Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
// SPDX-License-Identifier: GPL-2.0-or-later
 /*
 *	x86 SMP booting functions
 *
 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
 *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
 *	Copyright 2001 Andi Kleen, SuSE Labs.
 *
 *	Much of the core SMP work is based on previous work by Thomas Radke, to
 *	whom a great many thanks are extended.
 *
 *	Thanks to Intel for making available several different Pentium,
 *	Pentium Pro and Pentium-II/Xeon MP machines.
 *	Original development of Linux SMP code supported by Caldera.
 *
 *	Fixes
 *		Felix Koop	:	NR_CPUS used properly
 *		Jose Renau	:	Handle single CPU case.
 *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
 *		Greg Wright	:	Fix for kernel stacks panic.
 *		Erich Boleyn	:	MP v1.4 and additional changes.
 *	Matthias Sattler	:	Changes for 2.1 kernel map.
 *	Michel Lespinasse	:	Changes for 2.1 kernel map.
 *	Michael Chastain	:	Change trampoline.S to gnu as.
 *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
 *		Ingo Molnar	:	Added APIC timers, based on code
 *					from Jose Renau
 *		Ingo Molnar	:	various cleanups and rewrites
 *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
 *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
 *	Andi Kleen		:	Changed for SMP boot into long mode.
 *		Martin J. Bligh	: 	Added support for multi-quad systems
 *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
 *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
 *      Andi Kleen              :       Converted to new state machine.
 *	Ashok Raj		: 	CPU hotplug support
 *	Glauber Costa		:	i386 and x86_64 integration
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/init.h>
#include <linux/smp.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/sched/topology.h>
#include <linux/sched/hotplug.h>
#include <linux/sched/task_stack.h>
#include <linux/percpu.h>
#include <linux/memblock.h>
#include <linux/err.h>
#include <linux/nmi.h>
#include <linux/tboot.h>
#include <linux/gfp.h>
#include <linux/cpuidle.h>
#include <linux/kexec.h>
#include <linux/numa.h>
#include <linux/pgtable.h>
#include <linux/overflow.h>
#include <linux/stackprotector.h>
#include <linux/cpuhotplug.h>
#include <linux/mc146818rtc.h>

#include <asm/acpi.h>
#include <asm/cacheinfo.h>
#include <asm/desc.h>
#include <asm/nmi.h>
#include <asm/irq.h>
#include <asm/realmode.h>
#include <asm/cpu.h>
#include <asm/numa.h>
#include <asm/tlbflush.h>
#include <asm/mtrr.h>
#include <asm/mwait.h>
#include <asm/apic.h>
#include <asm/io_apic.h>
#include <asm/fpu/api.h>
#include <asm/setup.h>
#include <asm/uv/uv.h>
#include <asm/microcode.h>
#include <asm/i8259.h>
#include <asm/misc.h>
#include <asm/qspinlock.h>
#include <asm/intel-family.h>
#include <asm/cpu_device_id.h>
#include <asm/spec-ctrl.h>
#include <asm/hw_irq.h>
#include <asm/stackprotector.h>
#include <asm/sev.h>
#include <asm/spec-ctrl.h>

/* representing HT siblings of each logical CPU */
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);

/* representing HT and core siblings of each logical CPU */
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
EXPORT_PER_CPU_SYMBOL(cpu_core_map);

/* representing HT, core, and die siblings of each logical CPU */
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
EXPORT_PER_CPU_SYMBOL(cpu_die_map);

/* CPUs which are the primary SMT threads */
struct cpumask __cpu_primary_thread_mask __read_mostly;

/* Representing CPUs for which sibling maps can be computed */
static cpumask_var_t cpu_sibling_setup_mask;

struct mwait_cpu_dead {
	unsigned int	control;
	unsigned int	status;
};

#define CPUDEAD_MWAIT_WAIT	0xDEADBEEF
#define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD

/*
 * Cache line aligned data for mwait_play_dead(). Separate on purpose so
 * that it's unlikely to be touched by other CPUs.
 */
static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);

/* Maximum number of SMT threads on any online core */
int __read_mostly __max_smt_threads = 1;

/* Flag to indicate if a complete sched domain rebuild is required */
bool x86_topology_update;

int arch_update_cpu_topology(void)
{
	int retval = x86_topology_update;

	x86_topology_update = false;
	return retval;
}

static unsigned int smpboot_warm_reset_vector_count;

static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
{
	unsigned long flags;

	spin_lock_irqsave(&rtc_lock, flags);
	if (!smpboot_warm_reset_vector_count++) {
		CMOS_WRITE(0xa, 0xf);
		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
	}
	spin_unlock_irqrestore(&rtc_lock, flags);
}

static inline void smpboot_restore_warm_reset_vector(void)
{
	unsigned long flags;

