Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 | // SPDX-License-Identifier: GPL-2.0-only /* * mm/kmemleak.c * * Copyright (C) 2008 ARM Limited * Written by Catalin Marinas <catalin.marinas@arm.com> * * For more information on the algorithm and kmemleak usage, please see * Documentation/dev-tools/kmemleak.rst. * * Notes on locking * ---------------- * * The following locks and mutexes are used by kmemleak: * * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as * del_state modifications and accesses to the object trees * (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The * object_list is the main list holding the metadata (struct * kmemleak_object) for the allocated memory blocks. The object trees are * red black trees used to look-up metadata based on a pointer to the * corresponding memory block. The kmemleak_object structures are added to * the object_list and the object tree root in the create_object() function * called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in * delete_object() called from the kmemleak_free{,_phys,_percpu}() callback * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. * Accesses to the metadata (e.g. count) are protected by this lock. Note * that some members of this structure may be protected by other means * (atomic or kmemleak_lock). This lock is also held when scanning the * corresponding memory block to avoid the kernel freeing it via the * kmemleak_free() callback. This is less heavyweight than holding a global * lock like kmemleak_lock during scanning. * - scan_mutex (mutex): ensures that only one thread may scan the memory for * unreferenced objects at a time. The gray_list contains the objects which * are already referenced or marked as false positives and need to be * scanned. This list is only modified during a scanning episode when the * scan_mutex is held. At the end of a scan, the gray_list is always empty. * Note that the kmemleak_object.use_count is incremented when an object is * added to the gray_list and therefore cannot be freed. This mutex also * prevents multiple users of the "kmemleak" debugfs file together with * modifications to the memory scanning parameters including the scan_thread * pointer * * Locks and mutexes are acquired/nested in the following order: * * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) * * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex * regions. * * The kmemleak_object structures have a use_count incremented or decremented * using the get_object()/put_object() functions. When the use_count becomes * 0, this count can no longer be incremented and put_object() schedules the * kmemleak_object freeing via an RCU callback. All calls to the get_object() * function must be protected by rcu_read_lock() to avoid accessing a freed * structure. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/init.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/sched/signal.h> #include <linux/sched/task.h> #include <linux/sched/task_stack.h> #include <linux/jiffies.h> #include <linux/delay.h> #include <linux/export.h> #include <linux/kthread.h> #include <linux/rbtree.h> #include <linux/fs.h> #include <linux/debugfs.h> #include <linux/seq_file.h> #include <linux/cpumask.h> #include <linux/spinlock.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/rcupdate.h> #include <linux/stacktrace.h> #include <linux/stackdepot.h> #include <linux/cache.h> #include <linux/percpu.h> #include <linux/memblock.h> #include <linux/pfn.h> #include <linux/mmzone.h> #include <linux/slab.h> #include <linux/thread_info.h> #include <linux/err.h> #include <linux/uaccess.h> #include <linux/string.h> #include <linux/nodemask.h> #include <linux/mm.h> #include <linux/workqueue.h> #include <linux/crc32.h> #include <asm/sections.h> #include <asm/processor.h> #include <linux/atomic.h> #include <linux/kasan.h> #include <linux/kfence.h> #include <linux/kmemleak.h> #include <linux/memory_hotplug.h> /* * Kmemleak configuration and common defines. */ #define MAX_TRACE 16 /* stack trace length */ #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ #define SECS_FIRST_SCAN 60 /* delay before the first scan */ #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ #define BYTES_PER_POINTER sizeof(void *) /* scanning area inside a memory block */ struct kmemleak_scan_area { struct hlist_node node; unsigned long start; size_t size; }; #define KMEMLEAK_GREY 0 #define KMEMLEAK_BLACK -1 /* * Structure holding the metadata for each allocated memory block. * Modifications to such objects should be made while holding the * object->lock. Insertions or deletions from object_list, gray_list or * rb_node are already protected by the corresponding locks or mutex (see * the notes on locking above). These objects are reference-counted * (use_count) and freed using the RCU mechanism. */ struct kmemleak_object { raw_spinlock_t lock; unsigned int flags; /* object status flags */ struct list_head object_list; struct list_head gray_list; struct rb_node rb_node; struct rcu_head rcu; /* object_list lockless traversal */ /* object usage count; object freed when use_count == 0 */ atomic_t use_count; unsigned int del_state; /* deletion state */ unsigned long pointer; size_t size; /* pass surplus references to this pointer */ unsigned long excess_ref; /* minimum number of a pointers found before it is considered leak */ int min_count; /* the total number of pointers found pointing to this object */ int count; /* checksum for detecting modified objects */ u32 checksum; depot_stack_handle_t trace_handle; /* memory ranges to be scanned inside an object (empty for all) */ struct hlist_head area_list; unsigned long jiffies; /* creation timestamp */ pid_t pid; /* pid of the current task */ char comm[TASK_COMM_LEN]; /* executable name */ }; /* flag representing the memory block allocation status */ #define OBJECT_ALLOCATED (1 << 0) /* flag set after the first reporting of an unreference object */ #define OBJECT_REPORTED (1 << 1) /* flag set to not scan the object */ #define OBJECT_NO_SCAN (1 << 2) /* flag set to fully scan the object when scan_area allocation failed */ #define OBJECT_FULL_SCAN (1 << 3) /* flag set for object allocated with physical address */ #define OBJECT_PHYS (1 << 4) /* flag set for per-CPU pointers */ #define OBJECT_PERCPU (1 << 5) /* set when __remove_object() called */ #define DELSTATE_REMOVED (1 << 0) /* set to temporarily prevent deletion from object_list */ #define DELSTATE_NO_DELETE (1 << 1) #define HEX_PREFIX " " /* number of bytes to print per line; must be 16 or 32 */ #define HEX_ROW_SIZE 16 /* number of bytes to print at a time (1, 2, 4, 8) */ #define HEX_GROUP_SIZE 1 /* include ASCII after the hex output */ #define HEX_ASCII 1 /* max number of lines to be printed */ #define HEX_MAX_LINES 2 /* the list of all allocated objects */ static LIST_HEAD(object_list); /* the list of gray-colored objects (see color_gray comment below) */ static LIST_HEAD(gray_list); /* memory pool allocation */ static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; static int mem_pool_free_count = ARRAY_SIZE(mem_pool); static LIST_HEAD(mem_pool_free_list); /* search tree for object boundaries */ static struct rb_root object_tree_root = RB_ROOT; /* search tree for object (with OBJECT_PHYS flag) boundaries */ static struct rb_root object_phys_tree_root = RB_ROOT; /* search tree for object (with OBJECT_PERCPU flag) boundaries */ static struct rb_root object_percpu_tree_root = RB_ROOT; /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */ static DEFINE_RAW_SPINLOCK(kmemleak_lock); /* allocation caches for kmemleak internal data */ static struct kmem_cache *object_cache; static struct kmem_cache *scan_area_cache; /* set if tracing memory operations is enabled */ static int kmemleak_enabled = 1; /* same as above but only for the kmemleak_free() callback */ static int kmemleak_free_enabled = 1; /* set in the late_initcall if there were no errors */ static int kmemleak_late_initialized; /* set if a kmemleak warning was issued */ static int kmemleak_warning; /* set if a fatal kmemleak error has occurred */ static int kmemleak_error; /* minimum and maximum address that may be valid pointers */ static unsigned long min_addr = ULONG_MAX; static unsigned long max_addr; static struct task_struct *scan_thread; /* used to avoid reporting of recently allocated objects */ static unsigned long jiffies_min_age; static unsigned long jiffies_last_scan; /* delay between automatic memory scannings */ static unsigned long jiffies_scan_wait; /* enables or disables the task stacks scanning */ static int kmemleak_stack_scan = 1; /* protects the memory scanning, parameters and debug/kmemleak file access */ static DEFINE_MUTEX(scan_mutex); /* setting kmemleak=on, will set this var, skipping the disable */ static int kmemleak_skip_disable; /* If there are leaks that can be reported */ static bool kmemleak_found_leaks; static bool kmemleak_verbose; module_param_named(verbose, kmemleak_verbose, bool, 0600); static void kmemleak_disable(void); /* * Print a warning and dump the stack trace. */ #define kmemleak_warn(x...) do { \ pr_warn(x); \ dump_stack(); \ kmemleak_warning = 1; \ } while (0) /* * Macro invoked when a serious kmemleak condition occurred and cannot be * recovered from. Kmemleak will be disabled and further allocation/freeing * tracing no longer available. */ #define kmemleak_stop(x...) do { \ kmemleak_warn(x); \ kmemleak_disable(); \ } while (0) #define warn_or_seq_printf(seq, fmt, ...) do { \ if (seq) \ seq_printf(seq, fmt, ##__VA_ARGS__); \ else \ pr_warn(fmt, ##__VA_ARGS__); \ } while (0) static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii) { if (seq) seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, buf, len, ascii); else print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, rowsize, groupsize, buf, len, ascii); } /* * Printing of the objects hex dump to the seq file. The number of lines to be * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called * with the object->lock held. */ static void hex_dump_object(struct seq_file *seq, struct kmemleak_object *object) { const u8 *ptr = (const u8 *)object->pointer; size_t len; if (WARN_ON_ONCE(object->flags & (OBJECT_PHYS | OBJECT_PERCPU))) return; /* limit the number of lines to HEX_MAX_LINES */ len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); kasan_disable_current(); warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); kasan_enable_current(); } /* * Object colors, encoded with count and min_count: * - white - orphan object, not enough references to it (count < min_count) * - gray - not orphan, not marked as false positive (min_count == 0) or * sufficient references to it (count >= min_count) * - black - ignore, it doesn't contain references (e.g. text section) * (min_count == -1). No function defined for this color. * Newly created objects don't have any color assigned (object->count == -1) * before the next memory scan when they become white. */ static bool color_white(const struct kmemleak_object *object) { return object->count != KMEMLEAK_BLACK && object->count < object->min_count; } static bool color_gray(const struct kmemleak_object *object) { return object->min_count != KMEMLEAK_BLACK && object->count >= object->min_count; } /* * Objects are considered unreferenced only if their color is white, they have * not be deleted and have a minimum age to avoid false positives caused by * pointers temporarily stored in CPU registers. */ static bool unreferenced_object(struct kmemleak_object *object) { return (color_white(object) && object->flags & OBJECT_ALLOCATED) && time_before_eq(object->jiffies + jiffies_min_age, jiffies_last_scan); } /* * Printing of the unreferenced objects information to the seq file. The * print_unreferenced function must be called with the object->lock held. */ static void print_unreferenced(struct seq_file *seq, struct kmemleak_object *object) { int i; unsigned long *entries; unsigned int nr_entries; nr_entries = stack_depot_fetch(object->trace_handle, &entries); warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", object->pointer, object->size); warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n", object->comm, object->pid, object->jiffies); hex_dump_object(seq, object); warn_or_seq_printf(seq, " backtrace (crc %x):\n", object->checksum); for (i = 0; i < nr_entries; i++) { void *ptr = (void *)entries[i]; warn_or_seq_printf(seq, " [<%pK>] %pS\n", ptr, ptr); } } /* * Print the kmemleak_object information. This function is used mainly for * debugging special cases when kmemleak operations. It must be called with * the object->lock held. */ static void dump_object_info(struct kmemleak_object *object) { pr_notice("Object 0x%08lx (size %zu):\n", object->pointer, object->size); pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", object->comm, object->pid, object->jiffies); pr_notice(" min_count = %d\n", object->min_count); pr_notice(" count = %d\n", object->count); pr_notice(" flags = 0x%x\n", object->flags); pr_notice(" checksum = %u\n", object->checksum); pr_notice(" backtrace:\n"); if (object->trace_handle) stack_depot_print(object->trace_handle); } static struct rb_root *object_tree(unsigned long objflags) { if (objflags & OBJECT_PHYS) return &object_phys_tree_root; if (objflags & OBJECT_PERCPU) return &object_percpu_tree_root; return &object_tree_root; } /* * Look-up a memory block metadata (kmemleak_object) in the object search * tree based on a pointer value. If alias is 0, only values pointing to the * beginning of the memory block are allowed. The kmemleak_lock must be held * when calling this function. */ static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias, unsigned int objflags) { struct rb_node *rb = object_tree(objflags)->rb_node; unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); while (rb) { struct kmemleak_object *object; unsigned long untagged_objp; object = rb_entry(rb, struct kmemleak_object, rb_node); untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); if (untagged_ptr < untagged_objp) rb = object->rb_node.rb_left; else if (untagged_objp + object->size <= untagged_ptr) rb = object->rb_node.rb_right; else if (untagged_objp == untagged_ptr || alias) return object; else { kmemleak_warn("Found object by alias at 0x%08lx\n", ptr); dump_object_info(object); break; } } return NULL; } /* Look-up a kmemleak object which allocated with virtual address. */ static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) { return __lookup_object(ptr, alias, 0); } /* * Increment the object use_count. Return 1 if successful or 0 otherwise. Note * that once an object's use_count reached 0, the RCU freeing was already * registered and the object should no longer be used. This function must be * called under the protection of rcu_read_lock(). */ static int get_object(struct kmemleak_object *object) { return atomic_inc_not_zero(&object->use_count); } /* * Memory