Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
[
    {
        "BriefDescription": "pclk Cycles",
        "Counter": "0,1,2,3",
        "EventName": "UNC_P_CLOCKTICKS",
        "PerPkg": "1",
        "PublicDescription": "The PCU runs off a fixed 800 MHz clock.  This event counts the number of pclk cycles measured while the counter was enabled.  The pclk, like the Memory Controller's dclk, counts at a constant rate making it a good measure of actual wall time.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 0 C State Transition Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x70",
        "EventName": "UNC_P_CORE0_TRANSITION_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of cycles spent performing core C state transitions.  There is one event per core.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 10 C State Transition Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x7a",
        "EventName": "UNC_P_CORE10_TRANSITION_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of cycles spent performing core C state transitions.  There is one event per core.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 11 C State Transition Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x7b",
        "EventName": "UNC_P_CORE11_TRANSITION_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of cycles spent performing core C state transitions.  There is one event per core.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 12 C State Transition Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x7c",
        "EventName": "UNC_P_CORE12_TRANSITION_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of cycles spent performing core C state transitions.  There is one event per core.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 13 C State Transition Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x7d",
        "EventName": "UNC_P_CORE13_TRANSITION_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of cycles spent performing core C state transitions.  There is one event per core.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 14 C State Transition Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x7e",
        "EventName": "UNC_P_CORE14_TRANSITION_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of cycles spent performing core C state transitions.  There is one event per core.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 1 C State Transition Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x71",
        "EventName": "UNC_P_CORE1_TRANSITION_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of cycles spent performing core C state transitions.  There is one event per core.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 2 C State Transition Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x72",
        "EventName": "UNC_P_CORE2_TRANSITION_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of cycles spent performing core C state transitions.  There is one event per core.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 3 C State Transition Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x73",
        "EventName": "UNC_P_CORE3_TRANSITION_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of cycles spent performing core C state transitions.  There is one event per core.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 4 C State Transition Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x74",
        "EventName": "UNC_P_CORE4_TRANSITION_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of cycles spent performing core C state transitions.  There is one event per core.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 5 C State Transition Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x75",
        "EventName": "UNC_P_CORE5_TRANSITION_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of cycles spent performing core C state transitions.  There is one event per core.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 6 C State Transition Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x76",
        "EventName": "UNC_P_CORE6_TRANSITION_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of cycles spent performing core C state transitions.  There is one event per core.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 7 C State Transition Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x77",
        "EventName": "UNC_P_CORE7_TRANSITION_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of cycles spent performing core C state transitions.  There is one event per core.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 8 C State Transition Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x78",
        "EventName": "UNC_P_CORE8_TRANSITION_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of cycles spent performing core C state transitions.  There is one event per core.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 9 C State Transition Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x79",
        "EventName": "UNC_P_CORE9_TRANSITION_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of cycles spent performing core C state transitions.  There is one event per core.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Deep C State Rejection - Core 0",
        "Counter": "0,1,2,3",
        "EventCode": "0x17",
        "EventName": "UNC_P_DELAYED_C_STATE_ABORT_CORE0",
        "PerPkg": "1",
        "PublicDescription": "Number of times that a deep C state was requested, but the delayed C state algorithm rejected the deep sleep state.  In other words, a wake event occurred before the timer expired that causes a transition into the deeper C state.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Deep C State Rejection - Core 1",
        "Counter": "0,1,2,3",
        "EventCode": "0x18",
        "EventName": "UNC_P_DELAYED_C_STATE_ABORT_CORE1",
        "PerPkg": "1",