	/*
	 * Paranoid:  Set warm reset code and vector here back
	 * to default values.
	 */
	spin_lock_irqsave(&rtc_lock, flags);
	if (!--smpboot_warm_reset_vector_count) {
		CMOS_WRITE(0, 0xf);
		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
	}
	spin_unlock_irqrestore(&rtc_lock, flags);

}

/* Run the next set of setup steps for the upcoming CPU */
static void ap_starting(void)
{
	int cpuid = smp_processor_id();

	/* Mop up eventual mwait_play_dead() wreckage */
	this_cpu_write(mwait_cpu_dead.status, 0);
	this_cpu_write(mwait_cpu_dead.control, 0);

	/*
	 * If woken up by an INIT in an 82489DX configuration the alive
	 * synchronization guarantees that the CPU does not reach this
	 * point before an INIT_deassert IPI reaches the local APIC, so it
	 * is now safe to touch the local APIC.
	 *
	 * Set up this CPU, first the APIC, which is probably redundant on
	 * most boards.
	 */
	apic_ap_setup();

	/* Save the processor parameters. */
	smp_store_cpu_info(cpuid);

	/*
	 * The topology information must be up to date before
	 * notify_cpu_starting().
	 */
	set_cpu_sibling_map(cpuid);

	ap_init_aperfmperf();

	pr_debug("Stack at about %p\n", &cpuid);

	wmb();

	/*
	 * This runs the AP through all the cpuhp states to its target
	 * state CPUHP_ONLINE.
	 */
	notify_cpu_starting(cpuid);
}

static void ap_calibrate_delay(void)
{
	/*
	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
	 * smp_store_cpu_info() stored a value that is close but not as
	 * accurate as the value just calculated.
	 *
	 * As this is invoked after the TSC synchronization check,
	 * calibrate_delay_is_known() will skip the calibration routine
	 * when TSC is synchronized across sockets.
	 */
	calibrate_delay();
	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
}

/*
 * Activate a secondary processor.
 */
static void notrace start_secondary(void *unused)
{
	/*
	 * Don't put *anything* except direct CPU state initialization
	 * before cpu_init(), SMP booting is too fragile that we want to
	 * limit the things done here to the most necessary things.
	 */
	cr4_init();

	/*
	 * 32-bit specific. 64-bit reaches this code with the correct page
	 * table established. Yet another historical divergence.
	 */
	if (IS_ENABLED(CONFIG_X86_32)) {
		/* switch away from the initial page table */
		load_cr3(swapper_pg_dir);
		__flush_tlb_all();
	}

	cpu_init_exception_handling();

	/*
	 * Load the microcode before reaching the AP alive synchronization
	 * point below so it is not part of the full per CPU serialized
	 * bringup part when "parallel" bringup is enabled.
	 *
	 * That's even safe when hyperthreading is enabled in the CPU as
	 * the core code starts the primary threads first and leaves the
	 * secondary threads waiting for SIPI. Loading microcode on
	 * physical cores concurrently is a safe operation.
	 *
	 * This covers both the Intel specific issue that concurrent
	 * microcode loading on SMT siblings must be prohibited and the
	 * vendor independent issue`that microcode loading which changes
	 * CPUID, MSRs etc. must be strictly serialized to maintain
	 * software state correctness.
	 */
	load_ucode_ap();

	/*
	 * Synchronization point with the hotplug core. Sets this CPUs
	 * synchronization state to ALIVE and spin-waits for the control CPU to
	 * release this CPU for further bringup.
	 */
	cpuhp_ap_sync_alive();

	cpu_init();
	fpu__init_cpu();
	rcutree_report_cpu_starting(raw_smp_processor_id());
	x86_cpuinit.early_percpu_clock_init();

	ap_starting();

	/* Check TSC synchronization with the control CPU. */
	check_tsc_sync_target();

	/*
	 * Calibrate the delay loop after the TSC synchronization check.
	 * This allows to skip the calibration when TSC is synchronized
	 * across sockets.
	 */
	ap_calibrate_delay();

	speculative_store_bypass_ht_init();

	/*
	 * Lock vector_lock, set CPU online and bring the vector
	 * allocator online. Online must be set with vector_lock held
	 * to prevent a concurrent irq setup/teardown from seeing a
	 * half valid vector space.
	 */
	lock_vector_lock();
	set_cpu_online(smp_processor_id(), true);
	lapic_online();
	unlock_vector_lock();
	x86_platform.nmi_init();

