// SPDX-License-Identifier: GPL-2.0-only
/*
* Analog Devices Generic AXI ADC IP core
* Link: https://wiki.analog.com/resources/fpga/docs/axi_adc_ip
*
* Copyright 2012-2020 Analog Devices Inc.
*/
#include <linux/bitfield.h>
#include <linux/cleanup.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/fpga/adi-axi-common.h>
#include <linux/iio/backend.h>
#include <linux/iio/buffer-dmaengine.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
/*
* Register definitions:
* https://wiki.analog.com/resources/fpga/docs/axi_adc_ip#register_map
*/
/* ADC controls */
#define ADI_AXI_REG_RSTN 0x0040
#define ADI_AXI_REG_RSTN_CE_N BIT(2)
#define ADI_AXI_REG_RSTN_MMCM_RSTN BIT(1)
#define ADI_AXI_REG_RSTN_RSTN BIT(0)
#define ADI_AXI_ADC_REG_CTRL 0x0044
#define ADI_AXI_ADC_CTRL_DDR_EDGESEL_MASK BIT(1)
/* ADC Channel controls */
#define ADI_AXI_REG_CHAN_CTRL(c) (0x0400 + (c) * 0x40)
#define ADI_AXI_REG_CHAN_CTRL_LB_OWR BIT(11)
#define ADI_AXI_REG_CHAN_CTRL_PN_SEL_OWR BIT(10)
#define ADI_AXI_REG_CHAN_CTRL_IQCOR_EN BIT(9)
#define ADI_AXI_REG_CHAN_CTRL_DCFILT_EN BIT(8)
#define ADI_AXI_REG_CHAN_CTRL_FMT_MASK GENMASK(6, 4)
#define ADI_AXI_REG_CHAN_CTRL_FMT_SIGNEXT BIT(6)
#define ADI_AXI_REG_CHAN_CTRL_FMT_TYPE BIT(5)
#define ADI_AXI_REG_CHAN_CTRL_FMT_EN BIT(4)
#define ADI_AXI_REG_CHAN_CTRL_PN_TYPE_OWR BIT(1)
#define ADI_AXI_REG_CHAN_CTRL_ENABLE BIT(0)
#define ADI_AXI_ADC_REG_CHAN_STATUS(c) (0x0404 + (c) * 0x40)
#define ADI_AXI_ADC_CHAN_STAT_PN_MASK GENMASK(2, 1)
#define ADI_AXI_ADC_REG_CHAN_CTRL_3(c) (0x0418 + (c) * 0x40)
#define ADI_AXI_ADC_CHAN_PN_SEL_MASK GENMASK(19, 16)
/* IO Delays */
#define ADI_AXI_ADC_REG_DELAY(l) (0x0800 + (l) * 0x4)
#define AXI_ADC_DELAY_CTRL_MASK GENMASK(4, 0)
#define ADI_AXI_ADC_MAX_IO_NUM_LANES 15
#define ADI_AXI_REG_CHAN_CTRL_DEFAULTS \
(ADI_AXI_REG_CHAN_CTRL_FMT_SIGNEXT | \
ADI_AXI_REG_CHAN_CTRL_FMT_EN | \
ADI_AXI_REG_CHAN_CTRL_ENABLE)
struct adi_axi_adc_state {
struct regmap *regmap;
struct device *dev;
/* lock to protect multiple accesses to the device registers */
struct mutex lock;
};
static int axi_adc_enable(struct iio_backend *back)
{
struct adi_axi_adc_state *st = iio_backend_get_priv(back);
int ret;
guard(mutex)(&st->lock);
ret = regmap_set_bits(st->regmap, ADI_AXI_REG_RSTN,
ADI_AXI_REG_RSTN_MMCM_RSTN);
if (ret)
return ret;
fsleep(10000);
return regmap_set_bits(st->regmap, ADI_AXI_REG_RSTN,
ADI_AXI_REG_RSTN_RSTN | ADI_AXI_REG_RSTN_MMCM_RSTN);
}
static void axi_adc_disable(struct iio_backend *back)
{
struct adi_axi_adc_state *st = iio_backend_get_priv(back);
guard(mutex)(&st->lock);
regmap_write(st->regmap, ADI_AXI_REG_RSTN, 0);
}
static int axi_adc_data_format_set(struct iio_backend *back, unsigned int chan,
const struct iio_backend_data_fmt *data)
{
struct adi_axi_adc_state *st = iio_backend_get_priv(back);
u32 val;
if (!data->enable)
return regmap_clear_bits(st->regmap,
ADI_AXI_REG_CHAN_CTRL(chan),
ADI_AXI_REG_CHAN_CTRL_FMT_EN);
val = FIELD_PREP(ADI_AXI_REG_CHAN_CTRL_FMT_EN, true);
if (data->sign_extend)
val |= FIELD_PREP(ADI_AXI_REG_CHAN_CTRL_FMT_SIGNEXT, true);
if (data->type == IIO_BACKEND_OFFSET_BINARY)
