Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 | // SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2006-2013 Solarflare Communications Inc. */ #include <linux/bitops.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/module.h> #include <linux/seq_file.h> #include <linux/cpu_rmap.h> #include "net_driver.h" #include "bitfield.h" #include "efx.h" #include "nic.h" #include "ef10_regs.h" #include "io.h" #include "workarounds.h" #include "mcdi_pcol.h" /************************************************************************** * * Generic buffer handling * These buffers are used for interrupt status, MAC stats, etc. * **************************************************************************/ int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, unsigned int len, gfp_t gfp_flags) { buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len, &buffer->dma_addr, gfp_flags); if (!buffer->addr) return -ENOMEM; buffer->len = len; return 0; } void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer) { if (buffer->addr) { dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr, buffer->dma_addr); buffer->addr = NULL; } } /* Check whether an event is present in the eventq at the current * read pointer. Only useful for self-test. */ bool efx_nic_event_present(struct efx_channel *channel) { return efx_event_present(efx_event(channel, channel->eventq_read_ptr)); } void efx_nic_event_test_start(struct efx_channel *channel) { channel->event_test_cpu = -1; smp_wmb(); channel->efx->type->ev_test_generate(channel); } int efx_nic_irq_test_start(struct efx_nic *efx) { efx->last_irq_cpu = -1; smp_wmb(); return efx->type->irq_test_generate(efx); } /* Hook interrupt handler(s) * Try MSI and then legacy interrupts. */ int efx_nic_init_interrupt(struct efx_nic *efx) { struct efx_channel *channel; unsigned int n_irqs; int rc; if (!EFX_INT_MODE_USE_MSI(efx)) { rc = request_irq(efx->legacy_irq, efx->type->irq_handle_legacy, IRQF_SHARED, efx->name, efx); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to hook legacy IRQ %d\n", efx->pci_dev->irq); goto fail1; } efx->irqs_hooked = true; return 0; } #ifdef CONFIG_RFS_ACCEL if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels); if (!efx->net_dev->rx_cpu_rmap) { rc = -ENOMEM; goto fail1; } } #endif /* Hook MSI or MSI-X interrupt */ n_irqs = 0; efx_for_each_channel(channel, efx) { rc = request_irq(channel->irq, efx->type->irq_handle_msi, IRQF_PROBE_SHARED, /* Not shared */ efx->msi_context[channel->channel].name, &efx->msi_context[channel->channel]); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to hook IRQ %d\n", channel->irq); goto fail2; } ++n_irqs; #ifdef CONFIG_RFS_ACCEL if (efx->interrupt_mode == EFX_INT_MODE_MSIX && channel->channel < efx->n_rx_channels) { rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap, channel->irq); if (rc) goto fail2; } #endif } efx->irqs_hooked = true; return 0; fail2: #ifdef CONFIG_RFS_ACCEL free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); efx->net_dev->rx_cpu_rmap = NULL; #endif efx_for_each_channel(channel, efx) { if (n_irqs-- == 0) break; free_irq(channel->irq, &efx->msi_context[channel->channel]); } fail1: return rc; } void efx_nic_fini_interrupt(struct efx_nic *efx) { struct efx_channel *channel; #ifdef CONFIG_RFS_ACCEL free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); efx->net_dev->rx_cpu_rmap = NULL; #endif if (!efx->irqs_hooked) return; if (EFX_INT_MODE_USE_MSI(efx)) { /* Disable MSI/MSI-X interrupts */ efx_for_each_channel(channel, efx) free_irq(channel->irq, &efx->msi_context[channel->channel]); } else { /* Disable legacy interrupt */ free_irq(efx->legacy_irq, efx); } efx->irqs_hooked = false; } /* Register dump */ #define REGISTER_REVISION_ED 4 #define REGISTER_REVISION_EZ 4 /* latest EF10 revision */ struct efx_nic_reg { u32 offset:24; u32 min_revision:3, max_revision:3; }; #define REGISTER(name, arch, min_rev, max_rev) { \ arch ## R_ ## min_rev ## max_rev ## _ ## name, \ REGISTER_REVISION_ ## arch ## min_rev, \ REGISTER_REVISION_ ## arch ## max_rev \ } #define REGISTER_DZ(name) REGISTER(name, E, D, Z) static const struct efx_nic_reg efx_nic_regs[] = { /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */ /* XX_CORE_STAT is partly RC */ REGISTER_DZ(BIU_HW_REV_ID), REGISTER_DZ(MC_DB_LWRD), REGISTER_DZ(MC_DB_HWRD), }; struct efx_nic_reg_table { u32 offset:24; u32 min_revision:3, max_revision:3; u32 step:6, rows:21; }; #define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \ offset, \ REGISTER_REVISION_ ## arch ## min_rev, \ REGISTER_REVISION_ ## arch ## max_rev, \ step, rows \ } #define REGISTER_TABLE(name, arch, min_rev, max_rev) \ REGISTER_TABLE_DIMENSIONS( \ name, arch ## R_ ## min_rev ## max_rev ## _ ## name, \ arch, min_rev, max_rev, \ arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP, \ arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS) #define REGISTER_TABLE_DZ(name) REGISTER_TABLE(name, E, D, Z) static const struct efx_nic_reg_table efx_nic_reg_tables[] = { REGISTER_TABLE_DZ(BIU_MC_SFT_STATUS), }; size_t efx_nic_get_regs_len(struct efx_nic *efx) { const struct efx_nic_reg *reg; const struct efx_nic_reg_table *table; size_t