	/* enable local interrupts */
	local_irq_enable();

	x86_cpuinit.setup_percpu_clockev();

	wmb();
	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
}

/*
 * The bootstrap kernel entry code has set these up. Save them for
 * a given CPU
 */
void smp_store_cpu_info(int id)
{
	struct cpuinfo_x86 *c = &cpu_data(id);

	/* Copy boot_cpu_data only on the first bringup */
	if (!c->initialized)
		*c = boot_cpu_data;
	c->cpu_index = id;
	/*
	 * During boot time, CPU0 has this setup already. Save the info when
	 * bringing up an AP.
	 */
	identify_secondary_cpu(c);
	c->initialized = true;
}

static bool
topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;

	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
}

static bool
topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
{
	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;

	return !WARN_ONCE(!topology_same_node(c, o),
		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
		"[node: %d != %d]. Ignoring dependency.\n",
		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
}

#define link_mask(mfunc, c1, c2)					\
do {									\
	cpumask_set_cpu((c1), mfunc(c2));				\
	cpumask_set_cpu((c2), mfunc(c1));				\
} while (0)

static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;

		if (c->topo.pkg_id == o->topo.pkg_id &&
		    c->topo.die_id == o->topo.die_id &&
		    c->topo.amd_node_id == o->topo.amd_node_id &&
		    per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) {
			if (c->topo.core_id == o->topo.core_id)
				return topology_sane(c, o, "smt");

			if ((c->topo.cu_id != 0xff) &&
			    (o->topo.cu_id != 0xff) &&
			    (c->topo.cu_id == o->topo.cu_id))
				return topology_sane(c, o, "smt");
		}

	} else if (c->topo.pkg_id == o->topo.pkg_id &&
		   c->topo.die_id == o->topo.die_id &&
		   c->topo.core_id == o->topo.core_id) {
		return topology_sane(c, o, "smt");
	}

	return false;
}

static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
	if (c->topo.pkg_id != o->topo.pkg_id || c->topo.die_id != o->topo.die_id)
		return false;

	if (cpu_feature_enabled(X86_FEATURE_TOPOEXT) && topology_amd_nodes_per_pkg() > 1)
		return c->topo.amd_node_id == o->topo.amd_node_id;

	return true;
}

static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;

	/* If the arch didn't set up l2c_id, fall back to SMT */
	if (per_cpu_l2c_id(cpu1) == BAD_APICID)
		return match_smt(c, o);

	/* Do not match if L2 cache id does not match: */
	if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2))
		return false;

	return topology_sane(c, o, "l2c");
}

/*
 * Unlike the other levels, we do not enforce keeping a
 * multicore group inside a NUMA node.  If this happens, we will
 * discard the MC level of the topology later.
 */
static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
	if (c->topo.pkg_id == o->topo.pkg_id)
		return true;
	return false;
}

/*
 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
 *
 * Any Intel CPU that has multiple nodes per package and does not
 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
 *
 * When in SNC mode, these CPUs enumerate an LLC that is shared
 * by multiple NUMA nodes. The LLC is shared for off-package data
 * access but private to the NUMA node (half of the package) for
 * on-package access. CPUID (the source of the information about
 * the LLC) can only enumerate the cache as shared or unshared,
 * but not this particular configuration.
 */

static const struct x86_cpu_id intel_cod_cpu[] = {
	X86_MATCH_VFM(INTEL_HASWELL_X,	 0),	/* COD */
	X86_MATCH_VFM(INTEL_BROADWELL_X, 0),	/* COD */
	X86_MATCH_VFM(INTEL_ANY,	 1),	/* SNC */
	{}
};

static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
	bool intel_snc = id && id->driver_data;

	/* Do not match if we do not have a valid APICID for cpu: */
	if (per_cpu_llc_id(cpu1) == BAD_APICID)
		return false;

	/* Do not match if LLC id does not match: */
	if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2))
		return false;

	/*
	 * Allow the SNC topology without warning. Return of false
	 * means 'c' does not share the LLC of 'o'. This will be
	 * reflected to userspace.
	 */
	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
		return false;

	return topology_sane(c, o, "llc");
}


static inline int x86_sched_itmt_flags(void)
{
	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
}

#ifdef CONFIG_SCHED_MC
static int x86_core_flags(void)
{
	return cpu_core_flags() | x86_sched_itmt_flags();
}
#endif
#ifdef CONFIG_SCHED_SMT
static int x86_smt_flags(void)
{
	return cpu_smt_flags();
}
#endif
#ifdef CONFIG_SCHED_CLUSTER
static int x86_cluster_flags(void)
{
	return cpu_cluster_flags() | x86_sched_itmt_flags();
}
#endif

static int x86_die_flags(void)
{
	if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
	       return x86_sched_itmt_flags();

	return 0;
}

/*
 * Set if a package/die has multiple NUMA nodes inside.
 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
 * Sub-NUMA Clustering have this.
 */
static bool x86_has_numa_in_package;

static struct sched_domain_topology_level x86_topology[6];

static void __init build_sched_topology(void)
{
	int i = 0;

