Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 | // SPDX-License-Identifier: GPL-2.0-only /* * Memory subsystem initialization for Hexagon * * Copyright (c) 2010-2013, The Linux Foundation. All rights reserved. */ #include <linux/init.h> #include <linux/mm.h> #include <linux/memblock.h> #include <asm/atomic.h> #include <linux/highmem.h> #include <asm/tlb.h> #include <asm/sections.h> #include <asm/setup.h> #include <asm/vm_mmu.h> /* * Define a startpg just past the end of the kernel image and a lastpg * that corresponds to the end of real or simulated platform memory. */ #define bootmem_startpg (PFN_UP(((unsigned long) _end) - PAGE_OFFSET + PHYS_OFFSET)) unsigned long bootmem_lastpg; /* Should be set by platform code */ unsigned long __phys_offset; /* physical kernel offset >> 12 */ /* Set as variable to limit PMD copies */ int max_kernel_seg = 0x303; /* indicate pfn's of high memory */ unsigned long highstart_pfn, highend_pfn; /* Default cache attribute for newly created page tables */ unsigned long _dflt_cache_att = CACHEDEF; /* * The current "generation" of kernel map, which should not roll * over until Hell freezes over. Actual bound in years needs to be * calculated to confirm. */ DEFINE_SPINLOCK(kmap_gen_lock); /* checkpatch says don't init this to 0. */ unsigned long long kmap_generation; /* * mem_init - initializes memory * * Frees up bootmem * Fixes up more stuff for HIGHMEM * Calculates and displays memory available/used */ void __init mem_init(void) { /* No idea where this is actually declared. Seems to evade LXR. */ memblock_free_all(); /* * To-Do: someone somewhere should wipe out the bootmem map * after we're done? */ /* * This can be moved to some more virtual-memory-specific * initialization hook at some point. Set the init_mm * descriptors "context" value to point to the initial * kernel segment table's physical address. */ init_mm.context.ptbase = __pa(init_mm.pgd); } void sync_icache_dcache(pte_t pte) { unsigned long addr; struct page *page; page = pte_page(pte); addr = (unsigned long) page_address(page); __vmcache_idsync(addr, PAGE_SIZE); } /* * In order to set up page allocator "nodes", * somebody has to call free_area_init() for UMA. * * In this mode, we only have one pg_data_t * structure: contig_mem_data. */ static void __init paging_init(void) { unsigned long max_zone_pfn[MAX_NR_ZONES] = {0, }; /* * This is not particularly well documented anywhere, but * give ZONE_NORMAL all the memory, including the big holes * left by the kernel+bootmem_map which are already left as reserved * in the bootmem_map; free_area_init should see those bits and * adjust accordingly. */ max_zone_pfn[ZONE_NORMAL] = max_low_pfn; free_area_init(max_zone_pfn); /* sets up the zonelists and mem_map */ /* * Start of high memory area. Will probably need something more * fancy if we... get more fancy. */ high_memory = (void *)((bootmem_lastpg + 1) << PAGE_SHIFT); } #ifndef DMA_RESERVE #define DMA_RESERVE (4) #endif #define DMA_CHUNKSIZE (1<<22) #define DMA_RESERVED_BYTES (DMA_RESERVE * DMA_CHUNKSIZE) /* * Pick out the memory size. We look for mem=size, * where size is "size[KkMm]" */ static int __init early_mem(char *p) { unsigned long size; char *endp; size = memparse(p, &endp); bootmem_lastpg = PFN_DOWN(size); return 0; } early_param("mem", early_mem); size_t hexagon_coherent_pool_size = (size_t) (DMA_RESERVE << 22); void __init setup_arch_memory(void) { /* XXX Todo: this probably should be cleaned up */ u32 *segtable = (u32 *) &swapper_pg_dir[0]; u32 *segtable_end; /* * Set up boot memory allocator * * The Gorman book also talks about these functions. * This needs to change for highmem setups. */ /* Prior to this, bootmem_lastpg is actually mem size */ bootmem_lastpg += ARCH_PFN_OFFSET; /* Memory size needs to be a multiple of 16M */ bootmem_lastpg = PFN_DOWN((bootmem_lastpg << PAGE_SHIFT) & ~((BIG_KERNEL_PAGE_SIZE) - 