Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 | // SPDX-License-Identifier: GPL-2.0-only /* * DFL device driver for Time-of-Day (ToD) private feature * * Copyright (C) 2023 Intel Corporation */ #include <linux/bitfield.h> #include <linux/delay.h> #include <linux/dfl.h> #include <linux/gcd.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/ptp_clock_kernel.h> #include <linux/spinlock.h> #include <linux/units.h> #define FME_FEATURE_ID_TOD 0x22 /* ToD clock register space. */ #define TOD_CLK_FREQ 0x038 /* * The read sequence of ToD timestamp registers: TOD_NANOSEC, TOD_SECONDSL and * TOD_SECONDSH, because there is a hardware snapshot whenever the TOD_NANOSEC * register is read. * * The ToD IP requires writing registers in the reverse order to the read sequence. * The timestamp is corrected when the TOD_NANOSEC register is written, so the * sequence of write TOD registers: TOD_SECONDSH, TOD_SECONDSL and TOD_NANOSEC. */ #define TOD_SECONDSH 0x100 #define TOD_SECONDSL 0x104 #define TOD_NANOSEC 0x108 #define TOD_PERIOD 0x110 #define TOD_ADJUST_PERIOD 0x114 #define TOD_ADJUST_COUNT 0x118 #define TOD_DRIFT_ADJUST 0x11c #define TOD_DRIFT_ADJUST_RATE 0x120 #define PERIOD_FRAC_OFFSET 16 #define SECONDS_MSB GENMASK_ULL(47, 32) #define SECONDS_LSB GENMASK_ULL(31, 0) #define TOD_SECONDSH_SEC_MSB GENMASK_ULL(15, 0) #define CAL_SECONDS(m, l) ((FIELD_GET(TOD_SECONDSH_SEC_MSB, (m)) << 32) | (l)) #define TOD_PERIOD_MASK GENMASK_ULL(19, 0) #define TOD_PERIOD_MAX FIELD_MAX(TOD_PERIOD_MASK) #define TOD_PERIOD_MIN 0 #define TOD_DRIFT_ADJUST_MASK GENMASK_ULL(15, 0) #define TOD_DRIFT_ADJUST_FNS_MAX FIELD_MAX(TOD_DRIFT_ADJUST_MASK) #define TOD_DRIFT_ADJUST_RATE_MAX TOD_DRIFT_ADJUST_FNS_MAX #define TOD_ADJUST_COUNT_MASK GENMASK_ULL(19, 0) #define TOD_ADJUST_COUNT_MAX FIELD_MAX(TOD_ADJUST_COUNT_MASK) #define TOD_ADJUST_INTERVAL_US 10 #define TOD_ADJUST_MS \ (((TOD_PERIOD_MAX >> 16) + 1) * (TOD_ADJUST_COUNT_MAX + 1)) #define TOD_ADJUST_MS_MAX (TOD_ADJUST_MS / MICRO) #define TOD_ADJUST_MAX_US (TOD_ADJUST_MS_MAX * USEC_PER_MSEC) #define TOD_MAX_ADJ (500 * MEGA) struct dfl_tod { struct ptp_clock_info ptp_clock_ops; struct device *dev; struct ptp_clock *ptp_clock; /* ToD Clock address space */ void __iomem *tod_ctrl; /* ToD clock registers protection */ spinlock_t tod_lock; }; /* * A fine ToD HW clock offset adjustment. To perform the fine offset adjustment, the * adjust_period and adjust_count argument are used to update the TOD_ADJUST_PERIOD * and TOD_ADJUST_COUNT register for in hardware. The dt->tod_lock spinlock must be * held when calling this function. */ static int fine_adjust_tod_clock(struct dfl_tod *dt, u32 adjust_period, u32 adjust_count) { void __iomem *base = dt->tod_ctrl; u32 val; writel(adjust_period, base + TOD_ADJUST_PERIOD); writel(adjust_count, base + TOD_ADJUST_COUNT); /* Wait for present offset adjustment update to complete */ return readl_poll_timeout_atomic(base + TOD_ADJUST_COUNT, val, !val, TOD_ADJUST_INTERVAL_US, TOD_ADJUST_MAX_US); } /* * A coarse ToD HW clock offset adjustment. The coarse time adjustment performs by * adding or subtracting the delta value