#ifdef CONFIG_SCHED_SMT
	x86_topology[i++] = (struct sched_domain_topology_level){
		cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
	};
#endif
#ifdef CONFIG_SCHED_CLUSTER
	x86_topology[i++] = (struct sched_domain_topology_level){
		cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
	};
#endif
#ifdef CONFIG_SCHED_MC
	x86_topology[i++] = (struct sched_domain_topology_level){
		cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
	};
#endif
	/*
	 * When there is NUMA topology inside the package skip the PKG domain
	 * since the NUMA domains will auto-magically create the right spanning
	 * domains based on the SLIT.
	 */
	if (!x86_has_numa_in_package) {
		x86_topology[i++] = (struct sched_domain_topology_level){
			cpu_cpu_mask, x86_die_flags, SD_INIT_NAME(PKG)
		};
	}

	/*
	 * There must be one trailing NULL entry left.
	 */
	BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);

	set_sched_topology(x86_topology);
}

void set_cpu_sibling_map(int cpu)
{
	bool has_smt = __max_threads_per_core > 1;
	bool has_mp = has_smt || topology_num_cores_per_package() > 1;
	struct cpuinfo_x86 *c = &cpu_data(cpu);
	struct cpuinfo_x86 *o;
	int i, threads;

	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);

	if (!has_mp) {
		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
		c->booted_cores = 1;
		return;
	}

	for_each_cpu(i, cpu_sibling_setup_mask) {
		o = &cpu_data(i);

		if (match_pkg(c, o) && !topology_same_node(c, o))
			x86_has_numa_in_package = true;

		if ((i == cpu) || (has_smt && match_smt(c, o)))
			link_mask(topology_sibling_cpumask, cpu, i);

		if ((i == cpu) || (has_mp && match_llc(c, o)))
			link_mask(cpu_llc_shared_mask, cpu, i);

		if ((i == cpu) || (has_mp && match_l2c(c, o)))
			link_mask(cpu_l2c_shared_mask, cpu, i);

		if ((i == cpu) || (has_mp && match_die(c, o)))
			link_mask(topology_die_cpumask, cpu, i);
	}

	threads = cpumask_weight(topology_sibling_cpumask(cpu));
	if (threads > __max_smt_threads)
		__max_smt_threads = threads;

	for_each_cpu(i, topology_sibling_cpumask(cpu))
		cpu_data(i).smt_active = threads > 1;

	/*
	 * This needs a separate iteration over the cpus because we rely on all
	 * topology_sibling_cpumask links to be set-up.
	 */
	for_each_cpu(i, cpu_sibling_setup_mask) {
		o = &cpu_data(i);

		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
			link_mask(topology_core_cpumask, cpu, i);

			/*
			 *  Does this new cpu bringup a new core?
			 */
			if (threads == 1) {
				/*
				 * for each core in package, increment
				 * the booted_cores for this new cpu
				 */
				if (cpumask_first(
				    topology_sibling_cpumask(i)) == i)
					c->booted_cores++;
				/*
				 * increment the core count for all
				 * the other cpus in this package
				 */
				if (i != cpu)
					cpu_data(i).booted_cores++;
			} else if (i != cpu && !c->booted_cores)
				c->booted_cores = cpu_data(i).booted_cores;
		}
	}
}

/* maps the cpu to the sched domain representing multi-core */
const struct cpumask *cpu_coregroup_mask(int cpu)
{
	return cpu_llc_shared_mask(cpu);
}

const struct cpumask *cpu_clustergroup_mask(int cpu)
{
	return cpu_l2c_shared_mask(cpu);
}
EXPORT_SYMBOL_GPL(cpu_clustergroup_mask);

static void impress_friends(void)
{
	int cpu;
	unsigned long bogosum = 0;
	/*
	 * Allow the user to impress friends.
	 */
	pr_debug("Before bogomips\n");
	for_each_online_cpu(cpu)
		bogosum += cpu_data(cpu).loops_per_jiffy;

