/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
/* FILE POLICY AND INTENDED USAGE:
*
* This file implements generic display communication protocols such as i2c, aux
* and scdc. The file should not contain any specific applications of these
* protocols such as display capability query, detection, or handshaking such as
* link training.
*/
#include "link_ddc.h"
#include "vector.h"
#include "dce/dce_aux.h"
#include "dal_asic_id.h"
#include "link_dpcd.h"
#include "dm_helpers.h"
#include "atomfirmware.h"
#define DC_LOGGER \
ddc_service->ctx->logger
#define DC_LOGGER_INIT(logger)
static const uint8_t DP_VGA_DONGLE_BRANCH_DEV_NAME[] = "DpVga";
/* DP to Dual link DVI converter */
static const uint8_t DP_DVI_CONVERTER_ID_4[] = "m2DVIa";
static const uint8_t DP_DVI_CONVERTER_ID_5[] = "3393N2";
struct i2c_payloads {
struct vector payloads;
};
struct aux_payloads {
struct vector payloads;
};
static bool i2c_payloads_create(
struct dc_context *ctx,
struct i2c_payloads *payloads,
uint32_t count)
{
if (dal_vector_construct(
&payloads->payloads, ctx, count, sizeof(struct i2c_payload)))
return true;
return false;
}
static struct i2c_payload *i2c_payloads_get(struct i2c_payloads *p)
{
return (struct i2c_payload *)p->payloads.container;
}
static uint32_t i2c_payloads_get_count(struct i2c_payloads *p)
{
return p->payloads.count;
}
static void i2c_payloads_destroy(struct i2c_payloads *p)
{
if (!p)
return;
dal_vector_destruct(&p->payloads);
}
#define DDC_MIN(a, b) (((a) < (b)) ? (a) : (b))
static void i2c_payloads_add(
struct i2c_payloads *payloads,
uint32_t address,
uint32_t len,
uint8_t *data,
bool write)
{
uint32_t payload_size = EDID_SEGMENT_SIZE;
uint32_t pos;
for (pos = 0; pos < len; pos += payload_size) {
struct i2c_payload payload = {
.write = write,
.address = address,
.length = DDC_MIN(payload_size, len - pos),
.data = data + pos };
dal_vector_append(&payloads->payloads, &payload);
}
}
static void ddc_service_construct(
struct ddc_service *ddc_service,
struct ddc_service_init_data *init_data)
{
enum connector_id connector_id =
dal_graphics_object_id_get_connector_id(init_data->id);
struct gpio_service *gpio_service = init_data->ctx->gpio_service;
struct graphics_object_i2c_info i2c_info;
struct gpio_ddc_hw_info hw_info;
struct dc_bios *dcb = init_data->ctx->dc_bios;
ddc_service->link = init_data->link;
ddc_service->ctx = init_data->ctx;
if (init_data->is_dpia_link ||
dcb->funcs->get_i2c_info(dcb, init_data->id, &i2c_info) != BP_RESULT_OK) {
ddc_service->ddc_pin = NULL;
} else {
DC_LOGGER_INIT(ddc_service->ctx->logger);
DC_LOG_DC("BIOS object table - i2c_line: %d", i2c_info.i2c_line);
DC_LOG_DC("BIOS object table - i2c_engine_id: %d", i2c_info.i2c_engine_id);
hw_info.ddc_channel = i2c_info.i2c_line;
if (ddc_service->link != NULL)
hw_info.hw_supported = i2c_info.i2c_hw_assist;
else
hw_info.hw_supported = false;
ddc_service->ddc_pin = dal_gpio_create_ddc(
gpio_service,
i2c_info.gpio_info.clk_a_register_index,
1 << i2c_info.gpio_info.clk_a_shift,
&hw_info);
}
ddc_service->flags.EDID_QUERY_DONE_ONCE = false;
ddc_service->flags.FORCE_READ_REPEATED_START = false;
ddc_service->flags.EDID_STRESS_READ = false;
ddc_service->flags.IS_INTERNAL_DISPLAY =
connector_id == CONNECTOR_ID_EDP ||
connector_id == CONNECTOR_ID_LVDS;
ddc_service->wa.raw = 0;
}
struct ddc_service *link_create_ddc_service(
struct ddc_service_init_data *init_data)
{
struct ddc_service *ddc_service;
ddc_service = kzalloc(sizeof(struct ddc_service), GFP_KERNEL);
if (!ddc_service)
return NULL;
ddc_service_construct(ddc_service, init_data);
return ddc_service;
}
static void ddc_service_destruct(struct ddc_service *ddc)
{
if (ddc->ddc_pin)
dal_gpio_destroy_ddc(&ddc->ddc_pin);
}
void link_destroy_ddc_service(struct ddc_service **ddc)
{
if (!ddc || !*ddc) {
