Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 | // SPDX-License-Identifier: GPL-2.0-only /* * drivers/media/i2c/ccs/ccs-quirk.c * * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors * * Copyright (C) 2020 Intel Corporation * Copyright (C) 2011--2012 Nokia Corporation * Contact: Sakari Ailus <sakari.ailus@linux.intel.com> */ #include <linux/delay.h> #include "ccs.h" #include "ccs-limits.h" static int ccs_write_addr_8s(struct ccs_sensor *sensor, const struct ccs_reg_8 *regs, int len) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); int rval; for (; len > 0; len--, regs++) { rval = ccs_write_addr(sensor, regs->reg, regs->val); if (rval < 0) { dev_err(&client->dev, "error %d writing reg 0x%4.4x, val 0x%2.2x", rval, regs->reg, regs->val); return rval; } } return 0; } static int jt8ew9_limits(struct ccs_sensor *sensor) { if (sensor->minfo.revision_number < 0x0300) sensor->frame_skip = 1; /* Below 24 gain doesn't have effect at all, */ /* but ~59 is needed for full dynamic range */ ccs_replace_limit(sensor, CCS_L_ANALOG_GAIN_CODE_MIN, 0, 59); ccs_replace_limit(sensor, CCS_L_ANALOG_GAIN_CODE_MAX, 0, 6000); return 0; } static int jt8ew9_post_poweron(struct ccs_sensor *sensor) { static const struct ccs_reg_8 regs[] = { { 0x30a3, 0xd8 }, /* Output port control : LVDS ports only */ { 0x30ae, 0x00 }, /* 0x0307 pll_multiplier maximum value on PLL input 9.6MHz ( 19.2MHz is divided on pre_pll_div) */ { 0x30af, 0xd0 }, /* 0x0307 pll_multiplier maximum value on PLL input 9.6MHz ( 19.2MHz is divided on pre_pll_div) */ { 0x322d, 0x04 }, /* Adjusting Processing Image Size to Scaler Toshiba Recommendation Setting */ { 0x3255, 0x0f }, /* Horizontal Noise Reduction Control Toshiba Recommendation Setting */ { 0x3256, 0x15 }, /* Horizontal Noise Reduction Control Toshiba Recommendation Setting */ { 0x3258, 0x70 }, /* Analog Gain Control Toshiba Recommendation Setting */ { 0x3259, 0x70 }, /* Analog Gain Control Toshiba Recommendation Setting */ { 0x325f, 0x7c }, /* Analog Gain Control Toshiba Recommendation Setting */ { 0x3302, 0x06 }, /* Pixel Reference Voltage Control Toshiba Recommendation Setting */ { 0x3304, 0x00 }, /* Pixel Reference Voltage Control Toshiba Recommendation Setting */ { 0x3307, 0x22 }, /* Pixel Reference Voltage Control Toshiba Recommendation Setting */ { 0x3308, 0x8d }, /* Pixel Reference Voltage Control Toshiba Recommendation Setting */ { 0x331e, 0x0f }, /* Black Hole Sun Correction Control Toshiba Recommendation Setting */ { 0x3320, 0x30 }, /* Black Hole Sun Correction Control Toshiba Recommendation Setting */ { 0x3321, 0x11 }, /* Black Hole Sun Correction Control Toshiba Recommendation Setting */ { 0x3322, 0x98 }, /* Black Hole Sun Correction Control Toshiba Recommendation Setting */ { 0x3323, 0x64 }, /* Black Hole Sun Correction Control Toshiba Recommendation Setting */ { 0x3325, 0x83 }, /* Read Out Timing Control Toshiba Recommendation Setting */ { 0x3330, 0x18 }, /* Read Out Timing Control Toshiba Recommendation Setting */ { 0x333c, 0x01 }, /* Read Out Timing Control Toshiba Recommendation Setting */ { 0x3345, 0x2f }, /* Black Hole Sun Correction Control Toshiba Recommendation Setting */ { 0x33de, 0x38 }, /* Horizontal Noise Reduction Control Toshiba Recommendation Setting */ /* Taken from v03. No idea