len = 0; for (reg = efx_nic_regs; reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); reg++) if (efx->type->revision >= reg->min_revision && efx->type->revision <= reg->max_revision) len += sizeof(efx_oword_t); for (table = efx_nic_reg_tables; table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); table++) if (efx->type->revision >= table->min_revision && efx->type->revision <= table->max_revision) len += table->rows * min_t(size_t, table->step, 16); return len; } void efx_nic_get_regs(struct efx_nic *efx, void *buf) { const struct efx_nic_reg *reg; const struct efx_nic_reg_table *table; for (reg = efx_nic_regs; reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); reg++) { if (efx->type->revision >= reg->min_revision && efx->type->revision <= reg->max_revision) { efx_reado(efx, (efx_oword_t *)buf, reg->offset); buf += sizeof(efx_oword_t); } } for (table = efx_nic_reg_tables; table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); table++) { size_t size, i; if (!(efx->type->revision >= table->min_revision && efx->type->revision <= table->max_revision)) continue; size = min_t(size_t, table->step, 16); for (i = 0; i < table->rows; i++) { switch (table->step) { case 4: /* 32-bit SRAM */ efx_readd(efx, buf, table->offset + 4 * i); break; case 16: /* 128-bit-readable register */ efx_reado_table(efx, buf, table->offset, i); break; case 32: /* 128-bit register, interleaved */ efx_reado_table(efx, buf, table->offset, 2 * i); break; default: WARN_ON(1); return; } buf += size; } } } /** * efx_nic_describe_stats - Describe supported statistics for ethtool * @desc: Array of &struct efx_hw_stat_desc describing the statistics * @count: Length of the @desc array * @mask: Bitmask of which elements of @desc are enabled * @names: Buffer to copy names to, or %NULL. The names are copied * starting at intervals of %ETH_GSTRING_LEN bytes. * * Returns the number of visible statistics, i.e. the number of set * bits in the first @count bits of @mask for which a name is defined. */ size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count, const unsigned long *mask, u8 *names) { size_t visible = 0; size_t index; for_each_set_bit(index, mask, count) { if (desc[index].name) { if (names) { strscpy(names, desc[index].name, ETH_GSTRING_LEN); names += ETH_GSTRING_LEN; } ++visible; } } return visible; } /** * efx_nic_copy_stats - Copy stats from the DMA buffer in to an * intermediate buffer. This is used to get a consistent * set of stats while the DMA buffer can be written at any time * by the NIC. * @efx: The associated NIC. * @dest: Destination buffer. Must be the same size as the DMA buffer. */ int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest) { __le64 *dma_stats = efx->stats_buffer.addr; __le64 generation_start, generation_end; int rc = 0, retry; if (!dest) return 0; if (!dma_stats) goto return_zeroes; /* If we're unlucky enough to read statistics during the DMA, wait * up to 10ms for it to finish (typically takes <500us) */ for (retry = 0; retry < 100; ++retry) { generation_end = dma_stats[efx->num_mac_stats - 1]; if (generation_end == EFX_MC_STATS_GENERATION_INVALID) goto return_zeroes; rmb(); memcpy(dest, dma_stats, efx->num_mac_stats * sizeof(__le64)); rmb(); generation_start = dma_stats[MC_CMD_MAC_GENERATION_START]; if (generation_end == generation_start) return 0; /* return good data */ udelay(100); } rc = -EIO; return_zeroes: memset(dest, 0, efx->num_mac_stats * sizeof(u64)); return rc; } /** * efx_nic_update_stats - Convert statistics DMA buffer to array of u64 * @desc: Array of &struct efx_hw_stat_desc describing the DMA buffer * layout. DMA widths of 0, 16, 32 and 64 are supported; where * the width is specified as 0 the corresponding element of * @stats is not updated. * @count: Length of the @desc array * @mask: Bitmask of which elements of @desc are enabled * @stats: Buffer to update with the converted statistics. The length * of this array must be at least @count. * @dma_buf: DMA buffer containing hardware statistics * @accumulate: If set, the converted values will be added rather than * directly stored to the corresponding elements of @stats */ void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count, const unsigned long *mask, u64 *stats, const void *dma_buf, bool accumulate) { size_t index; for_each_set_bit(index, mask, count) { if (desc[index].dma_width) { const void *addr = dma_buf + desc[index].offset; u64 val; switch (desc[index].dma_width) { case 16: val = le16_to_cpup((__le16 *)addr); break; case 32: val = le32_to_cpup((__le32 *)addr); break; case 64: val = le64_to_cpup((__le64 *)addr); break; default: WARN_ON(1); val = 0; break; } if (accumulate) stats[index] += val; else stats[index] = val; } } } void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *rx_nodesc_drops) { /* if down, or this is the first update after coming up */ if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state) efx->rx_nodesc_drops_while_down += *rx_nodesc_drops - efx->rx_nodesc_drops_total; efx->rx_nodesc_drops_total = *rx_nodesc_drops; efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP); *rx_nodesc_drops -= efx->rx_nodesc_drops_while_down; } |