Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2023 Rivos Inc
 *
 * Authors:
 *     Atish Patra <atishp@rivosinc.com>
 */

#define pr_fmt(fmt)	"riscv-kvm-pmu: " fmt
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/perf/riscv_pmu.h>
#include <asm/csr.h>
#include <asm/kvm_vcpu_sbi.h>
#include <asm/kvm_vcpu_pmu.h>
#include <asm/sbi.h>
#include <linux/bitops.h>

#define kvm_pmu_num_counters(pmu) ((pmu)->num_hw_ctrs + (pmu)->num_fw_ctrs)
#define get_event_type(x) (((x) & SBI_PMU_EVENT_IDX_TYPE_MASK) >> 16)
#define get_event_code(x) ((x) & SBI_PMU_EVENT_IDX_CODE_MASK)

static enum perf_hw_id hw_event_perf_map[SBI_PMU_HW_GENERAL_MAX] = {
	[SBI_PMU_HW_CPU_CYCLES] = PERF_COUNT_HW_CPU_CYCLES,
	[SBI_PMU_HW_INSTRUCTIONS] = PERF_COUNT_HW_INSTRUCTIONS,
	[SBI_PMU_HW_CACHE_REFERENCES] = PERF_COUNT_HW_CACHE_REFERENCES,
	[SBI_PMU_HW_CACHE_MISSES] = PERF_COUNT_HW_CACHE_MISSES,
	[SBI_PMU_HW_BRANCH_INSTRUCTIONS] = PERF_COUNT_HW_BRANCH_INSTRUCTIONS,
	[SBI_PMU_HW_BRANCH_MISSES] = PERF_COUNT_HW_BRANCH_MISSES,
	[SBI_PMU_HW_BUS_CYCLES] = PERF_COUNT_HW_BUS_CYCLES,
	[SBI_PMU_HW_STALLED_CYCLES_FRONTEND] = PERF_COUNT_HW_STALLED_CYCLES_FRONTEND,
	[SBI_PMU_HW_STALLED_CYCLES_BACKEND] = PERF_COUNT_HW_STALLED_CYCLES_BACKEND,
	[SBI_PMU_HW_REF_CPU_CYCLES] = PERF_COUNT_HW_REF_CPU_CYCLES,
};

static u64 kvm_pmu_get_sample_period(struct kvm_pmc *pmc)
{
	u64 counter_val_mask = GENMASK(pmc->cinfo.width, 0);
	u64 sample_period;

	if (!pmc->counter_val)
		sample_period = counter_val_mask;
	else
		sample_period = (-pmc->counter_val) & counter_val_mask;

	return sample_period;
}

static u32 kvm_pmu_get_perf_event_type(unsigned long eidx)
{
	enum sbi_pmu_event_type etype = get_event_type(eidx);
	u32 type = PERF_TYPE_MAX;

	switch (etype) {
	case SBI_PMU_EVENT_TYPE_HW:
		type = PERF_TYPE_HARDWARE;
		break;
	case SBI_PMU_EVENT_TYPE_CACHE:
		type = PERF_TYPE_HW_CACHE;
		break;
	case SBI_PMU_EVENT_TYPE_RAW:
	case SBI_PMU_EVENT_TYPE_FW:
		type = PERF_TYPE_RAW;
		break;
	default:
		break;
	}

	return type;
}

static bool kvm_pmu_is_fw_event(unsigned long eidx)
{
	return get_event_type(eidx) == SBI_PMU_EVENT_TYPE_FW;
}

static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
{
	if (pmc->perf_event) {
		perf_event_disable(pmc->perf_event);
		perf_event_release_kernel(pmc->perf_event);
		pmc->perf_event = NULL;
	}
}

static u64 kvm_pmu_get_perf_event_hw_config(u32 sbi_event_code)
{
	return hw_event_perf_map[sbi_event_code];
}

static u64 kvm_pmu_get_perf_event_cache_config(u32 sbi_event_code)
{
	u64 config = U64_MAX;
	unsigned int cache_type, cache_op, cache_result;