what the rest are. */ { 0x32e0, 0x05 }, { 0x32e1, 0x05 }, { 0x32e2, 0x04 }, { 0x32e5, 0x04 }, { 0x32e6, 0x04 }, }; return ccs_write_addr_8s(sensor, regs, ARRAY_SIZE(regs)); } const struct ccs_quirk smiapp_jt8ew9_quirk = { .limits = jt8ew9_limits, .post_poweron = jt8ew9_post_poweron, }; static int imx125es_post_poweron(struct ccs_sensor *sensor) { /* Taken from v02. No idea what the other two are. */ static const struct ccs_reg_8 regs[] = { /* * 0x3302: clk during frame blanking: * 0x00 - HS mode, 0x01 - LP11 */ { 0x3302, 0x01 }, { 0x302d, 0x00 }, { 0x3b08, 0x8c }, }; return ccs_write_addr_8s(sensor, regs, ARRAY_SIZE(regs)); } const struct ccs_quirk smiapp_imx125es_quirk = { .post_poweron = imx125es_post_poweron, }; static int jt8ev1_limits(struct ccs_sensor *sensor) { ccs_replace_limit(sensor, CCS_L_X_ADDR_MAX, 0, 4271); ccs_replace_limit(sensor, CCS_L_MIN_LINE_BLANKING_PCK_BIN, 0, 184); return 0; } static int jt8ev1_post_poweron(struct ccs_sensor *sensor) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); int rval; static const struct ccs_reg_8 regs[] = { { 0x3031, 0xcd }, /* For digital binning (EQ_MONI) */ { 0x30a3, 0xd0 }, /* FLASH STROBE enable */ { 0x3237, 0x00 }, /* For control of pulse timing for ADC */ { 0x3238, 0x43 }, { 0x3301, 0x06 }, /* For analog bias for sensor */ { 0x3302, 0x06 }, { 0x3304, 0x00 }, { 0x3305, 0x88 }, { 0x332a, 0x14 }, { 0x332c, 0x6b }, { 0x3336, 0x01 }, { 0x333f, 0x1f }, { 0x3355, 0x00 }, { 0x3356, 0x20 }, { 0x33bf, 0x20 }, /* Adjust the FBC speed */ { 0x33c9, 0x20 }, { 0x33ce, 0x30 }, /* Adjust the parameter for logic function */ { 0x33cf, 0xec }, /* For Black sun */ { 0x3328, 0x80 }, /* Ugh. No idea what's this. */ }; static const struct ccs_reg_8 regs_96[] = { { 0x30ae, 0x00 }, /* For control of ADC clock */ { 0x30af, 0xd0 }, { 0x30b0, 0x01 }, }; rval = ccs_write_addr_8s(sensor, regs, ARRAY_SIZE(regs)); if (rval < 0) return rval; switch (sensor->hwcfg.ext_clk) { case 9600000: return ccs_write_addr_8s(sensor, regs_96, ARRAY_SIZE(regs_96)); default: dev_warn(&client->dev, "no MSRs for %d Hz ext_clk\n", sensor->hwcfg.ext_clk); return 0; } } static int jt8ev1_pre_streamon(struct ccs_sensor *sensor) { return ccs_write_addr(sensor, 0x3328, 0x00); } static int jt8ev1_post_streamoff(struct ccs_sensor *sensor) { int rval; /* Workaround: allows fast standby to work properly */ rval = ccs_write_addr(sensor, 0x3205, 0x04); if (rval < 0) return rval; /* Wait for 1 ms + one line => 2 ms is likely enough */ usleep_range(2000, 2050); /* Restore it */ rval = ccs_write_addr(sensor, 0x3205, 0x00); if (rval < 0) return rval; return ccs_write_addr(sensor, 0x3328, 0x80); } static int jt8ev1_init(struct ccs_sensor *sensor) { sensor->pll.flags |= CCS_PLL_FLAG_LANE_SPEED_MODEL | CCS_PLL_FLAG_LINK_DECOUPLED; sensor->pll.vt_lanes = 1; sensor->pll.op_lanes = sensor->pll.csi2.lanes; return 0; } const struct ccs_quirk smiapp_jt8ev1_quirk = { .limits = jt8ev1_limits, .post_poweron = jt8ev1_post_poweron, .pre_streamon = jt8ev1_pre_streamon, .post_streamoff = jt8ev1_post_streamoff, .init = jt8ev1_init, }; static int tcm8500md_limits(struct ccs_sensor *sensor) { ccs_replace_limit(sensor, CCS_L_MIN_PLL_IP_CLK_FREQ_MHZ, 0, 2700000); return 0; } const struct ccs_quirk smiapp_tcm8500md_quirk = { .limits = tcm8500md_limits, }; |