BREAK_TO_DEBUGGER();
return;
}
ddc_service_destruct(*ddc);
kfree(*ddc);
*ddc = NULL;
}
void set_ddc_transaction_type(
struct ddc_service *ddc,
enum ddc_transaction_type type)
{
ddc->transaction_type = type;
}
bool link_is_in_aux_transaction_mode(struct ddc_service *ddc)
{
switch (ddc->transaction_type) {
case DDC_TRANSACTION_TYPE_I2C_OVER_AUX:
case DDC_TRANSACTION_TYPE_I2C_OVER_AUX_WITH_DEFER:
case DDC_TRANSACTION_TYPE_I2C_OVER_AUX_RETRY_DEFER:
return true;
default:
break;
}
return false;
}
void set_dongle_type(struct ddc_service *ddc,
enum display_dongle_type dongle_type)
{
ddc->dongle_type = dongle_type;
}
static uint32_t defer_delay_converter_wa(
struct ddc_service *ddc,
uint32_t defer_delay)
{
struct dc_link *link = ddc->link;
if (link->dpcd_caps.dongle_type == DISPLAY_DONGLE_DP_VGA_CONVERTER &&
link->dpcd_caps.branch_dev_id == DP_BRANCH_DEVICE_ID_0080E1 &&
(link->dpcd_caps.branch_fw_revision[0] < 0x01 ||
(link->dpcd_caps.branch_fw_revision[0] == 0x01 &&
link->dpcd_caps.branch_fw_revision[1] < 0x40)) &&
!memcmp(link->dpcd_caps.branch_dev_name,
DP_VGA_DONGLE_BRANCH_DEV_NAME,
sizeof(link->dpcd_caps.branch_dev_name)))
return defer_delay > DPVGA_DONGLE_AUX_DEFER_WA_DELAY ?
defer_delay : DPVGA_DONGLE_AUX_DEFER_WA_DELAY;
if (link->dpcd_caps.branch_dev_id == DP_BRANCH_DEVICE_ID_0080E1 &&
!memcmp(link->dpcd_caps.branch_dev_name,
DP_DVI_CONVERTER_ID_4,
sizeof(link->dpcd_caps.branch_dev_name)))
return defer_delay > I2C_OVER_AUX_DEFER_WA_DELAY ?
defer_delay : I2C_OVER_AUX_DEFER_WA_DELAY;
if (link->dpcd_caps.branch_dev_id == DP_BRANCH_DEVICE_ID_006037 &&
!memcmp(link->dpcd_caps.branch_dev_name,
DP_DVI_CONVERTER_ID_5,
sizeof(link->dpcd_caps.branch_dev_name)))
return defer_delay > I2C_OVER_AUX_DEFER_WA_DELAY_1MS ?
I2C_OVER_AUX_DEFER_WA_DELAY_1MS : defer_delay;
return defer_delay;
}
#define DP_TRANSLATOR_DELAY 5
uint32_t link_get_aux_defer_delay(struct ddc_service *ddc)
{
uint32_t defer_delay = 0;
switch (ddc->transaction_type) {
case DDC_TRANSACTION_TYPE_I2C_OVER_AUX:
if ((DISPLAY_DONGLE_DP_VGA_CONVERTER == ddc->dongle_type) ||
(DISPLAY_DONGLE_DP_DVI_CONVERTER == ddc->dongle_type) ||
(DISPLAY_DONGLE_DP_HDMI_CONVERTER ==
ddc->dongle_type)) {
defer_delay = DP_TRANSLATOR_DELAY;
defer_delay =
defer_delay_converter_wa(ddc, defer_delay);
} else /*sink has a delay different from an Active Converter*/
defer_delay = 0;
break;
case DDC_TRANSACTION_TYPE_I2C_OVER_AUX_WITH_DEFER:
defer_delay = DP_TRANSLATOR_DELAY;
break;
default:
break;
}
return defer_delay;
}
static bool submit_aux_command(struct ddc_service *ddc,
struct aux_payload *payload)
{
uint32_t retrieved = 0;
bool ret = false;
if (!ddc)
return false;
if (!payload)
return false;
do {
struct aux_payload current_payload;
bool is_end_of_payload = (retrieved + DEFAULT_AUX_MAX_DATA_SIZE) >=
payload->length;
uint32_t payload_length = is_end_of_payload ?
payload->length - retrieved : DEFAULT_AUX_MAX_DATA_SIZE;
current_payload.address = payload->address;
current_payload.data = &payload->data[retrieved];
current_payload.defer_delay = payload->defer_delay;
current_payload.i2c_over_aux = payload->i2c_over_aux;
current_payload.length = payload_length;
/* set mot (middle of transaction) to false if it is the last payload */
current_payload.mot = is_end_of_payload ? payload->mot:true;
current_payload.write_status_update = false;
current_payload.reply = payload->reply;
current_payload.write = payload->write;
ret = link_aux_transfer_with_retries_no_mutex(ddc, ¤t_payload);
retrieved += payload_length;
} while (retrieved < payload->length && ret == true);
return ret;
}
bool link_query_ddc_data(
struct ddc_service *ddc,
uint32_t address,
uint8_t *write_buf,
uint32_t write_size,
uint8_t *read_buf,
uint32_t read_size)
{
bool success = true;
uint32_t payload_size =
link_is_in_aux_transaction_mode(ddc) ?