	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
		num_online_cpus(),
		bogosum/(500000/HZ),
		(bogosum/(5000/HZ))%100);

	pr_debug("Before bogocount - setting activated=1\n");
}

/*
 * The Multiprocessor Specification 1.4 (1997) example code suggests
 * that there should be a 10ms delay between the BSP asserting INIT
 * and de-asserting INIT, when starting a remote processor.
 * But that slows boot and resume on modern processors, which include
 * many cores and don't require that delay.
 *
 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
 * Modern processor families are quirked to remove the delay entirely.
 */
#define UDELAY_10MS_DEFAULT 10000

static unsigned int init_udelay = UINT_MAX;

static int __init cpu_init_udelay(char *str)
{
	get_option(&str, &init_udelay);

	return 0;
}
early_param("cpu_init_udelay", cpu_init_udelay);

static void __init smp_quirk_init_udelay(void)
{
	/* if cmdline changed it from default, leave it alone */
	if (init_udelay != UINT_MAX)
		return;

	/* if modern processor, use no delay */
	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
		init_udelay = 0;
		return;
	}
	/* else, use legacy delay */
	init_udelay = UDELAY_10MS_DEFAULT;
}

/*
 * Wake up AP by INIT, INIT, STARTUP sequence.
 */
static void send_init_sequence(u32 phys_apicid)
{
	int maxlvt = lapic_get_maxlvt();

	/* Be paranoid about clearing APIC errors. */
	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
		/* Due to the Pentium erratum 3AP.  */
		if (maxlvt > 3)
			apic_write(APIC_ESR, 0);
		apic_read(APIC_ESR);
	}

	/* Assert INIT on the target CPU */
	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
	safe_apic_wait_icr_idle();

	udelay(init_udelay);

	/* Deassert INIT on the target CPU */
	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
	safe_apic_wait_icr_idle();
}

/*
 * Wake up AP by INIT, INIT, STARTUP sequence.
 */
static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip)
{
	unsigned long send_status = 0, accept_status = 0;
	int num_starts, j, maxlvt;

	preempt_disable();
	maxlvt = lapic_get_maxlvt();
	send_init_sequence(phys_apicid);

	mb();

	/*
	 * Should we send STARTUP IPIs ?
	 *
	 * Determine this based on the APIC version.
	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
	 */
	if (APIC_INTEGRATED(boot_cpu_apic_version))
		num_starts = 2;
	else
		num_starts = 0;

	/*
	 * Run STARTUP IPI loop.
	 */
	pr_debug("#startup loops: %d\n", num_starts);

	for (j = 1; j <= num_starts; j++) {
		pr_debug("Sending STARTUP #%d\n", j);
		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
			apic_write(APIC_ESR, 0);
		apic_read(APIC_ESR);
		pr_debug("After apic_write\n");

		/*
		 * STARTUP IPI
		 */

		/* Target chip */
		/* Boot on the stack */
		/* Kick the second */
		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
			       phys_apicid);

		/*
		 * Give the other CPU some time to accept the IPI.
		 */
		if (init_udelay == 0)
			udelay(10);
		else
			udelay(300);

		pr_debug("Startup point 1\n");

		pr_debug("Waiting for send to finish...\n");
		send_status = safe_apic_wait_icr_idle();

		/*
		 * Give the other CPU some time to accept the IPI.
		 */
		if (init_udelay == 0)
			udelay(10);
		else
			udelay(200);

		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
			apic_write(APIC_ESR, 0);
		accept_status = (apic_read(APIC_ESR) & 0xEF);
		if (send_status || accept_status)
			break;
	}
	pr_debug("After Startup\n");

	if (send_status)
		pr_err("APIC never delivered???\n");
	if (accept_status)
		pr_err("APIC delivery error (%lx)\n", accept_status);

	preempt_enable();
	return (send_status | accept_status);
}

/* reduce the number of lines printed when booting a large cpu count system */
static void announce_cpu(int cpu, int apicid)
{
	static int width, node_width, first = 1;
	static int current_node = NUMA_NO_NODE;
	int node = early_cpu_to_node(cpu);

	if (!width)
		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */

	if (!node_width)
		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */

	if (system_state < SYSTEM_RUNNING) {
		if (first)
			pr_info("x86: Booting SMP configuration:\n");

		if (node != current_node) {
			if (current_node > (-1))
				pr_cont("\n");
			current_node = node;

			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
			       node_width - num_digits(node), " ", node);
		}

		/* Add padding for the BSP */
		if (first)
			pr_cont("%*s", width + 1, " ");
		first = 0;

		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
	} else
		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
			node, cpu, apicid);
}

int common_cpu_up(unsigned int cpu, struct task_struct *idle)
{
	int ret;

	/* Just in case we booted with a single CPU. */
	alternatives_enable_smp();

	per_cpu(pcpu_hot.current_task, cpu) = idle;
	cpu_init_stack_canary(cpu, idle);

	/* Initialize the interrupt stack(s) */
	ret = irq_init_percpu_irqstack(cpu);
	if (ret)
		return ret;