val |= FIELD_PREP(ADI_AXI_REG_CHAN_CTRL_FMT_TYPE, true);
return regmap_update_bits(st->regmap, ADI_AXI_REG_CHAN_CTRL(chan),
ADI_AXI_REG_CHAN_CTRL_FMT_MASK, val);
}
static int axi_adc_data_sample_trigger(struct iio_backend *back,
enum iio_backend_sample_trigger trigger)
{
struct adi_axi_adc_state *st = iio_backend_get_priv(back);
switch (trigger) {
case IIO_BACKEND_SAMPLE_TRIGGER_EDGE_RISING:
return regmap_clear_bits(st->regmap, ADI_AXI_ADC_REG_CTRL,
ADI_AXI_ADC_CTRL_DDR_EDGESEL_MASK);
case IIO_BACKEND_SAMPLE_TRIGGER_EDGE_FALLING:
return regmap_set_bits(st->regmap, ADI_AXI_ADC_REG_CTRL,
ADI_AXI_ADC_CTRL_DDR_EDGESEL_MASK);
default:
return -EINVAL;
}
}
static int axi_adc_iodelays_set(struct iio_backend *back, unsigned int lane,
unsigned int tap)
{
struct adi_axi_adc_state *st = iio_backend_get_priv(back);
int ret;
u32 val;
if (tap > FIELD_MAX(AXI_ADC_DELAY_CTRL_MASK))
return -EINVAL;
if (lane > ADI_AXI_ADC_MAX_IO_NUM_LANES)
return -EINVAL;
guard(mutex)(&st->lock);
ret = regmap_write(st->regmap, ADI_AXI_ADC_REG_DELAY(lane), tap);
if (ret)
return ret;
/*
* If readback is ~0, that means there are issues with the
* delay_clk.
*/
ret = regmap_read(st->regmap, ADI_AXI_ADC_REG_DELAY(lane), &val);
if (ret)
return ret;
if (val == U32_MAX)
return -EIO;
return 0;
}
static int axi_adc_test_pattern_set(struct iio_backend *back,
unsigned int chan,
enum iio_backend_test_pattern pattern)
{
struct adi_axi_adc_state *st = iio_backend_get_priv(back);
switch (pattern) {
case IIO_BACKEND_NO_TEST_PATTERN:
/* nothing to do */
return 0;
case IIO_BACKEND_ADI_PRBS_9A:
return regmap_update_bits(st->regmap, ADI_AXI_ADC_REG_CHAN_CTRL_3(chan),
ADI_AXI_ADC_CHAN_PN_SEL_MASK,
FIELD_PREP(ADI_AXI_ADC_CHAN_PN_SEL_MASK, 0));
default:
return -EINVAL;
}
}
static int axi_adc_chan_status(struct iio_backend *back, unsigned int chan,
bool *error)
{
struct adi_axi_adc_state *st = iio_backend_get_priv(back);
int ret;
u32 val;
guard(mutex)(&st->lock);
/* reset test bits by setting them */
ret = regmap_write(st->regmap, ADI_AXI_ADC_REG_CHAN_STATUS(chan),
ADI_AXI_ADC_CHAN_STAT_PN_MASK);
if (ret)
return ret;
/* let's give enough time to validate or erroring the incoming pattern */
fsleep(1000);
ret = regmap_read(st->regmap, ADI_AXI_ADC_REG_CHAN_STATUS(chan), &val);
if (ret)
return ret;
if (ADI_AXI_ADC_CHAN_STAT_PN_MASK & val)
*error = true;
else
*error = false;
return 0;
}
static int axi_adc_chan_enable(struct iio_backend *back, unsigned int chan)
{
struct adi_axi_adc_state *st = iio_backend_get_priv(back);
return regmap_set_bits(st->regmap, ADI_AXI_REG_CHAN_CTRL(chan),
ADI_AXI_REG_CHAN_CTRL_ENABLE);
}
static int axi_adc_chan_disable(struct iio_backend *back, unsigned int chan)
{
struct adi_axi_adc_state *st = iio_backend_get_priv(back);
return regmap_clear_bits(st->regmap, ADI_AXI_REG_CHAN_CTRL(chan),
ADI_AXI_REG_CHAN_CTRL_ENABLE);
}
static struct iio_buffer *axi_adc_request_buffer(struct iio_backend *back,
struct iio_dev *indio_dev)
{
struct adi_axi_adc_state *st = iio_backend_get_priv(back);
const char *dma_name;
if (device_property_read_string(st->dev, "dma-names", &dma_name))
dma_name = "rx";
