan->channel2) {
case IIO_MOD_X:
offset = sign_extend32(((data[1] & 0x0F) << 8) | data[0], 11);
break;
case IIO_MOD_Y:
offset = sign_extend32(((data[0] & 0xF0) << 4) | data[1], 11);
break;
case IIO_MOD_Z:
offset = sign_extend32(((data[1] & 0x0F) << 8) | data[0], 11);
break;
default:
return -EINVAL;
}
/*
* convert raw offset to dps then to rad/s
* 12 bits signed raw max 64 to dps: 64 / 2048
* dps to rad: Pi / 180
* result in nano (1000000000)
* (offset * 64 * Pi * 1000000000) / (2048 * 180)
*/
val64 = (int64_t)offset * 64LL * 3141592653LL;
/* for rounding, add + or - divisor (2048 * 180) divided by 2 */
if (val64 >= 0)
val64 += 2048 * 180 / 2;
else
val64 -= 2048 * 180 / 2;
bias = div_s64(val64, 2048 * 180);
*val = bias / 1000000000L;
*val2 = bias % 1000000000L;
return IIO_VAL_INT_PLUS_NANO;
}
static int inv_icm42600_gyro_write_offset(struct inv_icm42600_state *st,
struct iio_chan_spec const *chan,
int val, int val2)
{
struct device *dev = regmap_get_device(st->map);
int64_t val64, min, max;
unsigned int reg, regval;
int16_t offset;
int ret;
if (chan->type != IIO_ANGL_VEL)
return -EINVAL;
switch (chan->channel2) {
case IIO_MOD_X:
reg = INV_ICM42600_REG_OFFSET_USER0;
break;
case IIO_MOD_Y:
reg = INV_ICM42600_REG_OFFSET_USER1;
break;
case IIO_MOD_Z:
reg = INV_ICM42600_REG_OFFSET_USER3;
break;
default:
return -EINVAL;
}
/* inv_icm42600_gyro_calibbias: min - step - max in nano */
min = (int64_t)inv_icm42600_gyro_calibbias[0] * 1000000000LL +
(int64_t)inv_icm42600_gyro_calibbias[1];
max = (int64_t)inv_icm42600_gyro_calibbias[4] * 1000000000LL +
(int64_t)inv_icm42600_gyro_calibbias[5];
val64 = (int64_t)val * 1000000000LL + (int64_t)val2;
if (val64 < min || val64 > max)
return -EINVAL;
/*
* convert rad/s to dps then to raw value
* rad to dps: 180 / Pi
* dps to raw 12 bits signed, max 64: 2048 / 64
* val in nano (1000000000)
* val * 180 * 2048 / (Pi * 1000000000 * 64)
*/
val64 = val64 * 180LL * 2048LL;
/* for rounding, add + or - divisor (3141592653 * 64) divided by 2 */
if (val64 >= 0)
val64 += 3141592653LL * 64LL / 2LL;
else
val64 -= 3141592653LL * 64LL / 2LL;
offset = div64_s64(val64, 3141592653LL * 64LL);
/* clamp value limited to 12 bits signed */
if (offset < -2048)
offset = -2048;
else if (offset > 2047)
offset = 2047;
pm_runtime_get_sync(dev);
mutex_lock(&st->lock);
switch (chan->channel2) {
case IIO_MOD_X:
/* OFFSET_USER1 register is shared */
ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER1,
®val);
if (ret)
goto out_unlock;
st->buffer[0] = offset & 0xFF;
st->buffer[1] = (regval & 0xF0) | ((offset & 0xF00) >> 8);
break;
case IIO_MOD_Y:
/* OFFSET_USER1 register is shared */
ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER1,
®val);
if (ret)
goto out_unlock;
st->buffer[0] = ((offset & 0xF00) >> 4) | (regval & 0x0F);
st->buffer[1] = offset & 0xFF;
break;
case IIO_MOD_Z:
/* OFFSET_USER4 register is shared */
ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER4,
®val);
if (ret)
goto out_unlock;
st->buffer[0] = offset & 0xFF;
st->buffer[1] = (regval & 0xF0) | ((offset & 0xF00) >> 8);
break;
default:
ret = -EINVAL;
goto out_unlock;
}
ret = regmap_bulk_write(st->map, reg, st->buffer, 2);
out_unlock:
mutex_unlock(&st->lock);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