#ifdef CONFIG_X86_32
	/* Stack for startup_32 can be just as for start_secondary onwards */
	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
#endif
	return 0;
}

/*
 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
 * Returns zero if startup was successfully sent, else error code from
 * ->wakeup_secondary_cpu.
 */
static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle)
{
	unsigned long start_ip = real_mode_header->trampoline_start;
	int ret;

#ifdef CONFIG_X86_64
	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
	if (apic->wakeup_secondary_cpu_64)
		start_ip = real_mode_header->trampoline_start64;
#endif
	idle->thread.sp = (unsigned long)task_pt_regs(idle);
	initial_code = (unsigned long)start_secondary;

	if (IS_ENABLED(CONFIG_X86_32)) {
		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
		initial_stack  = idle->thread.sp;
	} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
		smpboot_control = cpu;
	}

	/* Enable the espfix hack for this CPU */
	init_espfix_ap(cpu);

	/* So we see what's up */
	announce_cpu(cpu, apicid);

	/*
	 * This grunge runs the startup process for
	 * the targeted processor.
	 */
	if (x86_platform.legacy.warm_reset) {

		pr_debug("Setting warm reset code and vector.\n");

		smpboot_setup_warm_reset_vector(start_ip);
		/*
		 * Be paranoid about clearing APIC errors.
		*/
		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
			apic_write(APIC_ESR, 0);
			apic_read(APIC_ESR);
		}
	}

	smp_mb();

	/*
	 * Wake up a CPU in difference cases:
	 * - Use a method from the APIC driver if one defined, with wakeup
	 *   straight to 64-bit mode preferred over wakeup to RM.
	 * Otherwise,
	 * - Use an INIT boot APIC message
	 */
	if (apic->wakeup_secondary_cpu_64)
		ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
	else if (apic->wakeup_secondary_cpu)
		ret = apic->wakeup_secondary_cpu(apicid, start_ip);
	else
		ret = wakeup_secondary_cpu_via_init(apicid, start_ip);

	/* If the wakeup mechanism failed, cleanup the warm reset vector */
	if (ret)
		arch_cpuhp_cleanup_kick_cpu(cpu);
	return ret;
}

int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
{
	u32 apicid = apic->cpu_present_to_apicid(cpu);
	int err;

	lockdep_assert_irqs_enabled();

	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);

	if (apicid == BAD_APICID || !apic_id_valid(apicid)) {
		pr_err("CPU %u has invalid APIC ID %x. Aborting bringup\n", cpu, apicid);
		return -EINVAL;
	}

	if (!test_bit(apicid, phys_cpu_present_map)) {
		pr_err("CPU %u APIC ID %x is not present. Aborting bringup\n", cpu, apicid);
		return -EINVAL;
	}

	/*
	 * Save current MTRR state in case it was changed since early boot
	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
	 */
	mtrr_save_state();

	/* the FPU context is blank, nobody can own it */
	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;

	err = common_cpu_up(cpu, tidle);
	if (err)
		return err;

	err = do_boot_cpu(apicid, cpu, tidle);
	if (err)
		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);

	return err;
}

int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
{
	return smp_ops.kick_ap_alive(cpu, tidle);
}

void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
{
	/* Cleanup possible dangling ends... */
	if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
		smpboot_restore_warm_reset_vector();
}

void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
{
	if (smp_ops.cleanup_dead_cpu)
		smp_ops.cleanup_dead_cpu(cpu);

	if (system_state == SYSTEM_RUNNING)
		pr_info("CPU %u is now offline\n", cpu);
}

void arch_cpuhp_sync_state_poll(void)
{
	if (smp_ops.poll_sync_state)
		smp_ops.poll_sync_state();
}

/**
 * arch_disable_smp_support() - Disables SMP support for x86 at boottime
 */
void __init arch_disable_smp_support(void)
{
	disable_ioapic_support();
}

/*
 * Fall back to non SMP mode after errors.
 *
 * RED-PEN audit/test this more. I bet there is more state messed up here.
 */
static __init void disable_smp(void)
{
	pr_info("SMP disabled\n");

	disable_ioapic_support();
	topology_reset_possible_cpus_up();

	cpumask_set_cpu(0, topology_sibling_cpumask(0));
	cpumask_set_cpu(0, topology_core_cpumask(0));
	cpumask_set_cpu(0, topology_die_cpumask(0));
}

void __init smp_prepare_cpus_common(void)
{
	unsigned int cpu, node;

	/* Mark all except the boot CPU as hotpluggable */
	for_each_possible_cpu(cpu) {
		if (cpu)
			per_cpu(cpu_info.cpu_index, cpu) = nr_cpu_ids;
	}

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);