        "PublicDescription": "Number of times that a deep C state was requested, but the delayed C state algorithm rejected the deep sleep state.  In other words, a wake event occurred before the timer expired that causes a transition into the deeper C state.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Deep C State Rejection - Core 10",
        "Counter": "0,1,2,3",
        "EventCode": "0x21",
        "EventName": "UNC_P_DELAYED_C_STATE_ABORT_CORE10",
        "PerPkg": "1",
        "PublicDescription": "Number of times that a deep C state was requested, but the delayed C state algorithm rejected the deep sleep state.  In other words, a wake event occurred before the timer expired that causes a transition into the deeper C state.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Deep C State Rejection - Core 11",
        "Counter": "0,1,2,3",
        "EventCode": "0x22",
        "EventName": "UNC_P_DELAYED_C_STATE_ABORT_CORE11",
        "PerPkg": "1",
        "PublicDescription": "Number of times that a deep C state was requested, but the delayed C state algorithm rejected the deep sleep state.  In other words, a wake event occurred before the timer expired that causes a transition into the deeper C state.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Deep C State Rejection - Core 12",
        "Counter": "0,1,2,3",
        "EventCode": "0x23",
        "EventName": "UNC_P_DELAYED_C_STATE_ABORT_CORE12",
        "PerPkg": "1",
        "PublicDescription": "Number of times that a deep C state was requested, but the delayed C state algorithm rejected the deep sleep state.  In other words, a wake event occurred before the timer expired that causes a transition into the deeper C state.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Deep C State Rejection - Core 13",
        "Counter": "0,1,2,3",
        "EventCode": "0x24",
        "EventName": "UNC_P_DELAYED_C_STATE_ABORT_CORE13",
        "PerPkg": "1",
        "PublicDescription": "Number of times that a deep C state was requested, but the delayed C state algorithm rejected the deep sleep state.  In other words, a wake event occurred before the timer expired that causes a transition into the deeper C state.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Deep C State Rejection - Core 14",
        "Counter": "0,1,2,3",
        "EventCode": "0x25",
        "EventName": "UNC_P_DELAYED_C_STATE_ABORT_CORE14",
        "PerPkg": "1",
        "PublicDescription": "Number of times that a deep C state was requested, but the delayed C state algorithm rejected the deep sleep state.  In other words, a wake event occurred before the timer expired that causes a transition into the deeper C state.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Deep C State Rejection - Core 2",
        "Counter": "0,1,2,3",
        "EventCode": "0x19",
        "EventName": "UNC_P_DELAYED_C_STATE_ABORT_CORE2",
        "PerPkg": "1",
        "PublicDescription": "Number of times that a deep C state was requested, but the delayed C state algorithm rejected the deep sleep state.  In other words, a wake event occurred before the timer expired that causes a transition into the deeper C state.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Deep C State Rejection - Core 3",
        "Counter": "0,1,2,3",
        "EventCode": "0x1a",
        "EventName": "UNC_P_DELAYED_C_STATE_ABORT_CORE3",
        "PerPkg": "1",
        "PublicDescription": "Number of times that a deep C state was requested, but the delayed C state algorithm rejected the deep sleep state.  In other words, a wake event occurred before the timer expired that causes a transition into the deeper C state.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Deep C State Rejection - Core 4",
        "Counter": "0,1,2,3",
        "EventCode": "0x1b",
        "EventName": "UNC_P_DELAYED_C_STATE_ABORT_CORE4",
        "PerPkg": "1",
        "PublicDescription": "Number of times that a deep C state was requested, but the delayed C state algorithm rejected the deep sleep state.  In other words, a wake event occurred before the timer expired that causes a transition into the deeper C state.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Deep C State Rejection - Core 5",
        "Counter": "0,1,2,3",
        "EventCode": "0x1c",
        "EventName": "UNC_P_DELAYED_C_STATE_ABORT_CORE5",
        "PerPkg": "1",
        "PublicDescription": "Number of times that a deep C state was requested, but the delayed C state algorithm rejected the deep sleep state.  In other words, a wake event occurred before the timer expired that causes a transition into the deeper C state.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Deep C State Rejection - Core 6",
        "Counter": "0,1,2,3",
        "EventCode": "0x1d",
        "EventName": "UNC_P_DELAYED_C_STATE_ABORT_CORE6",
        "PerPkg": "1",
        "PublicDescription": "Number of times that a deep C state was requested, but the delayed C state algorithm rejected the deep sleep state.  In other words, a wake event occurred before the timer expired that causes a transition into the deeper C state.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Deep C State Rejection - Core 7",
        "Counter": "0,1,2,3",
        "EventCode": "0x1e",
        "EventName": "UNC_P_DELAYED_C_STATE_ABORT_CORE7",
        "PerPkg": "1",
        "PublicDescription": "Number of times that a deep C state was requested, but the delayed C state algorithm rejected the deep sleep state.  In other words, a wake event occurred before the timer expired that causes a transition into the deeper C state.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Deep C State Rejection - Core 8",
        "Counter": "0,1,2,3",
        "EventCode": "0x1f",
        "EventName": "UNC_P_DELAYED_C_STATE_ABORT_CORE8",
        "PerPkg": "1",