DEFAULT_AUX_MAX_DATA_SIZE : EDID_SEGMENT_SIZE;
uint32_t write_payloads =
(write_size + payload_size - 1) / payload_size;
uint32_t read_payloads =
(read_size + payload_size - 1) / payload_size;
uint32_t payloads_num = write_payloads + read_payloads;
if (!payloads_num)
return false;
if (link_is_in_aux_transaction_mode(ddc)) {
struct aux_payload payload;
payload.i2c_over_aux = true;
payload.address = address;
payload.reply = NULL;
payload.defer_delay = link_get_aux_defer_delay(ddc);
payload.write_status_update = false;
if (write_size != 0) {
payload.write = true;
/* should not set mot (middle of transaction) to 0
* if there are pending read payloads
*/
payload.mot = !(read_size == 0);
payload.length = write_size;
payload.data = write_buf;
success = submit_aux_command(ddc, &payload);
}
if (read_size != 0 && success) {
payload.write = false;
/* should set mot (middle of transaction) to 0
* since it is the last payload to send
*/
payload.mot = false;
payload.length = read_size;
payload.data = read_buf;
success = submit_aux_command(ddc, &payload);
}
} else {
struct i2c_command command = {0};
struct i2c_payloads payloads;
if (!i2c_payloads_create(ddc->ctx, &payloads, payloads_num))
return false;
command.payloads = i2c_payloads_get(&payloads);
command.number_of_payloads = 0;
command.engine = DDC_I2C_COMMAND_ENGINE;
command.speed = ddc->ctx->dc->caps.i2c_speed_in_khz;
i2c_payloads_add(
&payloads, address, write_size, write_buf, true);
i2c_payloads_add(
&payloads, address, read_size, read_buf, false);
command.number_of_payloads =
i2c_payloads_get_count(&payloads);
success = dm_helpers_submit_i2c(
ddc->ctx,
ddc->link,
&command);
i2c_payloads_destroy(&payloads);
}
return success;
}
int link_aux_transfer_raw(struct ddc_service *ddc,
struct aux_payload *payload,
enum aux_return_code_type *operation_result)
{
if (ddc->ctx->dc->debug.enable_dmub_aux_for_legacy_ddc ||
!ddc->ddc_pin) {
return dce_aux_transfer_dmub_raw(ddc, payload, operation_result);
} else {
return dce_aux_transfer_raw(ddc, payload, operation_result);
}
}
uint32_t link_get_fixed_vs_pe_retimer_write_address(struct dc_link *link)
{
uint32_t vendor_lttpr_write_address = 0xF004F;
uint8_t offset;
switch (link->dpcd_caps.lttpr_caps.phy_repeater_cnt) {
case 0x80: // 1 lttpr repeater
offset = 1;
break;
case 0x40: // 2 lttpr repeaters
offset = 2;
break;
case 0x20: // 3 lttpr repeaters
offset = 3;
break;
case 0x10: // 4 lttpr repeaters
offset = 4;
break;
case 0x08: // 5 lttpr repeaters
offset = 5;
break;
case 0x04: // 6 lttpr repeaters
offset = 6;
break;
case 0x02: // 7 lttpr repeaters
offset = 7;
break;
case 0x01: // 8 lttpr repeaters
offset = 8;
break;
default:
offset = 0xFF;
}
if (offset != 0xFF) {
vendor_lttpr_write_address +=
((DP_REPEATER_CONFIGURATION_AND_STATUS_SIZE) * (offset - 1));
}
return vendor_lttpr_write_address;
}
uint32_t link_get_fixed_vs_pe_retimer_read_address(struct dc_link *link)
{
return link_get_fixed_vs_pe_retimer_write_address(link) + 4;
}
bool link_configure_fixed_vs_pe_retimer(struct ddc_service *ddc, const uint8_t *data, uint32_t length)
{
struct aux_payload write_payload = {
.i2c_over_aux = false,
.write = true,
.address = link_get_fixed_vs_pe_retimer_write_address(ddc->link),
.length = length,
.data = (uint8_t *) data,
.reply = NULL,
.mot = I2C_MOT_UNDEF,
.write_status_update = false,
.defer_delay = 0,
};
return link_aux_transfer_with_retries_no_mutex(ddc,
&write_payload);
}