	/* All the cache event masks lie within 0xFF. No separate masking is necessary */
	cache_type = (sbi_event_code & SBI_PMU_EVENT_CACHE_ID_CODE_MASK) >>
		      SBI_PMU_EVENT_CACHE_ID_SHIFT;
	cache_op = (sbi_event_code & SBI_PMU_EVENT_CACHE_OP_ID_CODE_MASK) >>
		    SBI_PMU_EVENT_CACHE_OP_SHIFT;
	cache_result = sbi_event_code & SBI_PMU_EVENT_CACHE_RESULT_ID_CODE_MASK;

	if (cache_type >= PERF_COUNT_HW_CACHE_MAX ||
	    cache_op >= PERF_COUNT_HW_CACHE_OP_MAX ||
	    cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return config;

	config = cache_type | (cache_op << 8) | (cache_result << 16);

	return config;
}

static u64 kvm_pmu_get_perf_event_config(unsigned long eidx, uint64_t evt_data)
{
	enum sbi_pmu_event_type etype = get_event_type(eidx);
	u32 ecode = get_event_code(eidx);
	u64 config = U64_MAX;

	switch (etype) {
	case SBI_PMU_EVENT_TYPE_HW:
		if (ecode < SBI_PMU_HW_GENERAL_MAX)
			config = kvm_pmu_get_perf_event_hw_config(ecode);
		break;
	case SBI_PMU_EVENT_TYPE_CACHE:
		config = kvm_pmu_get_perf_event_cache_config(ecode);
		break;
	case SBI_PMU_EVENT_TYPE_RAW:
		config = evt_data & RISCV_PMU_RAW_EVENT_MASK;
		break;
	case SBI_PMU_EVENT_TYPE_FW:
		if (ecode < SBI_PMU_FW_MAX)
			config = (1ULL << 63) | ecode;
		break;
	default:
		break;
	}

	return config;
}

static int kvm_pmu_get_fixed_pmc_index(unsigned long eidx)
{
	u32 etype = kvm_pmu_get_perf_event_type(eidx);
	u32 ecode = get_event_code(eidx);

	if (etype != SBI_PMU_EVENT_TYPE_HW)
		return -EINVAL;

	if (ecode == SBI_PMU_HW_CPU_CYCLES)
		return 0;
	else if (ecode == SBI_PMU_HW_INSTRUCTIONS)
		return 2;
	else
		return -EINVAL;
}

static int kvm_pmu_get_programmable_pmc_index(struct kvm_pmu *kvpmu, unsigned long eidx,
					      unsigned long cbase, unsigned long cmask)
{
	int ctr_idx = -1;
	int i, pmc_idx;
	int min, max;

	if (kvm_pmu_is_fw_event(eidx)) {
		/* Firmware counters are mapped 1:1 starting from num_hw_ctrs for simplicity */
		min = kvpmu->num_hw_ctrs;
		max = min + kvpmu->num_fw_ctrs;
	} else {
		/* First 3 counters are reserved for fixed counters */
		min = 3;
		max = kvpmu->num_hw_ctrs;
	}

	for_each_set_bit(i, &cmask, BITS_PER_LONG) {
		pmc_idx = i + cbase;
		if ((pmc_idx >= min && pmc_idx < max) &&
		    !test_bit(pmc_idx, kvpmu->pmc_in_use)) {
			ctr_idx = pmc_idx;
			break;
		}
	}

	return ctr_idx;
}

static int pmu_get_pmc_index(struct kvm_pmu *pmu, unsigned long eidx,
			     unsigned long cbase, unsigned long cmask)
{
	int ret;

	/* Fixed counters need to be have fixed mapping as they have different width */
	ret = kvm_pmu_get_fixed_pmc_index(eidx);
	if (ret >= 0)
		return ret;

	return kvm_pmu_get_programmable_pmc_index(pmu, eidx, cbase, cmask);
}

static int pmu_fw_ctr_read_hi(struct kvm_vcpu *vcpu, unsigned long cidx,
			      unsigned long *out_val)
{
	struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu);
	struct kvm_pmc *pmc;
	int fevent_code;

	if (!IS_ENABLED(CONFIG_32BIT)) {
		pr_warn("%s: should be invoked for only RV32\n", __func__);
		return -EINVAL;
	}

	if (cidx >= kvm_pmu_num_counters(kvpmu) || cidx == 1) {
		pr_warn("Invalid counter id [%ld]during read\n", cidx);
		return -EINVAL;
	}

	pmc = &kvpmu->pmc[cidx];

	if (pmc->cinfo.type != SBI_PMU_CTR_TYPE_FW)
		return -EINVAL;

	fevent_code = get_event_code(pmc->event_idx);
	pmc->counter_val = kvpmu->fw_event[fevent_code].value;