1)); memblock_add(PHYS_OFFSET, (bootmem_lastpg - ARCH_PFN_OFFSET) << PAGE_SHIFT); /* Reserve kernel text/data/bss */ memblock_reserve(PHYS_OFFSET, (bootmem_startpg - ARCH_PFN_OFFSET) << PAGE_SHIFT); /* * Reserve the top DMA_RESERVE bytes of RAM for DMA (uncached) * memory allocation */ max_low_pfn = bootmem_lastpg - PFN_DOWN(DMA_RESERVED_BYTES); min_low_pfn = ARCH_PFN_OFFSET; memblock_reserve(PFN_PHYS(max_low_pfn), DMA_RESERVED_BYTES); printk(KERN_INFO "bootmem_startpg: 0x%08lx\n", bootmem_startpg); printk(KERN_INFO "bootmem_lastpg: 0x%08lx\n", bootmem_lastpg); printk(KERN_INFO "min_low_pfn: 0x%08lx\n", min_low_pfn); printk(KERN_INFO "max_low_pfn: 0x%08lx\n", max_low_pfn); /* * The default VM page tables (will be) populated with * VA=PA+PAGE_OFFSET mapping. We go in and invalidate entries * higher than what we have memory for. */ /* this is pointer arithmetic; each entry covers 4MB */ segtable = segtable + (PAGE_OFFSET >> 22); /* this actually only goes to the end of the first gig */ segtable_end = segtable + (1<<(30-22)); /* * Move forward to the start of empty pages; take into account * phys_offset shift. */ segtable += (bootmem_lastpg-ARCH_PFN_OFFSET)>>(22-PAGE_SHIFT); { int i; for (i = 1 ; i <= DMA_RESERVE ; i++) segtable[-i] = ((segtable[-i] & __HVM_PTE_PGMASK_4MB) | __HVM_PTE_R | __HVM_PTE_W | __HVM_PTE_X | __HEXAGON_C_UNC << 6 | __HVM_PDE_S_4MB); } printk(KERN_INFO "clearing segtable from %p to %p\n", segtable, segtable_end); while (segtable < (segtable_end-8)) *(segtable++) = __HVM_PDE_S_INVALID; /* stop the pointer at the device I/O 4MB page */ printk(KERN_INFO "segtable = %p (should be equal to _K_io_map)\n", segtable); #if 0 /* Other half of the early device table from vm_init_segtable. */ printk(KERN_INFO "&_K_init_devicetable = 0x%08x\n", (unsigned long) _K_init_devicetable-PAGE_OFFSET); *segtable = ((u32) (unsigned long) _K_init_devicetable-PAGE_OFFSET) | __HVM_PDE_S_4KB; printk(KERN_INFO "*segtable = 0x%08x\n", *segtable); #endif /* * The bootmem allocator seemingly just lives to feed memory * to the paging system */ printk(KERN_INFO "PAGE_SIZE=%lu\n", PAGE_SIZE); paging_init(); /* See Gorman Book, 2.3 */ /* * At this point, the page allocator is kind of initialized, but * apparently no pages are available (just like with the bootmem * allocator), and need to be freed themselves via mem_init(), * which is called by start_kernel() later on in the process */ } static const pgprot_t protection_map[16] = { [VM_NONE] = __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF), [VM_READ] = __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF), [VM_WRITE] = __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF), [VM_WRITE | VM_READ] = __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF), [VM_EXEC] = __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | CACHEDEF), [VM_EXEC | VM_READ] = __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | _PAGE_READ | CACHEDEF), [VM_EXEC | VM_WRITE] = __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | CACHEDEF), [VM_EXEC | VM_WRITE | VM_READ] = __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | _PAGE_READ | CACHEDEF), [VM_SHARED] = __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF), [VM_SHARED | VM_READ] = __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF), [VM_SHARED | VM_WRITE] = __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | CACHEDEF), [VM_SHARED | VM_WRITE | VM_READ] = __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | CACHEDEF), [VM_SHARED | VM_EXEC] = __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | CACHEDEF), [VM_SHARED | VM_EXEC | VM_READ] = __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | _PAGE_READ | CACHEDEF), [VM_SHARED | VM_EXEC | VM_WRITE] = __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF), [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF) }; DECLARE_VM_GET_PAGE_PROT |