return iio_dmaengine_buffer_setup(st->dev, indio_dev, dma_name);
}
static void axi_adc_free_buffer(struct iio_backend *back,
struct iio_buffer *buffer)
{
iio_dmaengine_buffer_free(buffer);
}
static const struct regmap_config axi_adc_regmap_config = {
.val_bits = 32,
.reg_bits = 32,
.reg_stride = 4,
};
static const struct iio_backend_ops adi_axi_adc_generic = {
.enable = axi_adc_enable,
.disable = axi_adc_disable,
.data_format_set = axi_adc_data_format_set,
.chan_enable = axi_adc_chan_enable,
.chan_disable = axi_adc_chan_disable,
.request_buffer = axi_adc_request_buffer,
.free_buffer = axi_adc_free_buffer,
.data_sample_trigger = axi_adc_data_sample_trigger,
.iodelay_set = axi_adc_iodelays_set,
.test_pattern_set = axi_adc_test_pattern_set,
.chan_status = axi_adc_chan_status,
};
static int adi_axi_adc_probe(struct platform_device *pdev)
{
const unsigned int *expected_ver;
struct adi_axi_adc_state *st;
void __iomem *base;
unsigned int ver;
struct clk *clk;
int ret;
st = devm_kzalloc(&pdev->dev, sizeof(*st), GFP_KERNEL);
if (!st)
return -ENOMEM;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
st->dev = &pdev->dev;
st->regmap = devm_regmap_init_mmio(&pdev->dev, base,
&axi_adc_regmap_config);
if (IS_ERR(st->regmap))
return PTR_ERR(st->regmap);
expected_ver = device_get_match_data(&pdev->dev);
if (!expected_ver)
return -ENODEV;
clk = devm_clk_get_enabled(&pdev->dev, NULL);
if (IS_ERR(clk))
return PTR_ERR(clk);
/*
* Force disable the core. Up to the frontend to enable us. And we can
* still read/write registers...
*/
ret = regmap_write(st->regmap, ADI_AXI_REG_RSTN, 0);
if (ret)
return ret;
ret = regmap_read(st->regmap, ADI_AXI_REG_VERSION, &ver);
if (ret)
return ret;
if (ADI_AXI_PCORE_VER_MAJOR(ver) != ADI_AXI_PCORE_VER_MAJOR(*expected_ver)) {
dev_err(&pdev->dev,
"Major version mismatch. Expected %d.%.2d.%c, Reported %d.%.2d.%c\n",
ADI_AXI_PCORE_VER_MAJOR(*expected_ver),
ADI_AXI_PCORE_VER_MINOR(*expected_ver),
ADI_AXI_PCORE_VER_PATCH(*expected_ver),
ADI_AXI_PCORE_VER_MAJOR(ver),
ADI_AXI_PCORE_VER_MINOR(ver),
ADI_AXI_PCORE_VER_PATCH(ver));
return -ENODEV;
}
ret = devm_iio_backend_register(&pdev->dev, &adi_axi_adc_generic, st);
if (ret)
return ret;
dev_info(&pdev->dev, "AXI ADC IP core (%d.%.2d.%c) probed\n",
ADI_AXI_PCORE_VER_MAJOR(ver),
ADI_AXI_PCORE_VER_MINOR(ver),
ADI_AXI_PCORE_VER_PATCH(ver));
return 0;
}
static unsigned int adi_axi_adc_10_0_a_info = ADI_AXI_PCORE_VER(10, 0, 'a');
/* Match table for of_platform binding */
static const struct of_device_id adi_axi_adc_of_match[] = {
{ .compatible = "adi,axi-adc-10.0.a", .data = &adi_axi_adc_10_0_a_info },
{ /* end of list */ }
};
MODULE_DEVICE_TABLE(of, adi_axi_adc_of_match);
static struct platform_driver adi_axi_adc_driver = {
.driver = {
.name = KBUILD_MODNAME,
.of_match_table = adi_axi_adc_of_match,
},
.probe = adi_axi_adc_probe,
};
module_platform_driver(adi_axi_adc_driver);
MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>");
MODULE_DESCRIPTION("Analog Devices Generic AXI ADC IP core driver");
MODULE_LICENSE("GPL v2");
MODULE_IMPORT_NS(IIO_DMAENGINE_BUFFER);
MODULE_IMPORT_NS(IIO_BACKEND);