	*out_val = pmc->counter_val >> 32;

	return 0;
}

static int pmu_ctr_read(struct kvm_vcpu *vcpu, unsigned long cidx,
			unsigned long *out_val)
{
	struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu);
	struct kvm_pmc *pmc;
	u64 enabled, running;
	int fevent_code;

	if (cidx >= kvm_pmu_num_counters(kvpmu) || cidx == 1) {
		pr_warn("Invalid counter id [%ld] during read\n", cidx);
		return -EINVAL;
	}

	pmc = &kvpmu->pmc[cidx];

	if (pmc->cinfo.type == SBI_PMU_CTR_TYPE_FW) {
		fevent_code = get_event_code(pmc->event_idx);
		pmc->counter_val = kvpmu->fw_event[fevent_code].value;
	} else if (pmc->perf_event) {
		pmc->counter_val += perf_event_read_value(pmc->perf_event, &enabled, &running);
	} else {
		return -EINVAL;
	}
	*out_val = pmc->counter_val;

	return 0;
}

static int kvm_pmu_validate_counter_mask(struct kvm_pmu *kvpmu, unsigned long ctr_base,
					 unsigned long ctr_mask)
{
	/* Make sure the we have a valid counter mask requested from the caller */
	if (!ctr_mask || (ctr_base + __fls(ctr_mask) >= kvm_pmu_num_counters(kvpmu)))
		return -EINVAL;

	return 0;
}

static void kvm_riscv_pmu_overflow(struct perf_event *perf_event,
				   struct perf_sample_data *data,
				   struct pt_regs *regs)
{
	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
	struct kvm_vcpu *vcpu = pmc->vcpu;
	struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu);
	struct riscv_pmu *rpmu = to_riscv_pmu(perf_event->pmu);
	u64 period;

	/*
	 * Stop the event counting by directly accessing the perf_event.
	 * Otherwise, this needs to deferred via a workqueue.
	 * That will introduce skew in the counter value because the actual
	 * physical counter would start after returning from this function.
	 * It will be stopped again once the workqueue is scheduled
	 */
	rpmu->pmu.stop(perf_event, PERF_EF_UPDATE);

	/*
	 * The hw counter would start automatically when this function returns.
	 * Thus, the host may continue to interrupt and inject it to the guest
	 * even without the guest configuring the next event. Depending on the hardware
	 * the host may have some sluggishness only if privilege mode filtering is not
	 * available. In an ideal world, where qemu is not the only capable hardware,
	 * this can be removed.
	 * FYI: ARM64 does this way while x86 doesn't do anything as such.
	 * TODO: Should we keep it for RISC-V ?
	 */
	period = -(local64_read(&perf_event->count));

	local64_set(&perf_event->hw.period_left, 0);
	perf_event->attr.sample_period = period;
	perf_event->hw.sample_period = period;

	set_bit(pmc->idx, kvpmu->pmc_overflown);
	kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_PMU_OVF);

	rpmu->pmu.start(perf_event, PERF_EF_RELOAD);
}

static long kvm_pmu_create_perf_event(struct kvm_pmc *pmc, struct perf_event_attr *attr,
				      unsigned long flags, unsigned long eidx,
				      unsigned long evtdata)
{
	struct perf_event *event;

	kvm_pmu_release_perf_event(pmc);
	attr->config = kvm_pmu_get_perf_event_config(eidx, evtdata);
	if (flags & SBI_PMU_CFG_FLAG_CLEAR_VALUE) {
		//TODO: Do we really want to clear the value in hardware counter
		pmc->counter_val = 0;
	}