pool allocation and freeing. kmemleak_lock must not be held. */ static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) { unsigned long flags; struct kmemleak_object *object; /* try the slab allocator first */ if (object_cache) { object = kmem_cache_alloc_noprof(object_cache, gfp_nested_mask(gfp)); if (object) return object; } /* slab allocation failed, try the memory pool */ raw_spin_lock_irqsave(&kmemleak_lock, flags); object = list_first_entry_or_null(&mem_pool_free_list, typeof(*object), object_list); if (object) list_del(&object->object_list); else if (mem_pool_free_count) object = &mem_pool[--mem_pool_free_count]; else pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); raw_spin_unlock_irqrestore(&kmemleak_lock, flags); return object; } /* * Return the object to either the slab allocator or the memory pool. */ static void mem_pool_free(struct kmemleak_object *object) { unsigned long flags; if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { kmem_cache_free(object_cache, object); return; } /* add the object to the memory pool free list */ raw_spin_lock_irqsave(&kmemleak_lock, flags); list_add(&object->object_list, &mem_pool_free_list); raw_spin_unlock_irqrestore(&kmemleak_lock, flags); } /* * RCU callback to free a kmemleak_object. */ static void free_object_rcu(struct rcu_head *rcu) { struct hlist_node *tmp; struct kmemleak_scan_area *area; struct kmemleak_object *object = container_of(rcu, struct kmemleak_object, rcu); /* * Once use_count is 0 (guaranteed by put_object), there is no other * code accessing this object, hence no need for locking. */ hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { hlist_del(&area->node); kmem_cache_free(scan_area_cache, area); } mem_pool_free(object); } /* * Decrement the object use_count. Once the count is 0, free the object using * an RCU callback. Since put_object() may be called via the kmemleak_free() -> * delete_object() path, the delayed RCU freeing ensures that there is no * recursive call to the kernel allocator. Lock-less RCU object_list traversal * is also possible. */ static void put_object(struct kmemleak_object *object) { if (!atomic_dec_and_test(&object->use_count)) return; /* should only get here after delete_object was called */ WARN_ON(object->flags & OBJECT_ALLOCATED); /* * It may be too early for the RCU callbacks, however, there is no * concurrent object_list traversal when !object_cache and all objects * came from the memory pool. Free the object directly. */ if (object_cache) call_rcu(&object->rcu, free_object_rcu); else free_object_rcu(&object->rcu); } /* * Look up an object in the object search tree and increase its use_count. */ static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias, unsigned int objflags) { unsigned long flags; struct kmemleak_object *object; rcu_read_lock(); raw_spin_lock_irqsave(&kmemleak_lock, flags); object = __lookup_object(ptr, alias, objflags); raw_spin_unlock_irqrestore(&kmemleak_lock, flags); /* check whether the object is still available */ if (object && !get_object(object)) object = NULL; rcu_read_unlock(); return object; } /* Look up and get an object which allocated with virtual address. */ static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) { return __find_and_get_object(ptr, alias, 0); } /* * Remove an object from its object tree and object_list. Must be called with * the kmemleak_lock held _if_ kmemleak is still enabled. */ static void __remove_object(struct kmemleak_object *object) { rb_erase(&object->rb_node, object_tree(object->flags)); if (!(object->del_state & DELSTATE_NO_DELETE)) list_del_rcu(&object->object_list); object->del_state |= DELSTATE_REMOVED; } static struct kmemleak_object *__find_and_remove_object(unsigned long ptr, int alias, unsigned int objflags) { struct kmemleak_object *object; object = __lookup_object(ptr, alias, objflags); if (object) __remove_object(object); return object; } /* * Look up an object in the object search tree and remove it from both object * tree root and object_list. The returned object's use_count should be at * least 1, as initially set by create_object(). */ static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias, unsigned int objflags) { unsigned long flags; struct kmemleak_object *object; raw_spin_lock_irqsave(&kmemleak_lock, flags); object = __find_and_remove_object(ptr, alias, objflags); raw_spin_unlock_irqrestore(&kmemleak_lock, flags); return object; } static noinline depot_stack_handle_t set_track_prepare(void) { depot_stack_handle_t trace_handle; unsigned long entries[MAX_TRACE]; unsigned int nr_entries; /* * Use object_cache to determine whether kmemleak_init() has * been invoked. stack_depot_early_init() is called before * kmemleak_init() in mm_core_init(). */ if (!object_cache) return 0; nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); return trace_handle; } static struct kmemleak_object *__alloc_object(gfp_t gfp) { struct kmemleak_object *object; object = mem_pool_alloc(gfp); if (!object) { pr_warn("Cannot allocate a kmemleak_object structure\n"); kmemleak_disable(); return NULL; } INIT_LIST_HEAD(&object->object_list); INIT_LIST_HEAD(&object->gray_list); INIT_HLIST_HEAD(&object->area_list); raw_spin_lock_init(&object->lock); atomic_set(&object->use_count, 1); object->excess_ref = 0; object->count = 0; /* white color initially */ object->checksum = 0; object->del_state = 0; /* task information */ if (in_hardirq()) { object->pid = 0; strncpy(object->comm, "hardirq", sizeof(object->comm)); } else if (in_serving_softirq()) { object->pid = 0; strncpy(object->comm, "softirq", sizeof(object->comm)); } else { object->pid = current->pid; /* * There is a small chance of a race with set_task_comm(), * however using get_task_comm() here may cause locking * dependency issues with current->alloc_lock. In the worst * case, the command line is not correct. */ strncpy(object->comm, current->comm, sizeof(object->comm)); } /* kernel backtrace */ object->trace_handle = set_track_prepare(); return object; } static int __link_object(struct kmemleak_object *object, unsigned long ptr, size_t size, int min_count, unsigned int objflags) { struct kmemleak_object *parent; struct rb_node **link, *rb_parent; unsigned long untagged_ptr; unsigned long untagged_objp; object->flags = OBJECT_ALLOCATED | objflags; object->pointer = ptr; object->size = kfence_ksize((void *)ptr) ?: size; object->min_count = min_count; object->jiffies = jiffies; untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); /* * Only update min_addr and max_addr with object * storing virtual address. */ if (!