        "PublicDescription": "Number of times that a deep C state was requested, but the delayed C state algorithm rejected the deep sleep state.  In other words, a wake event occurred before the timer expired that causes a transition into the deeper C state.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Deep C State Rejection - Core 9",
        "Counter": "0,1,2,3",
        "EventCode": "0x20",
        "EventName": "UNC_P_DELAYED_C_STATE_ABORT_CORE9",
        "PerPkg": "1",
        "PublicDescription": "Number of times that a deep C state was requested, but the delayed C state algorithm rejected the deep sleep state.  In other words, a wake event occurred before the timer expired that causes a transition into the deeper C state.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 0 C State Demotions",
        "Counter": "0,1,2,3",
        "EventCode": "0x1e",
        "EventName": "UNC_P_DEMOTIONS_CORE0",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times when a configurable cores had a C-state demotion",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 1 C State Demotions",
        "Counter": "0,1,2,3",
        "EventCode": "0x1f",
        "EventName": "UNC_P_DEMOTIONS_CORE1",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times when a configurable cores had a C-state demotion",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 10 C State Demotions",
        "Counter": "0,1,2,3",
        "EventCode": "0x42",
        "EventName": "UNC_P_DEMOTIONS_CORE10",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times when a configurable cores had a C-state demotion",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 11 C State Demotions",
        "Counter": "0,1,2,3",
        "EventCode": "0x43",
        "EventName": "UNC_P_DEMOTIONS_CORE11",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times when a configurable cores had a C-state demotion",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 12 C State Demotions",
        "Counter": "0,1,2,3",
        "EventCode": "0x44",
        "EventName": "UNC_P_DEMOTIONS_CORE12",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times when a configurable cores had a C-state demotion",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 13 C State Demotions",
        "Counter": "0,1,2,3",
        "EventCode": "0x45",
        "EventName": "UNC_P_DEMOTIONS_CORE13",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times when a configurable cores had a C-state demotion",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 14 C State Demotions",
        "Counter": "0,1,2,3",
        "EventCode": "0x46",
        "EventName": "UNC_P_DEMOTIONS_CORE14",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times when a configurable cores had a C-state demotion",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 2 C State Demotions",
        "Counter": "0,1,2,3",
        "EventCode": "0x20",
        "EventName": "UNC_P_DEMOTIONS_CORE2",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times when a configurable cores had a C-state demotion",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 3 C State Demotions",
        "Counter": "0,1,2,3",
        "EventCode": "0x21",
        "EventName": "UNC_P_DEMOTIONS_CORE3",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times when a configurable cores had a C-state demotion",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 4 C State Demotions",
        "Counter": "0,1,2,3",
        "EventCode": "0x22",
        "EventName": "UNC_P_DEMOTIONS_CORE4",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times when a configurable cores had a C-state demotion",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 5 C State Demotions",
        "Counter": "0,1,2,3",
        "EventCode": "0x23",
        "EventName": "UNC_P_DEMOTIONS_CORE5",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times when a configurable cores had a C-state demotion",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 6 C State Demotions",
        "Counter": "0,1,2,3",
        "EventCode": "0x24",
        "EventName": "UNC_P_DEMOTIONS_CORE6",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times when a configurable cores had a C-state demotion",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 7 C State Demotions",
        "Counter": "0,1,2,3",
        "EventCode": "0x25",
        "EventName": "UNC_P_DEMOTIONS_CORE7",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times when a configurable cores had a C-state demotion",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 8 C State Demotions",
        "Counter": "0,1,2,3",
        "EventCode": "0x40",
        "EventName": "UNC_P_DEMOTIONS_CORE8",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times when a configurable cores had a C-state demotion",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Core 9 C State Demotions",
        "Counter": "0,1,2,3",
        "EventCode": "0x41",
        "EventName": "UNC_P_DEMOTIONS_CORE9",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times when a configurable cores had a C-state demotion",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Frequency Residency",
        "Counter": "0,1,2,3",
        "EventCode": "0xb",
        "EventName": "UNC_P_FREQ_BAND0_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the uncore was running at a frequency greater than or equal to the frequency that is configured in the filter.  One can use all four counters with this event, so it is possible to track up to 4 configurable bands.  One can use edge detect in conjunction with this event to track the number of times that we transitioned into a frequency greater than or equal to the configurable frequency. One can also use inversion to track cycles when we were less than the configured frequency.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Frequency Residency",
        "Counter": "0,1,2,3",