	/*
	 * Set the default sample_period for now. The guest specified value
	 * will be updated in the start call.
	 */
	attr->sample_period = kvm_pmu_get_sample_period(pmc);

	event = perf_event_create_kernel_counter(attr, -1, current, kvm_riscv_pmu_overflow, pmc);
	if (IS_ERR(event)) {
		pr_debug("kvm pmu event creation failed for eidx %lx: %ld\n", eidx, PTR_ERR(event));
		return PTR_ERR(event);
	}

	pmc->perf_event = event;
	if (flags & SBI_PMU_CFG_FLAG_AUTO_START)
		perf_event_enable(pmc->perf_event);

	return 0;
}

int kvm_riscv_vcpu_pmu_incr_fw(struct kvm_vcpu *vcpu, unsigned long fid)
{
	struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu);
	struct kvm_fw_event *fevent;

	if (!kvpmu || fid >= SBI_PMU_FW_MAX)
		return -EINVAL;

	fevent = &kvpmu->fw_event[fid];
	if (fevent->started)
		fevent->value++;

	return 0;
}

int kvm_riscv_vcpu_pmu_read_hpm(struct kvm_vcpu *vcpu, unsigned int csr_num,
				unsigned long *val, unsigned long new_val,
				unsigned long wr_mask)
{
	struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu);
	int cidx, ret = KVM_INSN_CONTINUE_NEXT_SEPC;

	if (!kvpmu || !kvpmu->init_done) {
		/*
		 * In absence of sscofpmf in the platform, the guest OS may use
		 * the legacy PMU driver to read cycle/instret. In that case,
		 * just return 0 to avoid any illegal trap. However, any other
		 * hpmcounter access should result in illegal trap as they must
		 * be access through SBI PMU only.
		 */
		if (csr_num == CSR_CYCLE || csr_num == CSR_INSTRET) {
			*val = 0;
			return ret;
		} else {
			return KVM_INSN_ILLEGAL_TRAP;
		}
	}

	/* The counter CSR are read only. Thus, any write should result in illegal traps */
	if (wr_mask)
		return KVM_INSN_ILLEGAL_TRAP;

	cidx = csr_num - CSR_CYCLE;

	if (pmu_ctr_read(vcpu, cidx, val) < 0)
		return KVM_INSN_ILLEGAL_TRAP;

	return ret;
}

static void kvm_pmu_clear_snapshot_area(struct kvm_vcpu *vcpu)
{
	struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu);
	int snapshot_area_size = sizeof(struct riscv_pmu_snapshot_data);

	if (kvpmu->sdata) {
		if (kvpmu->snapshot_addr != INVALID_GPA) {
			memset(kvpmu->sdata, 0, snapshot_area_size);
			kvm_vcpu_write_guest(vcpu, kvpmu->snapshot_addr,
					     kvpmu->sdata, snapshot_area_size);
		} else {
			pr_warn("snapshot address invalid\n");
		}
		kfree(kvpmu->sdata);
		kvpmu->sdata = NULL;
	}
	kvpmu->snapshot_addr = INVALID_GPA;
}

int kvm_riscv_vcpu_pmu_snapshot_set_shmem(struct kvm_vcpu *vcpu, unsigned long saddr_low,
				      unsigned long saddr_high, unsigned long flags,
				      struct kvm_vcpu_sbi_return *retdata)
{
	struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu);
	int snapshot_area_size = sizeof(struct riscv_pmu_snapshot_data);
	int sbiret = 0;
	gpa_t saddr;
	unsigned long hva;
	bool writable;

	if (!kvpmu || flags) {
		sbiret = SBI_ERR_INVALID_PARAM;
		goto out;
	}

	if (saddr_low == SBI_SHMEM_DISABLE && saddr_high == SBI_SHMEM_DISABLE) {
		kvm_pmu_clear_snapshot_area(vcpu);
		return 0;
	}

	saddr = saddr_low;

	if (saddr_high != 0) {
		if (IS_ENABLED(CONFIG_32BIT))
			saddr |= ((gpa_t)saddr_high << 32);
		else
			sbiret = SBI_ERR_INVALID_ADDRESS;
		goto out;
	}