(objflags & (OBJECT_PHYS | OBJECT_PERCPU))) { min_addr = min(min_addr, untagged_ptr); max_addr = max(max_addr, untagged_ptr + size); } link = &object_tree(objflags)->rb_node; rb_parent = NULL; while (*link) { rb_parent = *link; parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer); if (untagged_ptr + size <= untagged_objp) link = &parent->rb_node.rb_left; else if (untagged_objp + parent->size <= untagged_ptr) link = &parent->rb_node.rb_right; else { kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", ptr); /* * No need for parent->lock here since "parent" cannot * be freed while the kmemleak_lock is held. */ dump_object_info(parent); return -EEXIST; } } rb_link_node(&object->rb_node, rb_parent, link); rb_insert_color(&object->rb_node, object_tree(objflags)); list_add_tail_rcu(&object->object_list, &object_list); return 0; } /* * Create the metadata (struct kmemleak_object) corresponding to an allocated * memory block and add it to the object_list and object tree. */ static void __create_object(unsigned long ptr, size_t size, int min_count, gfp_t gfp, unsigned int objflags) { struct kmemleak_object *object; unsigned long flags; int ret; object = __alloc_object(gfp); if (!object) return; raw_spin_lock_irqsave(&kmemleak_lock, flags); ret = __link_object(object, ptr, size, min_count, objflags); raw_spin_unlock_irqrestore(&kmemleak_lock, flags); if (ret) mem_pool_free(object); } /* Create kmemleak object which allocated with virtual address. */ static void create_object(unsigned long ptr, size_t size, int min_count, gfp_t gfp) { __create_object(ptr, size, min_count, gfp, 0); } /* Create kmemleak object which allocated with physical address. */ static void create_object_phys(unsigned long ptr, size_t size, int min_count, gfp_t gfp) { __create_object(ptr, size, min_count, gfp, OBJECT_PHYS); } /* Create kmemleak object corresponding to a per-CPU allocation. */ static void create_object_percpu(unsigned long ptr, size_t size, int min_count, gfp_t gfp) { __create_object(ptr, size, min_count, gfp, OBJECT_PERCPU); } /* * Mark the object as not allocated and schedule RCU freeing via put_object(). */ static void __delete_object(struct kmemleak_object *object) { unsigned long flags; WARN_ON(!(object->flags & OBJECT_ALLOCATED)); WARN_ON(atomic_read(&object->use_count) < 1); /* * Locking here also ensures that the corresponding memory block * cannot be freed when it is being scanned. */ raw_spin_lock_irqsave(&object->lock, flags); object->flags &= ~OBJECT_ALLOCATED; raw_spin_unlock_irqrestore(&object->lock, flags); put_object(object); } /* * Look up the metadata (struct kmemleak_object) corresponding to ptr and * delete it. */ static void delete_object_full(unsigned long ptr, unsigned int objflags) { struct kmemleak_object *object; object = find_and_remove_object(ptr, 0, objflags); if (!object) { #ifdef DEBUG kmemleak_warn("Freeing unknown object at 0x%08lx\n", ptr); #endif return; } __delete_object(object); } /* * Look up the metadata (struct kmemleak_object) corresponding to ptr and * delete it. If the memory block is partially freed, the function may create * additional metadata for the remaining parts of the block. */ static void delete_object_part(unsigned long ptr, size_t size, unsigned int objflags) { struct kmemleak_object *object, *object_l, *object_r; unsigned long start, end, flags; object_l = __alloc_object(GFP_KERNEL); if (!object_l) return; object_r = __alloc_object(GFP_KERNEL); if (!object_r) goto out; raw_spin_lock_irqsave(&kmemleak_lock, flags); object = __find_and_remove_object(ptr, 1, objflags); if (!object) { #ifdef DEBUG kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", ptr, size); #endif goto unlock; } /* * Create one or two objects that may result from the memory block * split. Note that partial freeing is only done by free_bootmem() and * this happens before kmemleak_init() is called. */ start = object->pointer; end = object->pointer + object->size; if ((ptr > start) && !__link_object(object_l, start, ptr - start, object->min_count, objflags)) object_l = NULL; if ((ptr + size < end) && !__link_object(object_r, ptr + size, end - ptr - size, object->min_count, objflags)) object_r = NULL; unlock: raw_spin_unlock_irqrestore(&kmemleak_lock, flags); if (object) __delete_object(object); out: if (object_l) mem_pool_free(object_l); if (object_r) mem_pool_free(object_r); } static void __paint_it(struct kmemleak_object *object, int color) { object->min_count = color; if (color == KMEMLEAK_BLACK) object->flags |= OBJECT_NO_SCAN; } static void paint_it(struct kmemleak_object *object, int color) { unsigned long flags; raw_spin_lock_irqsave(&object->lock, flags); __paint_it(object, color); raw_spin_unlock_irqrestore(&object->lock, flags); } static void paint_ptr(unsigned long ptr, int color, unsigned int objflags) { struct kmemleak_object *object; object = __find_and_get_object(ptr, 0, objflags); if (!object) { kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", ptr, (color == KMEMLEAK_GREY) ? "Grey" : (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); return; } paint_it(object, color); put_object(object); } /* * Mark an object permanently as gray-colored so that it can no longer be * reported as a leak. This is used in general to mark a false positive. */ static void make_gray_object(unsigned long ptr) { paint_ptr(ptr, KMEMLEAK_GREY, 0); } /* * Mark the object as black-colored so that it is ignored from scans and * reporting. */ static void make_black_object(unsigned long ptr, unsigned int objflags) { paint_ptr(ptr, KMEMLEAK_BLACK, objflags); } /* * Add a scanning area to the object. If at least one such area is added, * kmemleak will only scan these ranges rather than the whole memory block. */ static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) { unsigned long flags; struct kmemleak_object *object; struct kmemleak_scan_area *area = NULL; unsigned long untagged_ptr; unsigned long untagged_objp; object = find_and_get_object(ptr, 1); if (!object) { kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", ptr); return; } untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); if (scan_area_cache) area = kmem_cache_alloc_noprof(scan_area_cache, gfp_nested_mask(gfp)); raw_spin_lock_irqsave(&object->lock, flags); if (!area) { pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); /* mark the object for full scan to avoid false positives */ object->flags |= OBJECT_FULL_SCAN; goto out_unlock; } if (size == SIZE_MAX) { size = untagged_objp + object->size - untagged_ptr; } else if (untagged_ptr + size > untagged_objp + object->size) { kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); dump_object_info(object); kmem_cache_free(scan_area_cache, area); goto out_unlock; } INIT_HLIST_NODE(&area->node); area->start = ptr; area->size = size; hlist_add_head(&area->node, &object->area_list); out_unlock: raw_spin_unlock_irqrestore(&object->lock, flags); put_object(object); } /* * Any surplus references (object already gray) to 'ptr' are passed to * 'excess_ref'. This is used in the vmalloc() case where a pointer to * vm_struct may be used as an alternative reference to the vmalloc'ed object * (see free_thread_stack()). */ static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) { unsigned long flags; struct kmemleak_object *object; object = find_and_get_object(ptr, 0); if (!object) { kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", ptr); return; } raw_spin_lock_irqsave(&object->lock, flags); object->excess_ref = excess_ref; raw_spin_unlock_irqrestore(&object->lock, flags); put_object(object); } /* * Set the OBJECT_NO_SCAN flag for the object corresponding to the give * pointer. Such object will not be scanned by kmemleak but references to it * are searched. */ static void object_no_scan(unsigned long ptr) { unsigned long flags; struct kmemleak_object *object; object = find_and_get_object(ptr, 0); if (!object) { kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); return; } raw_spin_lock_irqsave(&object->lock, flags); object->flags |= OBJECT_NO_SCAN; raw_spin_unlock_irqrestore(&object->lock, flags); put_object(object); } /** * kmemleak_alloc - register a newly allocated object * @ptr: pointer to beginning of the object * @size: size of the object * @min_count: minimum number of references to this