		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map,    cpu), GFP_KERNEL, node);
		zalloc_cpumask_var_node(&per_cpu(cpu_core_map,       cpu), GFP_KERNEL, node);
		zalloc_cpumask_var_node(&per_cpu(cpu_die_map,        cpu), GFP_KERNEL, node);
		zalloc_cpumask_var_node(&per_cpu(cpu_llc_shared_map, cpu), GFP_KERNEL, node);
		zalloc_cpumask_var_node(&per_cpu(cpu_l2c_shared_map, cpu), GFP_KERNEL, node);
	}

	set_cpu_sibling_map(0);
}

void __init smp_prepare_boot_cpu(void)
{
	smp_ops.smp_prepare_boot_cpu();
}

#ifdef CONFIG_X86_64
/* Establish whether parallel bringup can be supported. */
bool __init arch_cpuhp_init_parallel_bringup(void)
{
	if (!x86_cpuinit.parallel_bringup) {
		pr_info("Parallel CPU startup disabled by the platform\n");
		return false;
	}

	smpboot_control = STARTUP_READ_APICID;
	pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
	return true;
}
#endif

/*
 * Prepare for SMP bootup.
 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
 *            for common interface support.
 */
void __init native_smp_prepare_cpus(unsigned int max_cpus)
{
	smp_prepare_cpus_common();

	switch (apic_intr_mode) {
	case APIC_PIC:
	case APIC_VIRTUAL_WIRE_NO_CONFIG:
		disable_smp();
		return;
	case APIC_SYMMETRIC_IO_NO_ROUTING:
		disable_smp();
		/* Setup local timer */
		x86_init.timers.setup_percpu_clockev();
		return;
	case APIC_VIRTUAL_WIRE:
	case APIC_SYMMETRIC_IO:
		break;
	}

	/* Setup local timer */
	x86_init.timers.setup_percpu_clockev();

	pr_info("CPU0: ");
	print_cpu_info(&cpu_data(0));

	uv_system_init();

	smp_quirk_init_udelay();

	speculative_store_bypass_ht_init();

	snp_set_wakeup_secondary_cpu();
}

void arch_thaw_secondary_cpus_begin(void)
{
	set_cache_aps_delayed_init(true);
}

void arch_thaw_secondary_cpus_end(void)
{
	cache_aps_init();
}

/*
 * Early setup to make printk work.
 */
void __init native_smp_prepare_boot_cpu(void)
{
	int me = smp_processor_id();

	/* SMP handles this from setup_per_cpu_areas() */
	if (!IS_ENABLED(CONFIG_SMP))
		switch_gdt_and_percpu_base(me);

	native_pv_lock_init();
}

void __init native_smp_cpus_done(unsigned int max_cpus)
{
	pr_debug("Boot done\n");

	build_sched_topology();
	nmi_selftest();
	impress_friends();
	cache_aps_init();
}

/* correctly size the local cpu masks */
void __init setup_cpu_local_masks(void)
{
	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
}

#ifdef CONFIG_HOTPLUG_CPU

/* Recompute SMT state for all CPUs on offline */
static void recompute_smt_state(void)
{
	int max_threads, cpu;

	max_threads = 0;
	for_each_online_cpu (cpu) {
		int threads = cpumask_weight(topology_sibling_cpumask(cpu));

		if (threads > max_threads)
			max_threads = threads;
	}
	__max_smt_threads = max_threads;
}

static void remove_siblinginfo(int cpu)
{
	int sibling;
	struct cpuinfo_x86 *c = &cpu_data(cpu);

	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
		/*/
		 * last thread sibling in this cpu core going down
		 */
		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
			cpu_data(sibling).booted_cores--;
	}

	for_each_cpu(sibling, topology_die_cpumask(cpu))
		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));

	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
			cpu_data(sibling).smt_active = false;
	}

	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
	cpumask_clear(cpu_llc_shared_mask(cpu));
	cpumask_clear(cpu_l2c_shared_mask(cpu));
	cpumask_clear(topology_sibling_cpumask(cpu));
	cpumask_clear(topology_core_cpumask(cpu));
	cpumask_clear(topology_die_cpumask(cpu));
	c->topo.core_id = 0;
	c->booted_cores = 0;
	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
	recompute_smt_state();
}

static void remove_cpu_from_maps(int cpu)
{
	set_cpu_online(cpu, false);
	numa_remove_cpu(cpu);
}

void cpu_disable_common(void)
{
	int cpu = smp_processor_id();

	remove_siblinginfo(cpu);

	/* It's now safe to remove this processor from the online map */
	lock_vector_lock();
	remove_cpu_from_maps(cpu);
	unlock_vector_lock();
	fixup_irqs();
	lapic_offline();
}

int native_cpu_disable(void)
{
	int ret;

	ret = lapic_can_unplug_cpu();
	if (ret)
		return ret;

	cpu_disable_common();