	hva = kvm_vcpu_gfn_to_hva_prot(vcpu, saddr >> PAGE_SHIFT, &writable);
	if (kvm_is_error_hva(hva) || !writable) {
		sbiret = SBI_ERR_INVALID_ADDRESS;
		goto out;
	}

	kvpmu->sdata = kzalloc(snapshot_area_size, GFP_ATOMIC);
	if (!kvpmu->sdata)
		return -ENOMEM;

	if (kvm_vcpu_write_guest(vcpu, saddr, kvpmu->sdata, snapshot_area_size)) {
		kfree(kvpmu->sdata);
		sbiret = SBI_ERR_FAILURE;
		goto out;
	}

	kvpmu->snapshot_addr = saddr;

out:
	retdata->err_val = sbiret;

	return 0;
}

int kvm_riscv_vcpu_pmu_num_ctrs(struct kvm_vcpu *vcpu,
				struct kvm_vcpu_sbi_return *retdata)
{
	struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu);

	retdata->out_val = kvm_pmu_num_counters(kvpmu);

	return 0;
}

int kvm_riscv_vcpu_pmu_ctr_info(struct kvm_vcpu *vcpu, unsigned long cidx,
				struct kvm_vcpu_sbi_return *retdata)
{
	struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu);

	if (cidx > RISCV_KVM_MAX_COUNTERS || cidx == 1) {
		retdata->err_val = SBI_ERR_INVALID_PARAM;
		return 0;
	}

	retdata->out_val = kvpmu->pmc[cidx].cinfo.value;

	return 0;
}

int kvm_riscv_vcpu_pmu_ctr_start(struct kvm_vcpu *vcpu, unsigned long ctr_base,
				 unsigned long ctr_mask, unsigned long flags, u64 ival,
				 struct kvm_vcpu_sbi_return *retdata)
{
	struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu);
	int i, pmc_index, sbiret = 0;
	struct kvm_pmc *pmc;
	int fevent_code;
	bool snap_flag_set = flags & SBI_PMU_START_FLAG_INIT_SNAPSHOT;

	if (kvm_pmu_validate_counter_mask(kvpmu, ctr_base, ctr_mask) < 0) {
		sbiret = SBI_ERR_INVALID_PARAM;
		goto out;
	}

	if (snap_flag_set) {
		if (kvpmu->snapshot_addr == INVALID_GPA) {
			sbiret = SBI_ERR_NO_SHMEM;
			goto out;
		}
		if (kvm_vcpu_read_guest(vcpu, kvpmu->snapshot_addr, kvpmu->sdata,
					sizeof(struct riscv_pmu_snapshot_data))) {
			pr_warn("Unable to read snapshot shared memory while starting counters\n");
			sbiret = SBI_ERR_FAILURE;
			goto out;
		}
	}
	/* Start the counters that have been configured and requested by the guest */
	for_each_set_bit(i, &ctr_mask, RISCV_MAX_COUNTERS) {
		pmc_index = i + ctr_base;
		if (!test_bit(pmc_index, kvpmu->pmc_in_use))
			continue;
		/* The guest started the counter again. Reset the overflow status */
		clear_bit(pmc_index, kvpmu->pmc_overflown);
		pmc = &kvpmu->pmc[pmc_index];
		if (flags & SBI_PMU_START_FLAG_SET_INIT_VALUE) {
			pmc->counter_val = ival;
		} else if (snap_flag_set) {
			/* The counter index in the snapshot are relative to the counter base */
			pmc->counter_val = kvpmu->sdata->ctr_values[i];
		}

		if (pmc->cinfo.type == SBI_PMU_CTR_TYPE_FW) {
			fevent_code = get_event_code(pmc->event_idx);
			if (fevent_code >= SBI_PMU_FW_MAX) {
				sbiret = SBI_ERR_INVALID_PARAM;
				goto out;
			}