object. If during memory * scanning a number of references less than @min_count is found, * the object is reported as a memory leak. If @min_count is 0, * the object is never reported as a leak. If @min_count is -1, * the object is ignored (not scanned and not reported as a leak) * @gfp: kmalloc() flags used for kmemleak internal memory allocations * * This function is called from the kernel allocators when a new object * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). */ void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, gfp_t gfp) { pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count); if (kmemleak_enabled && ptr && !IS_ERR(ptr)) create_object((unsigned long)ptr, size, min_count, gfp); } EXPORT_SYMBOL_GPL(kmemleak_alloc); /** * kmemleak_alloc_percpu - register a newly allocated __percpu object * @ptr: __percpu pointer to beginning of the object * @size: size of the object * @gfp: flags used for kmemleak internal memory allocations * * This function is called from the kernel percpu allocator when a new object * (memory block) is allocated (alloc_percpu). */ void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, gfp_t gfp) { pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size); /* * Percpu allocations are only scanned and not reported as leaks * (min_count is set to 0). */ if (kmemleak_enabled && ptr && !IS_ERR(ptr)) create_object_percpu((unsigned long)ptr, size, 0, gfp); } EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); /** * kmemleak_vmalloc - register a newly vmalloc'ed object * @area: pointer to vm_struct * @size: size of the object * @gfp: __vmalloc() flags used for kmemleak internal memory allocations * * This function is called from the vmalloc() kernel allocator when a new * object (memory block) is allocated. */ void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) { pr_debug("%s(0x%px, %zu)\n", __func__, area, size); /* * A min_count = 2 is needed because vm_struct contains a reference to * the virtual address of the vmalloc'ed block. */ if (kmemleak_enabled) { create_object((unsigned long)area->addr, size, 2, gfp); object_set_excess_ref((unsigned long)area, (unsigned long)area->addr); } } EXPORT_SYMBOL_GPL(kmemleak_vmalloc); /** * kmemleak_free - unregister a previously registered object * @ptr: pointer to beginning of the object * * This function is called from the kernel allocators when an object (memory * block) is freed (kmem_cache_free, kfree, vfree etc.). */ void __ref kmemleak_free(const void *ptr) { pr_debug("%s(0x%px)\n", __func__, ptr); if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) delete_object_full((unsigned long)ptr, 0); } EXPORT_SYMBOL_GPL(kmemleak_free); /** * kmemleak_free_part - partially unregister a previously registered object * @ptr: pointer to the beginning or inside the object. This also * represents the start of the range to be freed * @size: size to be unregistered * * This function is called when only a part of a memory block is freed * (usually from the bootmem allocator). */ void __ref kmemleak_free_part(const void *ptr, size_t size) { pr_debug("%s(0x%px)\n", __func__, ptr); if (kmemleak_enabled && ptr && !IS_ERR(ptr)) delete_object_part((unsigned long)ptr, size, 0); } EXPORT_SYMBOL_GPL(kmemleak_free_part); /** * kmemleak_free_percpu - unregister a previously registered __percpu object * @ptr: __percpu pointer to beginning of the object * * This function is called from the kernel percpu allocator when an object * (memory block) is freed (free_percpu). */ void __ref kmemleak_free_percpu(const void __percpu *ptr) { pr_debug("%s(0x%px)\n", __func__, ptr); if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) delete_object_full((unsigned long)ptr, OBJECT_PERCPU); } EXPORT_SYMBOL_GPL(kmemleak_free_percpu); /** * kmemleak_update_trace - update object allocation stack trace * @ptr: pointer to beginning of the object * * Override the object allocation stack trace for cases where the actual * allocation place is not always useful. */ void __ref kmemleak_update_trace(const void *ptr) { struct kmemleak_object *object; depot_stack_handle_t trace_handle; unsigned long flags; pr_debug("%s(0x%px)\n", __func__, ptr); if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) return; object = find_and_get_object((unsigned long)ptr, 1); if (!object) { #ifdef DEBUG kmemleak_warn("Updating stack trace for unknown object at %p\n", ptr); #endif return; } trace_handle = set_track_prepare(); raw_spin_lock_irqsave(&object->lock, flags); object->trace_handle = trace_handle; raw_spin_unlock_irqrestore(&object->lock, flags); put_object(object); } EXPORT_SYMBOL(kmemleak_update_trace); /** * kmemleak_not_leak - mark an allocated object as false positive * @ptr: pointer to beginning of the object * * Calling this function on an object will cause the memory block to no longer * be reported as leak and always be scanned. */ void __ref kmemleak_not_leak(const void *ptr) { pr_debug("%s(0x%px)\n", __func__, ptr); if (kmemleak_enabled && ptr && !IS_ERR(ptr)) make_gray_object((unsigned long)ptr); } EXPORT_SYMBOL(kmemleak_not_leak); /** * kmemleak_ignore - ignore an allocated object * @ptr: pointer to beginning of the object * * Calling this function on an object will cause the memory block to be * ignored (not scanned and not reported as a leak). This is usually done when * it is known that the corresponding block is not a leak and does not contain * any references to other allocated memory blocks. */ void __ref kmemleak_ignore(const void *ptr) { pr_debug("%s(0x%px)\n", __func__, ptr); if (kmemleak_enabled && ptr && !IS_ERR(ptr)) make_black_object((unsigned long)ptr, 0); } EXPORT_SYMBOL(kmemleak_ignore); /** * kmemleak_scan_area - limit the range to be scanned in an allocated object * @ptr: pointer to beginning or inside the object. This also * represents the start of the scan area * @size: size of the scan area * @gfp: kmalloc() flags used for kmemleak internal memory allocations * * This function is used when it is known that only certain parts of an object * contain references to other objects. Kmemleak will only scan these areas * reducing the number false negatives. */ void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) { pr_debug("%s(0x%px)\n", __func__, ptr); if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) add_scan_area((unsigned long)ptr, size, gfp); } EXPORT_SYMBOL(kmemleak_scan_area); /** * kmemleak_no_scan - do not scan an allocated object * @ptr: pointer to beginning of the object * * This function notifies kmemleak not to scan the given memory block. Useful * in situations where it is known that the given object does not contain any * references to other objects. Kmemleak will not scan such objects reducing * the number of false negatives. */ void __ref kmemleak_no_scan(const void *ptr) { pr_debug("%s(0x%px)\n", __func__, ptr); if (kmemleak_enabled && ptr && !IS_ERR(ptr)) object_no_scan((unsigned long)ptr); } EXPORT_SYMBOL(kmemleak_no_scan); /** * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical * address argument * @phys: physical address of the object * @size: size of the object * @gfp: kmalloc() flags used for kmemleak internal memory allocations */ void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp) { pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size); if (kmemleak_enabled) /* * Create object with OBJECT_PHYS flag and * assume min_count 0. */ create_object_phys((unsigned long)phys, size, 