        "EventCode": "0xc",
        "EventName": "UNC_P_FREQ_BAND1_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the uncore was running at a frequency greater than or equal to the frequency that is configured in the filter.  One can use all four counters with this event, so it is possible to track up to 4 configurable bands.  One can use edge detect in conjunction with this event to track the number of times that we transitioned into a frequency greater than or equal to the configurable frequency. One can also use inversion to track cycles when we were less than the configured frequency.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Frequency Residency",
        "Counter": "0,1,2,3",
        "EventCode": "0xd",
        "EventName": "UNC_P_FREQ_BAND2_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the uncore was running at a frequency greater than or equal to the frequency that is configured in the filter.  One can use all four counters with this event, so it is possible to track up to 4 configurable bands.  One can use edge detect in conjunction with this event to track the number of times that we transitioned into a frequency greater than or equal to the configurable frequency. One can also use inversion to track cycles when we were less than the configured frequency.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Frequency Residency",
        "Counter": "0,1,2,3",
        "EventCode": "0xe",
        "EventName": "UNC_P_FREQ_BAND3_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the uncore was running at a frequency greater than or equal to the frequency that is configured in the filter.  One can use all four counters with this event, so it is possible to track up to 4 configurable bands.  One can use edge detect in conjunction with this event to track the number of times that we transitioned into a frequency greater than or equal to the configurable frequency. One can also use inversion to track cycles when we were less than the configured frequency.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Current Strongest Upper Limit Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x7",
        "EventName": "UNC_P_FREQ_MAX_CURRENT_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when current is the upper limit on frequency.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Thermal Strongest Upper Limit Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x4",
        "EventName": "UNC_P_FREQ_MAX_LIMIT_THERMAL_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when thermal conditions are the upper limit on frequency.  This is related to the THERMAL_THROTTLE CYCLES_ABOVE_TEMP event, which always counts cycles when we are above the thermal temperature.  This event (STRONGEST_UPPER_LIMIT) is sampled at the output of the algorithm that determines the actual frequency, while THERMAL_THROTTLE looks at the input.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "OS Strongest Upper Limit Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x6",
        "EventName": "UNC_P_FREQ_MAX_OS_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when the OS is the upper limit on frequency.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Power Strongest Upper Limit Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x5",
        "EventName": "UNC_P_FREQ_MAX_POWER_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when power is the upper limit on frequency.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "IO P Limit Strongest Lower Limit Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x61",
        "EventName": "UNC_P_FREQ_MIN_IO_P_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when IO P Limit is preventing us from dropping the frequency lower.  This algorithm monitors the needs to the IO subsystem on both local and remote sockets and will maintain a frequency high enough to maintain good IO BW.  This is necessary for when all the IA cores on a socket are idle but a user still would like to maintain high IO Bandwidth.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Perf P Limit Strongest Lower Limit Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x62",
        "EventName": "UNC_P_FREQ_MIN_PERF_P_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when Perf P Limit is preventing us from dropping the frequency lower.  Perf P Limit is an algorithm that takes input from remote sockets when determining if a socket should drop it's frequency down.  This is largely to minimize increases in snoop and remote read latencies.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Cycles spent changing Frequency",
        "Counter": "0,1,2,3",
        "EventCode": "0x60",
        "EventName": "UNC_P_FREQ_TRANS_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when the system is changing frequency.  This can not be filtered by thread ID.  One can also use it with the occupancy counter that monitors number of threads in C0 to estimate the performance impact that frequency transitions had on the system.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Memory Phase Shedding Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x2f",
        "EventName": "UNC_P_MEMORY_PHASE_SHEDDING_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the PCU has triggered memory phase shedding.  This is a mode that can be run in the iMC physicals that saves power at the expense of additional latency.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Package C State Exit Latency",
        "Counter": "0,1,2,3",
        "EventCode": "0x26",
        "EventName": "UNC_P_PKG_C_EXIT_LATENCY",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the package is transitioning from package C2 to C3.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Package C State Exit Latency",
        "Counter": "0,1,2,3",
        "EventCode": "0x26",