}
static int inv_icm42600_gyro_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
int16_t data;
int ret;
switch (chan->type) {
case IIO_ANGL_VEL:
break;
case IIO_TEMP:
return inv_icm42600_temp_read_raw(indio_dev, chan, val, val2, mask);
default:
return -EINVAL;
}
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
ret = inv_icm42600_gyro_read_sensor(st, chan, &data);
iio_device_release_direct_mode(indio_dev);
if (ret)
return ret;
*val = data;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
return inv_icm42600_gyro_read_scale(indio_dev, val, val2);
case IIO_CHAN_INFO_SAMP_FREQ:
return inv_icm42600_gyro_read_odr(st, val, val2);
case IIO_CHAN_INFO_CALIBBIAS:
return inv_icm42600_gyro_read_offset(st, chan, val, val2);
default:
return -EINVAL;
}
}
static int inv_icm42600_gyro_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals,
int *type, int *length, long mask)
{
struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev);
if (chan->type != IIO_ANGL_VEL)
return -EINVAL;
switch (mask) {
case IIO_CHAN_INFO_SCALE:
*vals = gyro_st->scales;
*type = IIO_VAL_INT_PLUS_NANO;
*length = gyro_st->scales_len;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_SAMP_FREQ:
*vals = inv_icm42600_gyro_odr;
*type = IIO_VAL_INT_PLUS_MICRO;
*length = ARRAY_SIZE(inv_icm42600_gyro_odr);
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_CALIBBIAS:
*vals = inv_icm42600_gyro_calibbias;
*type = IIO_VAL_INT_PLUS_NANO;
return IIO_AVAIL_RANGE;
default:
return -EINVAL;
}
}
static int inv_icm42600_gyro_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
int ret;
if (chan->type != IIO_ANGL_VEL)
return -EINVAL;
switch (mask) {
case IIO_CHAN_INFO_SCALE:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
ret = inv_icm42600_gyro_write_scale(indio_dev, val, val2);
iio_device_release_direct_mode(indio_dev);
return ret;
case IIO_CHAN_INFO_SAMP_FREQ:
return inv_icm42600_gyro_write_odr(indio_dev, val, val2);
case IIO_CHAN_INFO_CALIBBIAS:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
ret = inv_icm42600_gyro_write_offset(st, chan, val, val2);
iio_device_release_direct_mode(indio_dev);
return ret;
default:
return -EINVAL;
}
}
static int inv_icm42600_gyro_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long mask)
{
if (chan->type != IIO_ANGL_VEL)
return -EINVAL;
switch (mask) {
case IIO_CHAN_INFO_SCALE:
return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_SAMP_FREQ:
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_CALIBBIAS:
return IIO_VAL_INT_PLUS_NANO;
default:
return -EINVAL;
}
}
static int inv_icm42600_gyro_hwfifo_set_watermark(struct iio_dev *indio_dev,
unsigned int val)
{
struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
int ret;
mutex_lock(&st->lock);
st->fifo.watermark.gyro = val;
ret = inv_icm42600_buffer_update_watermark(st);
mutex_unlock(&st->lock);
return ret;
}
static int inv_icm42600_gyro_hwfifo_flush(struct iio_dev *indio_dev,
unsigned int count)
{
struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
int ret;
if (count == 0)
return 0;
mutex_lock(&st->lock);
ret = inv_icm42600_buffer_hwfifo_flush(st, count);
if (!ret)
ret = st->fifo.nb.gyro;
mutex_unlock(&st->lock);
return ret;
}
static const struct iio_info inv_icm42600_gyro_info = {
.read_raw = inv_icm42600_gyro_read_raw,