from the current ToD HW clock time. */ static int coarse_adjust_tod_clock(struct dfl_tod *dt, s64 delta) { u32 seconds_msb, seconds_lsb, nanosec; void __iomem *base = dt->tod_ctrl; u64 seconds, now; if (delta == 0) return 0; nanosec = readl(base + TOD_NANOSEC); seconds_lsb = readl(base + TOD_SECONDSL); seconds_msb = readl(base + TOD_SECONDSH); /* Calculate new time */ seconds = CAL_SECONDS(seconds_msb, seconds_lsb); now = seconds * NSEC_PER_SEC + nanosec + delta; seconds = div_u64_rem(now, NSEC_PER_SEC, &nanosec); seconds_msb = FIELD_GET(SECONDS_MSB, seconds); seconds_lsb = FIELD_GET(SECONDS_LSB, seconds); writel(seconds_msb, base + TOD_SECONDSH); writel(seconds_lsb, base + TOD_SECONDSL); writel(nanosec, base + TOD_NANOSEC); return 0; } static int dfl_tod_adjust_fine(struct ptp_clock_info *ptp, long scaled_ppm) { struct dfl_tod *dt = container_of(ptp, struct dfl_tod, ptp_clock_ops); u32 tod_period, tod_rem, tod_drift_adjust_fns, tod_drift_adjust_rate; void __iomem *base = dt->tod_ctrl; unsigned long flags, rate; u64 ppb; /* Get the clock rate from clock frequency register offset */ rate = readl(base + TOD_CLK_FREQ); /* add GIGA as nominal ppb */ ppb = scaled_ppm_to_ppb(scaled_ppm) + GIGA; tod_period = div_u64_rem(ppb << PERIOD_FRAC_OFFSET, rate, &tod_rem); if (tod_period > TOD_PERIOD_MAX) return -ERANGE; /* * The drift of ToD adjusted periodically by adding a drift_adjust_fns * correction value every drift_adjust_rate count of clock cycles. */ tod_drift_adjust_fns = tod_rem / gcd(tod_rem, rate); tod_drift_adjust_rate = rate / gcd(tod_rem, rate); while ((tod_drift_adjust_fns > TOD_DRIFT_ADJUST_FNS_MAX) || (tod_drift_adjust_rate > TOD_DRIFT_ADJUST_RATE_MAX)) { tod_drift_adjust_fns >>= 1; tod_drift_adjust_rate >>= 1; } if (tod_drift_adjust_fns == 0) tod_drift_adjust_rate = 0; spin_lock_irqsave(&dt->tod_lock, flags); writel(tod_period, base + TOD_PERIOD); writel(0, base + TOD_ADJUST_PERIOD); writel(0, base + TOD_ADJUST_COUNT); writel(tod_drift_adjust_fns, base + TOD_DRIFT_ADJUST); writel(tod_drift_adjust_rate, base + TOD_DRIFT_ADJUST_RATE); spin_unlock_irqrestore(&dt->tod_lock, flags); return 0; } static int dfl_tod_adjust_time(struct ptp_clock_info *ptp, s64 delta) { struct dfl_tod *dt = container_of(ptp, struct dfl_tod, ptp_clock_ops); u32 period, diff, rem, rem_period, adj_period; void __iomem *base = dt->tod_ctrl; unsigned long flags; bool neg_adj; u64 count; int ret; neg_adj = delta < 0; if (neg_adj) delta = -delta; spin_lock_irqsave(&dt->tod_lock, flags); /* * Get the maximum possible value of the Period register offset * adjustment in nanoseconds scale. This depends on the current * Period register setting and the maximum and minimum possible * values of the Period register. */ period = readl(base + TOD_PERIOD); if (neg_adj) { diff = (period - TOD_PERIOD_MIN) >> PERIOD_FRAC_OFFSET; adj_period = period - (diff << PERIOD_FRAC_OFFSET); count = div_u64_rem(delta, diff, &rem); rem_period = period - (rem << PERIOD_FRAC_OFFSET); } else { diff = (TOD_PERIOD_MAX - period) >> PERIOD_FRAC_OFFSET; adj_period = period + (diff << PERIOD_FRAC_OFFSET); count = div_u64_rem(delta, diff, &rem); rem_period = period + (rem << PERIOD_FRAC_OFFSET); } ret = 0; if (count > TOD_ADJUST_COUNT_MAX) { ret = coarse_adjust_tod_clock(dt, delta); } else { /* Adjust the period by count cycles to adjust the time */ if (count) ret = fine_adjust_tod_clock(dt, adj_period, count); /* If there is a remainder, adjust the period for an additional cycle */ if (rem) ret = fine_adjust_tod_clock(dt, rem_period, 1); } spin_unlock_irqrestore(&dt->tod_lock, flags); return ret; } static int dfl_tod_get_timex(struct ptp_clock_info *ptp, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct dfl_tod *dt = container_of(ptp, struct dfl_tod, ptp_clock_ops); u32 seconds_msb, seconds_lsb, nanosec; void __iomem *base = dt->tod_ctrl; unsigned long flags; u64 seconds; spin_lock_irqsave(&dt->tod_lock, flags); ptp_read_system_prets(sts); nanosec = readl(base + TOD_NANOSEC); seconds_lsb = readl(base + TOD_SECONDSL); seconds_msb = readl(base + TOD_SECONDSH); ptp_read_system_postts(sts); spin_unlock_irqrestore(&dt->tod_lock, flags); seconds = CAL_SECONDS(seconds_msb, seconds_lsb); ts->tv_nsec = nanosec; ts->tv_sec = seconds; return 0; } static int dfl_tod_set_time(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct dfl_tod *dt = container_of(ptp, struct dfl_tod, ptp_clock_ops); u32 seconds_msb = FIELD_GET(SECONDS_MSB, ts->tv_sec); u32 seconds_lsb = FIELD_GET(SECONDS_LSB, ts->tv_sec); u32 nanosec = FIELD_GET(SECONDS_LSB, ts->tv_nsec); void __iomem *base = dt->tod_ctrl; unsigned long flags; spin_lock_irqsave(&dt->tod_lock, flags); writel(seconds_msb, base + TOD_SECONDSH); writel(seconds_lsb, base + TOD_SECONDSL); writel(nanosec, base + TOD_NANOSEC); spin_unlock_irqrestore(&dt->tod_lock, flags); return 0; } static struct ptp_clock_info dfl_tod_clock_ops = { .owner = THIS_MODULE, .name = "dfl_tod", .max_adj = TOD_MAX_ADJ, .adjfine = dfl_tod_adjust_fine, .adjtime = dfl_tod_adjust_time, .gettimex64 = dfl_tod_get_timex, .settime64 = dfl_tod_set_time, }; static int dfl_tod_probe(struct dfl_device *ddev) { struct device *dev = &ddev->dev; struct dfl_tod *dt; dt = devm_kzalloc(dev, sizeof(*dt), GFP_KERNEL); if (!dt) return -ENOMEM; dt->tod_ctrl = devm_ioremap_resource(dev, &ddev->mmio_res); if (IS_ERR(dt->tod_ctrl)) return PTR_ERR(dt->tod_ctrl); dt->dev = dev; spin_lock_init(&dt->tod_lock); dev_set_drvdata(dev, dt); dt->ptp_clock_ops = dfl_tod_clock_ops; dt->ptp_clock = ptp_clock_register(&dt->ptp_clock_ops, dev); if (IS_ERR(dt->ptp_clock)) return dev_err_probe(dt->dev, PTR_ERR(dt->ptp_clock), "Unable to register PTP clock\n"); return 0; } static void dfl_tod_remove(struct dfl_device *ddev) { struct dfl_tod *dt = dev_get_drvdata(&ddev->dev); ptp_clock_unregister(dt->ptp_clock); } static const struct dfl_device_id dfl_tod_ids[] = { { FME_ID, FME_FEATURE_ID_TOD }, { } }; MODULE_DEVICE_TABLE(dfl, dfl_tod_ids); static struct dfl_driver dfl_tod_driver = { .drv = { .name = "dfl-tod", }, .id_table = dfl_tod_ids, .probe = dfl_tod_probe, .remove = dfl_tod_remove, }; module_dfl_driver(dfl_tod_driver); MODULE_DESCRIPTION("FPGA DFL ToD driver"); MODULE_AUTHOR("Intel Corporation"); MODULE_LICENSE("GPL"); |