0, gfp); } EXPORT_SYMBOL(kmemleak_alloc_phys); /** * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a * physical address argument * @phys: physical address if the beginning or inside an object. This * also represents the start of the range to be freed * @size: size to be unregistered */ void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) { pr_debug("%s(0x%px)\n", __func__, &phys); if (kmemleak_enabled) delete_object_part((unsigned long)phys, size, OBJECT_PHYS); } EXPORT_SYMBOL(kmemleak_free_part_phys); /** * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical * address argument * @phys: physical address of the object */ void __ref kmemleak_ignore_phys(phys_addr_t phys) { pr_debug("%s(0x%px)\n", __func__, &phys); if (kmemleak_enabled) make_black_object((unsigned long)phys, OBJECT_PHYS); } EXPORT_SYMBOL(kmemleak_ignore_phys); /* * Update an object's checksum and return true if it was modified. */ static bool update_checksum(struct kmemleak_object *object) { u32 old_csum = object->checksum; if (WARN_ON_ONCE(object->flags & (OBJECT_PHYS | OBJECT_PERCPU))) return false; kasan_disable_current(); kcsan_disable_current(); object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); kasan_enable_current(); kcsan_enable_current(); return object->checksum != old_csum; } /* * Update an object's references. object->lock must be held by the caller. */ static void update_refs(struct kmemleak_object *object) { if (!color_white(object)) { /* non-orphan, ignored or new */ return; } /* * Increase the object's reference count (number of pointers to the * memory block). If this count reaches the required minimum, the * object's color will become gray and it will be added to the * gray_list. */ object->count++; if (color_gray(object)) { /* put_object() called when removing from gray_list */ WARN_ON(!get_object(object)); list_add_tail(&object->gray_list, &gray_list); } } /* * Memory scanning is a long process and it needs to be interruptible. This * function checks whether such interrupt condition occurred. */ static int scan_should_stop(void) { if (!kmemleak_enabled) return 1; /* * This function may be called from either process or kthread context, * hence the need to check for both stop conditions. */ if (current->mm) return signal_pending(current); else return kthread_should_stop(); return 0; } /* * Scan a memory block (exclusive range) for valid pointers and add those * found to the gray list. */ static void scan_block(void *_start, void *_end, struct kmemleak_object *scanned) { unsigned long *ptr; unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); unsigned long *end = _end - (BYTES_PER_POINTER - 1); unsigned long flags; unsigned long untagged_ptr; raw_spin_lock_irqsave(&kmemleak_lock, flags); for (ptr = start; ptr < end; ptr++) { struct kmemleak_object *object; unsigned long pointer; unsigned long excess_ref; if (scan_should_stop()) break; kasan_disable_current(); pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); kasan_enable_current(); untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); if (untagged_ptr < min_addr || untagged_ptr >= max_addr) continue; /* * No need for get_object() here since we hold kmemleak_lock. * object->use_count cannot be dropped to 0 while the object * is still present in object_tree_root and object_list * (with updates protected by kmemleak_lock). */ object = lookup_object(pointer, 1); if (!object) continue; if (object == scanned) /* self referenced, ignore */ continue; /* * Avoid the lockdep recursive warning on object->lock being * previously acquired in scan_object(). These locks are * enclosed by scan_mutex. */ raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); /* only pass surplus references (object already gray) */ if (color_gray(object)) { excess_ref = object->excess_ref; /* no need for update_refs() if object already gray */ } else { excess_ref = 0; update_refs(object); } raw_spin_unlock(&object->lock); if (excess_ref) { object = lookup_object(excess_ref, 0); if (!object) continue; if (object == scanned) /* circular reference, ignore */ continue; raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); update_refs(object); raw_spin_unlock(&object->lock); } } raw_spin_unlock_irqrestore(&kmemleak_lock, flags); } /* * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. */ #ifdef CONFIG_SMP static void scan_large_block(void *start, void *end) { void *next; while (start < end) { next = min(start + MAX_SCAN_SIZE, end); scan_block(start, next, NULL); start = next; cond_resched(); } } #endif /* * Scan a memory block corresponding to a kmemleak_object. A condition is * that object->use_count >= 1. */ static void scan_object(struct kmemleak_object *object) { struct kmemleak_scan_area *area; unsigned long flags; /* * Once the object->lock is acquired, the corresponding memory block * cannot be freed (the same lock is acquired in delete_object). */ raw_spin_lock_irqsave(&object->lock, flags); if (object->flags & OBJECT_NO_SCAN) goto out; if (!(object->flags & OBJECT_ALLOCATED)) /* already freed object */ goto out; if (object->flags & OBJECT_PERCPU) { unsigned int cpu; for_each_possible_cpu(cpu) { void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu); void *end = start + object->size; scan_block(start, end, object); raw_spin_unlock_irqrestore(&object->lock, flags); cond_resched(); raw_spin_lock_irqsave(&object->lock, flags); if (!(object->flags & OBJECT_ALLOCATED)) break; } } else if (hlist_empty(&object->area_list) || object->flags & OBJECT_FULL_SCAN) { void *start = object->flags & OBJECT_PHYS ? __va((phys_addr_t)object->pointer) : (void *)object->pointer; void *end = start + object->size; void *next; do { next = min(start + MAX_SCAN_SIZE, end); scan_block(start, next, object); start = next; if (start >= end) break; raw_spin_unlock_irqrestore(&object->lock, flags); cond_resched(); raw_spin_lock_irqsave(&object->lock, flags); } while (object->flags & OBJECT_ALLOCATED); } else { hlist_for_each_entry(area, &object->area_list, node) scan_block((void *)area->start, (void *)(area->start + area->size), object); } out: raw_spin_unlock_irqrestore(&object->lock, flags); } /* * Scan the objects already referenced (gray objects). More objects will be * referenced and, if there are no memory leaks, all the objects are scanned. */ static void scan_gray_list(void) { struct kmemleak_object *object, *tmp; /* * The list traversal is safe for both tail additions and removals * from inside the loop. The kmemleak objects cannot be freed from * outside the loop because their use_count was incremented. */ object = list_entry(gray_list.next, typeof(*object), gray_list); while (&object->gray_list != &gray_list) { cond_resched(); /* may add new objects to the list */ if (!scan_should_stop()) scan_object(object); tmp = list_entry(object->gray_list.next, typeof(*object), gray_list); /* remove the object from the list and release it */ list_del(&object->gray_list); put_object(object); object = tmp; } WARN_ON(!list_empty(&gray_list)); } /* * Conditionally call resched() in an object iteration loop while making sure * that the given object won't go away without RCU read lock by performing a * get_object() if necessaary. */ static void kmemleak_cond_resched(struct kmemleak_object *object) { if (!get_object(object)) return; /* Try next object */ raw_spin_lock_irq(&kmemleak_lock); if (object->del_state & DELSTATE_REMOVED) goto unlock_put; /* Object removed */ object->del_state |= DELSTATE_NO_DELETE; raw_spin_unlock_irq(&kmemleak_lock); rcu_read_unlock(); cond_resched(); rcu_read_lock(); raw_spin_lock_irq(&kmemleak_lock); if (object->del_state & DELSTATE_REMOVED) list_del_rcu(&object->object_list); object->del_state &= ~DELSTATE_NO_DELETE; unlock_put: raw_spin_unlock_irq(&kmemleak_lock); put_object(object); } /* * Scan data sections and all the referenced memory blocks allocated via the * kernel's standard allocators. This function must be called with the * scan_mutex held. */ static void kmemleak_scan(void) { struct kmemleak_object *object; struct zone *zone; int __maybe_unused i; int new_leaks = 0; jiffies_last_scan = jiffies; /* prepare the kmemleak_object's */ rcu_read_lock(); list_for_each_entry_rcu(object, &object_list, object_list) { raw_spin_lock_irq(&object->lock); #ifdef DEBUG /* * With a few exceptions there should be a maximum of * 1 reference to any object at this point. */ if (atomic_read(&object->use_count) > 1) { pr_debug("object->use_count = %d\n", atomic_read(&object->use_count)); dump_object_info(object); } #endif /* ignore objects outside lowmem (paint them black) */ if ((object->flags & OBJECT_PHYS) && !(object->flags & OBJECT_NO_SCAN)) { unsigned long phys = object->pointer; if (PHYS_PFN(phys) < min_low_pfn || PHYS_PFN(phys + object->size) >= max_low_pfn) __paint_it(object, KMEMLEAK_BLACK); } /* reset the reference count (whiten the object) */ object->count = 0; if (color_gray(object) && get_object(object)) list_add_tail(&object->gray_list, &gray_list); raw_spin_unlock_irq(&object->lock); if (need_resched()) kmemleak_cond_resched(object); } rcu_read_unlock(); #ifdef CONFIG_SMP /* per-cpu sections scanning */ for_each_possible_cpu(i) scan_large_block(__per_cpu_start + per_cpu_offset(i), __per_cpu_end + per_cpu_offset(i)); #endif /* * Struct page scanning for each node. */ get_online_mems(); for_each_populated_zone(zone) { unsigned long start_pfn = zone->zone_start_pfn; unsigned long end_pfn = zone_end_pfn(zone); unsigned long pfn; for (pfn = start_pfn; pfn < end_pfn; pfn++) { struct page *page = pfn_to_online_page(pfn); if (!(pfn & 63)) cond_resched(); if (!page) continue; /* only scan pages belonging to this zone */ if (page_zone(page) != zone) continue; /* only scan if page is in use */ if (page_count(page) == 0) continue; scan_block(page, page + 1, NULL); } } put_online_mems(); /* * Scanning the task stacks (may introduce false negatives). */ if (kmemleak_stack_scan) { struct task_struct *p, *g; rcu_read_lock(); for_each_process_thread(g, p) { void *stack = try_get_task_stack(p); if (stack) { scan_block(stack, stack + THREAD_SIZE, NULL); put_task_stack(p); } } rcu_read_unlock(); } /* * Scan the objects already referenced from the sections scanned * above. */ scan_gray_list(); /* * Check for new or unreferenced objects modified since the previous * scan and color them gray until the next scan. */ rcu_read_lock(); list_for_each_entry_rcu(object, &object_list, object_list) { if (need_resched()) kmemleak_cond_resched(object); /* * This is racy but we can save the overhead of lock/unlock * calls. The missed objects, if any, should be caught in * the next scan. */ if (!color_white(object)) continue; raw_spin_lock_irq(&object->lock); if (color_white(object) && (object->flags & OBJECT_ALLOCATED) && update_checksum(object) && get_object(object)) { /* color it gray temporarily */ object->count = object->min_count; list_add_tail(&object->gray_list, &gray_list); } raw_spin_unlock_irq(&object->lock); } rcu_read_unlock(); /* * Re-scan the gray list for modified unreferenced objects. */ scan_gray_list(); /* * If scanning was stopped do not report any new unreferenced objects. */ if (scan_should_stop()) return; /* * Scanning result reporting. */ rcu_read_lock(); list_for_each_entry_rcu(object, &object_list, object_list) { if (need_resched()) kmemleak_cond_resched(object); /* * This is racy but we can save the overhead of lock/unlock * calls. The missed objects, if any, should be caught in * the next scan. */ if (!color_white(object)) continue; raw_spin_lock_irq(&object->lock); if (unreferenced_object(object) && !(object->flags & OBJECT_REPORTED)) { object->flags |= OBJECT_REPORTED; if (kmemleak_verbose) print_unreferenced(NULL, object); new_leaks++; } raw_spin_unlock_irq(&object->lock); } rcu_read_unlock(); if (new_leaks) { kmemleak_found_leaks = true; pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", new_leaks); } } /* * Thread function performing automatic memory scanning. Unreferenced objects * at the end of a memory scan are reported but only the first time. */ static int kmemleak_scan_thread(void *arg) { static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); pr_info("Automatic memory scanning thread started\n"); set_user_nice(current, 10); /* * Wait before the first scan to allow the system to fully initialize. */ if (first_run) { signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); first_run = 0; while (timeout && !kthread_should_stop()) timeout = schedule_timeout_interruptible(timeout); } while (!kthread_should_stop()) { signed long timeout = READ_ONCE(jiffies_scan_wait); mutex_lock(&scan_mutex); kmemleak_scan(); mutex_unlock(&scan_mutex); /* wait before the next scan */ while (timeout && !kthread_should_stop()) timeout = schedule_timeout_interruptible(timeout); } pr_info("Automatic memory scanning thread ended\n"); return 0; } /* * Start the automatic memory scanning thread. This function must be called * with the scan_mutex held. */ static void start_scan_thread(void) { if (scan_thread) return; scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); if (IS_ERR(scan_thread)) { pr_warn("Failed to create the scan thread\n"); scan_thread = NULL; } } /* * Stop the automatic memory scanning thread. */ static void stop_scan_thread(void) { if (scan_thread) { kthread_stop(scan_thread); scan_thread = NULL; } } /* * Iterate over the object_list and return the first valid object at or after * the required position with its use_count incremented. The function triggers * a memory scanning when the pos argument points to the first position. */ static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) { struct kmemleak_object *object; loff_t n = *pos; int err; err = mutex_lock_interruptible(&scan_mutex); if (err < 0) return ERR_PTR(err); rcu_read_lock(); list_for_each_entry_rcu(object, &object_list, object_list) { if (n-- > 0) continue; if (get_object(object)) goto out; } object = NULL; out: return object; } /* * Return the next object in the object_list. The function decrements the * use_count of the previous object and increases that of the next one. */ static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct kmemleak_object *prev_obj = v; struct kmemleak_object *next_obj = NULL; struct kmemleak_object *obj = prev_obj; ++(*pos); list_for_each_entry_continue_rcu(obj, &object_list, object_list) { if (get_object(obj)) { next_obj = obj; break; } } put_object(prev_obj); return next_obj; } /* * Decrement the use_count of the last object required, if any. */ static void kmemleak_seq_stop(struct seq_file *seq, void *v) { if (!IS_ERR(v)) { /* * kmemleak_seq_start may return ERR_PTR if the scan_mutex * waiting was interrupted, so only release it if !IS_ERR. */ rcu_read_unlock(); mutex_unlock(&scan_mutex); if (v) put_object(v); } } /* * Print the information for an unreferenced object to the seq file. */ static int kmemleak_seq_show(struct seq_file *seq, void *v) { struct