.read_avail = inv_icm42600_gyro_read_avail,
.write_raw = inv_icm42600_gyro_write_raw,
.write_raw_get_fmt = inv_icm42600_gyro_write_raw_get_fmt,
.debugfs_reg_access = inv_icm42600_debugfs_reg,
.update_scan_mode = inv_icm42600_gyro_update_scan_mode,
.hwfifo_set_watermark = inv_icm42600_gyro_hwfifo_set_watermark,
.hwfifo_flush_to_buffer = inv_icm42600_gyro_hwfifo_flush,
};
struct iio_dev *inv_icm42600_gyro_init(struct inv_icm42600_state *st)
{
struct device *dev = regmap_get_device(st->map);
const char *name;
struct inv_icm42600_sensor_state *gyro_st;
struct inv_sensors_timestamp_chip ts_chip;
struct iio_dev *indio_dev;
int ret;
name = devm_kasprintf(dev, GFP_KERNEL, "%s-gyro", st->name);
if (!name)
return ERR_PTR(-ENOMEM);
indio_dev = devm_iio_device_alloc(dev, sizeof(*gyro_st));
if (!indio_dev)
return ERR_PTR(-ENOMEM);
gyro_st = iio_priv(indio_dev);
switch (st->chip) {
case INV_CHIP_ICM42686:
gyro_st->scales = inv_icm42686_gyro_scale;
gyro_st->scales_len = ARRAY_SIZE(inv_icm42686_gyro_scale);
break;
default:
gyro_st->scales = inv_icm42600_gyro_scale;
gyro_st->scales_len = ARRAY_SIZE(inv_icm42600_gyro_scale);
break;
}
/*
* clock period is 32kHz (31250ns)
* jitter is +/- 2% (20 per mille)
*/
ts_chip.clock_period = 31250;
ts_chip.jitter = 20;
ts_chip.init_period = inv_icm42600_odr_to_period(st->conf.accel.odr);
inv_sensors_timestamp_init(&gyro_st->ts, &ts_chip);
iio_device_set_drvdata(indio_dev, st);
indio_dev->name = name;
indio_dev->info = &inv_icm42600_gyro_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = inv_icm42600_gyro_channels;
indio_dev->num_channels = ARRAY_SIZE(inv_icm42600_gyro_channels);
indio_dev->available_scan_masks = inv_icm42600_gyro_scan_masks;
indio_dev->setup_ops = &inv_icm42600_buffer_ops;
ret = devm_iio_kfifo_buffer_setup(dev, indio_dev,
&inv_icm42600_buffer_ops);
if (ret)
return ERR_PTR(ret);
ret = devm_iio_device_register(dev, indio_dev);
if (ret)
return ERR_PTR(ret);
return indio_dev;
}
int inv_icm42600_gyro_parse_fifo(struct iio_dev *indio_dev)
{
struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
struct inv_icm42600_sensor_state *gyro_st = iio_priv(indio_dev);
struct inv_sensors_timestamp *ts = &gyro_st->ts;
ssize_t i, size;
unsigned int no;
const void *accel, *gyro, *timestamp;
const int8_t *temp;
unsigned int odr;
int64_t ts_val;
struct inv_icm42600_gyro_buffer buffer;
/* parse all fifo packets */
for (i = 0, no = 0; i < st->fifo.count; i += size, ++no) {
size = inv_icm42600_fifo_decode_packet(&st->fifo.data[i],
&accel, &gyro, &temp, ×tamp, &odr);
/* quit if error or FIFO is empty */
if (size <= 0)
return size;
/* skip packet if no gyro data or data is invalid */
if (gyro == NULL || !inv_icm42600_fifo_is_data_valid(gyro))
continue;
/* update odr */
if (odr & INV_ICM42600_SENSOR_GYRO)
inv_sensors_timestamp_apply_odr(ts, st->fifo.period,
st->fifo.nb.total, no);
/* buffer is copied to userspace, zeroing it to avoid any data leak */
memset(&buffer, 0, sizeof(buffer));
memcpy(&buffer.gyro, gyro, sizeof(buffer.gyro));
/* convert 8 bits FIFO temperature in high resolution format */
buffer.temp = temp ? (*temp * 64) : 0;
ts_val = inv_sensors_timestamp_pop(ts);
iio_push_to_buffers_with_timestamp(indio_dev, &buffer, ts_val);
}
return 0;
}