bool link_query_fixed_vs_pe_retimer(struct ddc_service *ddc, uint8_t *data, uint32_t length)
{
struct aux_payload read_payload = {
.i2c_over_aux = false,
.write = false,
.address = link_get_fixed_vs_pe_retimer_read_address(ddc->link),
.length = length,
.data = data,
.reply = NULL,
.mot = I2C_MOT_UNDEF,
.write_status_update = false,
.defer_delay = 0,
};
return link_aux_transfer_with_retries_no_mutex(ddc,
&read_payload);
}
bool link_aux_transfer_with_retries_no_mutex(struct ddc_service *ddc,
struct aux_payload *payload)
{
return dce_aux_transfer_with_retries(ddc, payload);
}
bool try_to_configure_aux_timeout(struct ddc_service *ddc,
uint32_t timeout)
{
bool result = false;
struct ddc *ddc_pin = ddc->ddc_pin;
if ((ddc->link->chip_caps & EXT_DISPLAY_PATH_CAPS__DP_FIXED_VS_EN) &&
!ddc->link->dc->debug.disable_fixed_vs_aux_timeout_wa &&
ddc->ctx->dce_version == DCN_VERSION_3_1) {
/* Fixed VS workaround for AUX timeout */
const uint32_t fixed_vs_address = 0xF004F;
const uint8_t fixed_vs_data[4] = {0x1, 0x22, 0x63, 0xc};
core_link_write_dpcd(ddc->link,
fixed_vs_address,
fixed_vs_data,
sizeof(fixed_vs_data));
timeout = 3072;
}
/* Do not try to access nonexistent DDC pin. */
if (ddc->link->ep_type != DISPLAY_ENDPOINT_PHY)
return true;
if (ddc->ctx->dc->res_pool->engines[ddc_pin->pin_data->en]->funcs->configure_timeout) {
ddc->ctx->dc->res_pool->engines[ddc_pin->pin_data->en]->funcs->configure_timeout(ddc, timeout);
result = true;
}
return result;
}
struct ddc *get_ddc_pin(struct ddc_service *ddc_service)
{
return ddc_service->ddc_pin;
}
void write_scdc_data(struct ddc_service *ddc_service,
uint32_t pix_clk,
bool lte_340_scramble)
{
bool over_340_mhz = pix_clk > 340000 ? 1 : 0;
uint8_t slave_address = HDMI_SCDC_ADDRESS;
uint8_t offset = HDMI_SCDC_SINK_VERSION;
uint8_t sink_version = 0;
uint8_t write_buffer[2] = {0};
/*Lower than 340 Scramble bit from SCDC caps*/
if (ddc_service->link->local_sink &&
ddc_service->link->local_sink->edid_caps.panel_patch.skip_scdc_overwrite)
return;
link_query_ddc_data(ddc_service, slave_address, &offset,
sizeof(offset), &sink_version, sizeof(sink_version));
if (sink_version == 1) {
/*Source Version = 1*/
write_buffer[0] = HDMI_SCDC_SOURCE_VERSION;
write_buffer[1] = 1;
link_query_ddc_data(ddc_service, slave_address,
write_buffer, sizeof(write_buffer), NULL, 0);
/*Read Request from SCDC caps*/
}
write_buffer[0] = HDMI_SCDC_TMDS_CONFIG;
if (over_340_mhz) {
write_buffer[1] = 3;
} else if (lte_340_scramble) {
write_buffer[1] = 1;
} else {
write_buffer[1] = 0;
}
link_query_ddc_data(ddc_service, slave_address, write_buffer,
sizeof(write_buffer), NULL, 0);
}
void read_scdc_data(struct ddc_service *ddc_service)
{
uint8_t slave_address = HDMI_SCDC_ADDRESS;
uint8_t offset = HDMI_SCDC_TMDS_CONFIG;
uint8_t tmds_config = 0;
if (ddc_service->link->local_sink &&
ddc_service->link->local_sink->edid_caps.panel_patch.skip_scdc_overwrite)
return;
link_query_ddc_data(ddc_service, slave_address, &offset,
sizeof(offset), &tmds_config, sizeof(tmds_config));
if (tmds_config & 0x1) {
union hdmi_scdc_status_flags_data status_data = {0};
uint8_t scramble_status = 0;
offset = HDMI_SCDC_SCRAMBLER_STATUS;
link_query_ddc_data(ddc_service, slave_address,
&offset, sizeof(offset), &scramble_status,
sizeof(scramble_status));
offset = HDMI_SCDC_STATUS_FLAGS;
link_query_ddc_data(ddc_service, slave_address,
&offset, sizeof(offset), &status_data.byte,
sizeof(status_data.byte));
}
}