        "EventName": "UNC_P_PKG_C_EXIT_LATENCY_SEL",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the package is transitioning from package C2 to C3.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Package C State Residency - C0",
        "Counter": "0,1,2,3",
        "EventCode": "0x2a",
        "EventName": "UNC_P_PKG_C_STATE_RESIDENCY_C0_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the package is in C0",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Package C State Residency - C2",
        "Counter": "0,1,2,3",
        "EventCode": "0x2b",
        "EventName": "UNC_P_PKG_C_STATE_RESIDENCY_C2_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the package is in C2",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Package C State Residency - C3",
        "Counter": "0,1,2,3",
        "EventCode": "0x2c",
        "EventName": "UNC_P_PKG_C_STATE_RESIDENCY_C3_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the package is in C3",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Package C State Residency - C6",
        "Counter": "0,1,2,3",
        "EventCode": "0x2d",
        "EventName": "UNC_P_PKG_C_STATE_RESIDENCY_C6_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the package is in C6",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Number of cores in C-State; C0 and C1",
        "Counter": "0,1,2,3",
        "EventCode": "0x80",
        "EventName": "UNC_P_POWER_STATE_OCCUPANCY.CORES_C0",
        "Filter": "occ_sel=1",
        "PerPkg": "1",
        "PublicDescription": "This is an occupancy event that tracks the number of cores that are in the chosen C-State.  It can be used by itself to get the average number of cores in that C-state with thresholding to generate histograms, or with other PCU events and occupancy triggering to capture other details.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Number of cores in C-State; C3",
        "Counter": "0,1,2,3",
        "EventCode": "0x80",
        "EventName": "UNC_P_POWER_STATE_OCCUPANCY.CORES_C3",
        "Filter": "occ_sel=2",
        "PerPkg": "1",
        "PublicDescription": "This is an occupancy event that tracks the number of cores that are in the chosen C-State.  It can be used by itself to get the average number of cores in that C-state with thresholding to generate histograms, or with other PCU events and occupancy triggering to capture other details.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Number of cores in C-State; C6 and C7",
        "Counter": "0,1,2,3",
        "EventCode": "0x80",
        "EventName": "UNC_P_POWER_STATE_OCCUPANCY.CORES_C6",
        "Filter": "occ_sel=3",
        "PerPkg": "1",
        "PublicDescription": "This is an occupancy event that tracks the number of cores that are in the chosen C-State.  It can be used by itself to get the average number of cores in that C-state with thresholding to generate histograms, or with other PCU events and occupancy triggering to capture other details.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "External Prochot",
        "Counter": "0,1,2,3",
        "EventCode": "0xa",
        "EventName": "UNC_P_PROCHOT_EXTERNAL_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that we are in external PROCHOT mode.  This mode is triggered when a sensor off the die determines that something off-die (like DRAM) is too hot and must throttle to avoid damaging the chip.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Internal Prochot",
        "Counter": "0,1,2,3",
        "EventCode": "0x9",
        "EventName": "UNC_P_PROCHOT_INTERNAL_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that we are in Internal PROCHOT mode.  This mode is triggered when a sensor on the die determines that we are too hot and must throttle to avoid damaging the chip.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Total Core C State Transition Cycles",
        "Counter": "0,1,2,3",
        "EventCode": "0x63",
        "EventName": "UNC_P_TOTAL_TRANSITION_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of cycles spent performing core C state transitions across all cores.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Cycles Changing Voltage",
        "Counter": "0,1,2,3",
        "EventCode": "0x3",
        "EventName": "UNC_P_VOLT_TRANS_CYCLES_CHANGE",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when the system is changing voltage.  There is no filtering supported with this event.  One can use it as a simple event, or use it conjunction with the occupancy events to monitor the number of cores or threads that were impacted by the transition.  This event is calculated by or'ing together the increasing and decreasing events.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Cycles Decreasing Voltage",
        "Counter": "0,1,2,3",
        "EventCode": "0x2",
        "EventName": "UNC_P_VOLT_TRANS_CYCLES_DECREASE",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when the system is decreasing voltage.  There is no filtering supported with this event.  One can use it as a simple event, or use it conjunction with the occupancy events to monitor the number of cores or threads that were impacted by the transition.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "Cycles Increasing Voltage",
        "Counter": "0,1,2,3",
        "EventCode": "0x1",
        "EventName": "UNC_P_VOLT_TRANS_CYCLES_INCREASE",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when the system is increasing voltage.  There is no filtering supported with this event.  One can use it as a simple event, or use it conjunction with the occupancy events to monitor the number of cores or threads that were impacted by the transition.",
        "Unit": "PCU"
    },
    {
        "BriefDescription": "VR Hot",
        "Counter": "0,1,2,3",
        "EventCode": "0x32",
        "EventName": "UNC_P_VR_HOT_CYCLES",
        "PerPkg": "1",
        "Unit": "PCU"
    }
]