        /*
         * Disable the local APIC. Otherwise IPI broadcasts will reach
         * it. It still responds normally to INIT, NMI, SMI, and SIPI
         * messages.
         *
         * Disabling the APIC must happen after cpu_disable_common()
         * which invokes fixup_irqs().
         *
         * Disabling the APIC preserves already set bits in IRR, but
         * an interrupt arriving after disabling the local APIC does not
         * set the corresponding IRR bit.
         *
         * fixup_irqs() scans IRR for set bits so it can raise a not
         * yet handled interrupt on the new destination CPU via an IPI
         * but obviously it can't do so for IRR bits which are not set.
         * IOW, interrupts arriving after disabling the local APIC will
         * be lost.
         */
	apic_soft_disable();

	return 0;
}

void play_dead_common(void)
{
	idle_task_exit();

	cpuhp_ap_report_dead();

	local_irq_disable();
}

/*
 * We need to flush the caches before going to sleep, lest we have
 * dirty data in our caches when we come back up.
 */
static inline void mwait_play_dead(void)
{
	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
	unsigned int eax, ebx, ecx, edx;
	unsigned int highest_cstate = 0;
	unsigned int highest_subcstate = 0;
	int i;

	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
		return;
	if (!this_cpu_has(X86_FEATURE_MWAIT))
		return;
	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
		return;
	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
		return;

	eax = CPUID_MWAIT_LEAF;
	ecx = 0;
	native_cpuid(&eax, &ebx, &ecx, &edx);

	/*
	 * eax will be 0 if EDX enumeration is not valid.
	 * Initialized below to cstate, sub_cstate value when EDX is valid.
	 */
	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
		eax = 0;
	} else {
		edx >>= MWAIT_SUBSTATE_SIZE;
		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
			if (edx & MWAIT_SUBSTATE_MASK) {
				highest_cstate = i;
				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
			}
		}
		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
			(highest_subcstate - 1);
	}

	/* Set up state for the kexec() hack below */
	md->status = CPUDEAD_MWAIT_WAIT;
	md->control = CPUDEAD_MWAIT_WAIT;

	wbinvd();

	while (1) {
		/*
		 * The CLFLUSH is a workaround for erratum AAI65 for
		 * the Xeon 7400 series.  It's not clear it is actually
		 * needed, but it should be harmless in either case.
		 * The WBINVD is insufficient due to the spurious-wakeup
		 * case where we return around the loop.
		 */
		mb();
		clflush(md);
		mb();
		__monitor(md, 0, 0);
		mb();
		__mwait(eax, 0);

		if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
			/*
			 * Kexec is about to happen. Don't go back into mwait() as
			 * the kexec kernel might overwrite text and data including
			 * page tables and stack. So mwait() would resume when the
			 * monitor cache line is written to and then the CPU goes
			 * south due to overwritten text, page tables and stack.
			 *
			 * Note: This does _NOT_ protect against a stray MCE, NMI,
			 * SMI. They will resume execution at the instruction
			 * following the HLT instruction and run into the problem
			 * which this is trying to prevent.
			 */
			WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
			while(1)
				native_halt();
		}
	}
}

/*
 * Kick all "offline" CPUs out of mwait on kexec(). See comment in
 * mwait_play_dead().
 */
void smp_kick_mwait_play_dead(void)
{
	u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
	struct mwait_cpu_dead *md;
	unsigned int cpu, i;

	for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
		md = per_cpu_ptr(&mwait_cpu_dead, cpu);

		/* Does it sit in mwait_play_dead() ? */
		if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
			continue;

		/* Wait up to 5ms */
		for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
			/* Bring it out of mwait */
			WRITE_ONCE(md->control, newstate);
			udelay(5);
		}

		if (READ_ONCE(md->status) != newstate)
			pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
	}
}

void __noreturn hlt_play_dead(void)
{
	if (__this_cpu_read(cpu_info.x86) >= 4)
		wbinvd();

	while (1)
		native_halt();
}

/*
 * native_play_dead() is essentially a __noreturn function, but it can't
 * be marked as such as the compiler may complain about it.
 */
void native_play_dead(void)
{
	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
		__update_spec_ctrl(0);

	play_dead_common();
	tboot_shutdown(TB_SHUTDOWN_WFS);

	mwait_play_dead();
	if (cpuidle_play_dead())
		hlt_play_dead();
}

#else /* ... !CONFIG_HOTPLUG_CPU */
int native_cpu_disable(void)
{
	return -ENOSYS;
}

void native_play_dead(void)
{
	BUG();
}

#endif