			/* Check if the counter was already started for some reason */
			if (kvpmu->fw_event[fevent_code].started) {
				sbiret = SBI_ERR_ALREADY_STARTED;
				continue;
			}

			kvpmu->fw_event[fevent_code].started = true;
			kvpmu->fw_event[fevent_code].value = pmc->counter_val;
		} else if (pmc->perf_event) {
			if (unlikely(pmc->started)) {
				sbiret = SBI_ERR_ALREADY_STARTED;
				continue;
			}
			perf_event_period(pmc->perf_event, kvm_pmu_get_sample_period(pmc));
			perf_event_enable(pmc->perf_event);
			pmc->started = true;
		} else {
			sbiret = SBI_ERR_INVALID_PARAM;
		}
	}

out:
	retdata->err_val = sbiret;

	return 0;
}

int kvm_riscv_vcpu_pmu_ctr_stop(struct kvm_vcpu *vcpu, unsigned long ctr_base,
				unsigned long ctr_mask, unsigned long flags,
				struct kvm_vcpu_sbi_return *retdata)
{
	struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu);
	int i, pmc_index, sbiret = 0;
	u64 enabled, running;
	struct kvm_pmc *pmc;
	int fevent_code;
	bool snap_flag_set = flags & SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT;
	bool shmem_needs_update = false;

	if (kvm_pmu_validate_counter_mask(kvpmu, ctr_base, ctr_mask) < 0) {
		sbiret = SBI_ERR_INVALID_PARAM;
		goto out;
	}

	if (snap_flag_set && kvpmu->snapshot_addr == INVALID_GPA) {
		sbiret = SBI_ERR_NO_SHMEM;
		goto out;
	}

	/* Stop the counters that have been configured and requested by the guest */
	for_each_set_bit(i, &ctr_mask, RISCV_MAX_COUNTERS) {
		pmc_index = i + ctr_base;
		if (!test_bit(pmc_index, kvpmu->pmc_in_use))
			continue;
		pmc = &kvpmu->pmc[pmc_index];
		if (pmc->cinfo.type == SBI_PMU_CTR_TYPE_FW) {
			fevent_code = get_event_code(pmc->event_idx);
			if (fevent_code >= SBI_PMU_FW_MAX) {
				sbiret = SBI_ERR_INVALID_PARAM;
				goto out;
			}

			if (!kvpmu->fw_event[fevent_code].started)
				sbiret = SBI_ERR_ALREADY_STOPPED;

			kvpmu->fw_event[fevent_code].started = false;
		} else if (pmc->perf_event) {
			if (pmc->started) {
				/* Stop counting the counter */
				perf_event_disable(pmc->perf_event);
				pmc->started = false;
			} else {
				sbiret = SBI_ERR_ALREADY_STOPPED;
			}

			if (flags & SBI_PMU_STOP_FLAG_RESET)
				/* Release the counter if this is a reset request */
				kvm_pmu_release_perf_event(pmc);
		} else {
			sbiret = SBI_ERR_INVALID_PARAM;
		}

		if (snap_flag_set && !sbiret) {
			if (pmc->cinfo.type == SBI_PMU_CTR_TYPE_FW)
				pmc->counter_val = kvpmu->fw_event[fevent_code].value;
			else if (pmc->perf_event)
				pmc->counter_val += perf_event_read_value(pmc->perf_event,
									  &enabled, &running);
			/*
			 * The counter and overflow indicies in the snapshot region are w.r.to
			 * cbase. Modify the set bit in the counter mask instead of the pmc_index
			 * which indicates the absolute counter index.
			 */
			if (test_bit(pmc_index, kvpmu->pmc_overflown))
				kvpmu->sdata->ctr_overflow_mask |= BIT(i);
			kvpmu->sdata->ctr_values[i] = pmc->counter_val;
			shmem_needs_update = true;
		}

		if (flags & SBI_PMU_STOP_FLAG_RESET) {
			pmc->event_idx = SBI_PMU_EVENT_IDX_INVALID;
			clear_bit(pmc_index, kvpmu->pmc_in_use);
			clear_bit(pmc_index, kvpmu->pmc_overflown);
			if (snap_flag_set) {
				/*
				 * Only clear the given counter as the caller is responsible to
				 * validate both the overflow mask and configured counters.
				 */
				kvpmu->sdata->ctr_overflow_mask &= ~BIT(i);
				shmem_needs_update = true;
			}
		}
	}