kmemleak_object *object = v; unsigned long flags; raw_spin_lock_irqsave(&object->lock, flags); if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) print_unreferenced(seq, object); raw_spin_unlock_irqrestore(&object->lock, flags); return 0; } static const struct seq_operations kmemleak_seq_ops = { .start = kmemleak_seq_start, .next = kmemleak_seq_next, .stop = kmemleak_seq_stop, .show = kmemleak_seq_show, }; static int kmemleak_open(struct inode *inode, struct file *file) { return seq_open(file, &kmemleak_seq_ops); } static int dump_str_object_info(const char *str) { unsigned long flags; struct kmemleak_object *object; unsigned long addr; if (kstrtoul(str, 0, &addr)) return -EINVAL; object = find_and_get_object(addr, 0); if (!object) { pr_info("Unknown object at 0x%08lx\n", addr); return -EINVAL; } raw_spin_lock_irqsave(&object->lock, flags); dump_object_info(object); raw_spin_unlock_irqrestore(&object->lock, flags); put_object(object); return 0; } /* * We use grey instead of black to ensure we can do future scans on the same * objects. If we did not do future scans these black objects could * potentially contain references to newly allocated objects in the future and * we'd end up with false positives. */ static void kmemleak_clear(void) { struct kmemleak_object *object; rcu_read_lock(); list_for_each_entry_rcu(object, &object_list, object_list) { raw_spin_lock_irq(&object->lock); if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) __paint_it(object, KMEMLEAK_GREY); raw_spin_unlock_irq(&object->lock); } rcu_read_unlock(); kmemleak_found_leaks = false; } static void __kmemleak_do_cleanup(void); /* * File write operation to configure kmemleak at run-time. The following * commands can be written to the /sys/kernel/debug/kmemleak file: * off - disable kmemleak (irreversible) * stack=on - enable the task stacks scanning * stack=off - disable the tasks stacks scanning * scan=on - start the automatic memory scanning thread * scan=off - stop the automatic memory scanning thread * scan=... - set the automatic memory scanning period in seconds (0 to * disable it) * scan - trigger a memory scan * clear - mark all current reported unreferenced kmemleak objects as * grey to ignore printing them, or free all kmemleak objects * if kmemleak has been disabled. * dump=... - dump information about the object found at the given address */ static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, size_t size, loff_t *ppos) { char buf[64]; int buf_size; int ret; buf_size = min(size, (sizeof(buf) - 1)); if (strncpy_from_user(buf, user_buf, buf_size) < 0) return -EFAULT; buf[buf_size] = 0; ret = mutex_lock_interruptible(&scan_mutex); if (ret < 0) return ret; if (strncmp(buf, "clear", 5) == 0) { if (kmemleak_enabled) kmemleak_clear(); else __kmemleak_do_cleanup(); goto out; } if (!kmemleak_enabled) { ret = -EPERM; goto out; } if (strncmp(buf, "off", 3) == 0) kmemleak_disable(); else if (strncmp(buf, "stack=on", 8) == 0) kmemleak_stack_scan = 1; else if (strncmp(buf, "stack=off", 9) == 0) kmemleak_stack_scan = 0; else if (strncmp(buf, "scan=on", 7) == 0) start_scan_thread(); else if (strncmp(buf, "scan=off", 8) == 0) stop_scan_thread(); else if (strncmp(buf, "scan=", 5) == 0) { unsigned secs; unsigned long msecs; ret = kstrtouint(buf + 5, 0, &secs); if (ret < 0) goto out; msecs = secs * MSEC_PER_SEC; if (msecs > UINT_MAX) msecs = UINT_MAX; stop_scan_thread(); if (msecs) { WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); start_scan_thread(); } } else if (strncmp(buf, "scan", 4) == 0) kmemleak_scan(); else if (strncmp(buf, "dump=", 5) == 0) ret = dump_str_object_info(buf + 5); else ret = -EINVAL; out: mutex_unlock(&scan_mutex); if (ret < 0) return ret; /* ignore the rest of the buffer, only one command at a time */ *ppos += size; return size; } static const struct file_operations kmemleak_fops = { .owner = THIS_MODULE, .open = kmemleak_open, .read = seq_read, .write = kmemleak_write, .llseek = seq_lseek, .release = seq_release, }; static void __kmemleak_do_cleanup(void) { struct kmemleak_object *object, *tmp; /* * Kmemleak has already been disabled, no need for RCU list traversal * or kmemleak_lock held. */ list_for_each_entry_safe(object, tmp, &object_list, object_list) { __remove_object(object); __delete_object(object); } } /* * Stop the memory scanning thread and free the kmemleak internal objects if * no previous scan thread (otherwise, kmemleak may still have some useful * information on memory leaks). */ static void kmemleak_do_cleanup(struct work_struct *work) { stop_scan_thread(); mutex_lock(&scan_mutex); /* * Once it is made sure that kmemleak_scan has stopped, it is safe to no * longer track object freeing. Ordering of the scan thread stopping and * the memory accesses below is guaranteed by the kthread_stop() * function. */ kmemleak_free_enabled = 0; mutex_unlock(&scan_mutex); if (!kmemleak_found_leaks) __kmemleak_do_cleanup(); else pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); } static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); /* * Disable kmemleak. No memory allocation/freeing will be traced once this * function is called. Disabling kmemleak is an irreversible operation. */ static void kmemleak_disable(void) { /* atomically check whether it was already invoked */ if (cmpxchg(&kmemleak_error, 0, 1)) return; /* stop any memory operation tracing */ kmemleak_enabled = 0; /* check whether it is too early for a kernel thread */ if (kmemleak_late_initialized) schedule_work(&cleanup_work); else kmemleak_free_enabled = 0; pr_info("Kernel memory leak detector disabled\n"); } /* * Allow boot-time kmemleak disabling (enabled by default). */ static int __init kmemleak_boot_config(char *str) { if (!str) return -EINVAL; if (strcmp(str, "off") == 0) kmemleak_disable(); else if (strcmp(str, "on") == 0) { kmemleak_skip_disable = 1; stack_depot_request_early_init(); } else return -EINVAL; return 0; } early_param("kmemleak", kmemleak_boot_config); /* * Kmemleak initialization. */ void __init kmemleak_init(void) { #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF if (!kmemleak_skip_disable) { kmemleak_disable(); return; } #endif if (kmemleak_error) return; jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); /* register the data/bss sections */ create_object((unsigned long)_sdata, _edata - _sdata, KMEMLEAK_GREY, GFP_ATOMIC); create_object((unsigned long)__bss_start, __bss_stop - __bss_start, KMEMLEAK_GREY, GFP_ATOMIC); /* only register .data..ro_after_init if not within .data */ if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) create_object((unsigned long)__start_ro_after_init, __end_ro_after_init - __start_ro_after_init, KMEMLEAK_GREY, GFP_ATOMIC); } /* * Late initialization function. */ static int __init kmemleak_late_init(void) { kmemleak_late_initialized = 1; debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); if (kmemleak_error) { /* * Some error occurred and kmemleak was disabled. There is a * small chance that kmemleak_disable() was called immediately * after setting kmemleak_late_initialized and we may end up with * two clean-up threads but serialized by scan_mutex. */ schedule_work(&cleanup_work); return -ENOMEM; } if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { mutex_lock(&scan_mutex); start_scan_thread(); mutex_unlock(&scan_mutex); } pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", mem_pool_free_count); return 0; } late_initcall(kmemleak_late_init); |