	if (shmem_needs_update)
		kvm_vcpu_write_guest(vcpu, kvpmu->snapshot_addr, kvpmu->sdata,
					     sizeof(struct riscv_pmu_snapshot_data));

out:
	retdata->err_val = sbiret;

	return 0;
}

int kvm_riscv_vcpu_pmu_ctr_cfg_match(struct kvm_vcpu *vcpu, unsigned long ctr_base,
				     unsigned long ctr_mask, unsigned long flags,
				     unsigned long eidx, u64 evtdata,
				     struct kvm_vcpu_sbi_return *retdata)
{
	int ctr_idx, sbiret = 0;
	long ret;
	bool is_fevent;
	unsigned long event_code;
	u32 etype = kvm_pmu_get_perf_event_type(eidx);
	struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu);
	struct kvm_pmc *pmc = NULL;
	struct perf_event_attr attr = {
		.type = etype,
		.size = sizeof(struct perf_event_attr),
		.pinned = true,
		/*
		 * It should never reach here if the platform doesn't support the sscofpmf
		 * extension as mode filtering won't work without it.
		 */
		.exclude_host = true,
		.exclude_hv = true,
		.exclude_user = !!(flags & SBI_PMU_CFG_FLAG_SET_UINH),
		.exclude_kernel = !!(flags & SBI_PMU_CFG_FLAG_SET_SINH),
		.config1 = RISCV_PMU_CONFIG1_GUEST_EVENTS,
	};

	if (kvm_pmu_validate_counter_mask(kvpmu, ctr_base, ctr_mask) < 0) {
		sbiret = SBI_ERR_INVALID_PARAM;
		goto out;
	}

	event_code = get_event_code(eidx);
	is_fevent = kvm_pmu_is_fw_event(eidx);
	if (is_fevent && event_code >= SBI_PMU_FW_MAX) {
		sbiret = SBI_ERR_NOT_SUPPORTED;
		goto out;
	}

	/*
	 * SKIP_MATCH flag indicates the caller is aware of the assigned counter
	 * for this event. Just do a sanity check if it already marked used.
	 */
	if (flags & SBI_PMU_CFG_FLAG_SKIP_MATCH) {
		if (!test_bit(ctr_base + __ffs(ctr_mask), kvpmu->pmc_in_use)) {
			sbiret = SBI_ERR_FAILURE;
			goto out;
		}
		ctr_idx = ctr_base + __ffs(ctr_mask);
	} else  {
		ctr_idx = pmu_get_pmc_index(kvpmu, eidx, ctr_base, ctr_mask);
		if (ctr_idx < 0) {
			sbiret = SBI_ERR_NOT_SUPPORTED;
			goto out;
		}
	}

	pmc = &kvpmu->pmc[ctr_idx];
	pmc->idx = ctr_idx;

	if (is_fevent) {
		if (flags & SBI_PMU_CFG_FLAG_AUTO_START)
			kvpmu->fw_event[event_code].started = true;
	} else {
		ret = kvm_pmu_create_perf_event(pmc, &attr, flags, eidx, evtdata);
		if (ret) {
			sbiret = SBI_ERR_NOT_SUPPORTED;
			goto out;
		}
	}

	set_bit(ctr_idx, kvpmu->pmc_in_use);
	pmc->event_idx = eidx;
	retdata->out_val = ctr_idx;
out:
	retdata->err_val = sbiret;

	return 0;
}

int kvm_riscv_vcpu_pmu_fw_ctr_read_hi(struct kvm_vcpu *vcpu, unsigned long cidx,
				      struct kvm_vcpu_sbi_return *retdata)
{
	int ret;

	ret = pmu_fw_ctr_read_hi(vcpu, cidx, &retdata->out_val);
	if (ret == -EINVAL)
		retdata->err_val = SBI_ERR_INVALID_PARAM;

	return 0;
}

int kvm_riscv_vcpu_pmu_fw_ctr_read(struct kvm_vcpu *vcpu, unsigned long cidx,
				struct kvm_vcpu_sbi_return *retdata)
{
	int ret;

	ret = pmu_ctr_read(vcpu, cidx, &retdata->out_val);
	if (ret == -EINVAL)
		retdata->err_val = SBI_ERR_INVALID_PARAM;

	return 0;
}

void kvm_riscv_vcpu_pmu_init(struct kvm_vcpu *vcpu)
{
	int i = 0, ret, num_hw_ctrs = 0, hpm_width = 0;
	struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu);
	struct kvm_pmc *pmc;

	/*
	 * PMU functionality should be only available to guests if privilege mode
	 * filtering is available in the host. Otherwise, guest will always count
	 * events while the execution is in hypervisor mode.
	 */
	if (!riscv_isa_extension_available(NULL, SSCOFPMF))
		return;

	ret = riscv_pmu_get_hpm_info(&hpm_width, &num_hw_ctrs);
	if (ret < 0 || !hpm_width || !num_hw_ctrs)
		return;

	/*
	 * Increase the number of hardware counters to offset the time counter.
	 */
	kvpmu->num_hw_ctrs = num_hw_ctrs + 1;
	kvpmu->num_fw_ctrs = SBI_PMU_FW_MAX;
	memset(&kvpmu->fw_event, 0, SBI_PMU_FW_MAX * sizeof(struct kvm_fw_event));
	kvpmu->snapshot_addr = INVALID_GPA;

	if (kvpmu->num_hw_ctrs > RISCV_KVM_MAX_HW_CTRS) {
		pr_warn_once("Limiting the hardware counters to 32 as specified by the ISA");
		kvpmu->num_hw_ctrs = RISCV_KVM_MAX_HW_CTRS;
	}

	/*
	 * There is no correlation between the logical hardware counter and virtual counters.
	 * However, we need to encode a hpmcounter CSR in the counter info field so that
	 * KVM can trap n emulate the read. This works well in the migration use case as
	 * KVM doesn't care if the actual hpmcounter is available in the hardware or not.
	 */
	for (i = 0; i < kvm_pmu_num_counters(kvpmu); i++) {
		/* TIME CSR shouldn't be read from perf interface */
		if (i == 1)
			continue;
		pmc = &kvpmu->pmc[i];
		pmc->idx = i;
		pmc->event_idx = SBI_PMU_EVENT_IDX_INVALID;
		pmc->vcpu = vcpu;
		if (i < kvpmu->num_hw_ctrs) {
			pmc->cinfo.type = SBI_PMU_CTR_TYPE_HW;
			if (i < 3)
				/* CY, IR counters */
				pmc->cinfo.width = 63;
			else
				pmc->cinfo.width = hpm_width;
			/*
			 * The CSR number doesn't have any relation with the logical
			 * hardware counters. The CSR numbers are encoded sequentially
			 * to avoid maintaining a map between the virtual counter
			 * and CSR number.
			 */
			pmc->cinfo.csr = CSR_CYCLE + i;
		} else {
			pmc->cinfo.type = SBI_PMU_CTR_TYPE_FW;
			pmc->cinfo.width = 63;
		}
	}

	kvpmu->init_done = true;
}

void kvm_riscv_vcpu_pmu_deinit(struct kvm_vcpu *vcpu)
{
	struct kvm_pmu *kvpmu = vcpu_to_pmu(vcpu);
	struct kvm_pmc *pmc;
	int i;

	if (!kvpmu)
		return;

	for_each_set_bit(i, kvpmu->pmc_in_use, RISCV_KVM_MAX_COUNTERS) {
		pmc = &kvpmu->pmc[i];
		pmc->counter_val = 0;
		kvm_pmu_release_perf_event(pmc);
		pmc->event_idx = SBI_PMU_EVENT_IDX_INVALID;
	}
	bitmap_zero(kvpmu->pmc_in_use, RISCV_KVM_MAX_COUNTERS);
	bitmap_zero(kvpmu->pmc_overflown, RISCV_KVM_MAX_COUNTERS);
	memset(&kvpmu->fw_event, 0, SBI_PMU_FW_MAX * sizeof(struct kvm_fw_event));
	kvm_pmu_clear_snapshot_area(vcpu);
}

void kvm_riscv_vcpu_pmu_reset(struct kvm_vcpu *vcpu)
{
	kvm_riscv_vcpu_pmu_deinit(vcpu);
}