Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 | // SPDX-License-Identifier: GPL-2.0 #include <linux/slab.h> #include <trace/events/btrfs.h> #include "messages.h" #include "ctree.h" #include "extent-io-tree.h" #include "btrfs_inode.h" static struct kmem_cache *extent_state_cache; static inline bool extent_state_in_tree(const struct extent_state *state) { return !RB_EMPTY_NODE(&state->rb_node); } #ifdef CONFIG_BTRFS_DEBUG static LIST_HEAD(states); static DEFINE_SPINLOCK(leak_lock); static inline void btrfs_leak_debug_add_state(struct extent_state *state) { unsigned long flags; spin_lock_irqsave(&leak_lock, flags); list_add(&state->leak_list, &states); spin_unlock_irqrestore(&leak_lock, flags); } static inline void btrfs_leak_debug_del_state(struct extent_state *state) { unsigned long flags; spin_lock_irqsave(&leak_lock, flags); list_del(&state->leak_list); spin_unlock_irqrestore(&leak_lock, flags); } static inline void btrfs_extent_state_leak_debug_check(void) { struct extent_state *state; while (!list_empty(&states)) { state = list_entry(states.next, struct extent_state, leak_list); pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", state->start, state->end, state->state, extent_state_in_tree(state), refcount_read(&state->refs)); list_del(&state->leak_list); WARN_ON_ONCE(1); kmem_cache_free(extent_state_cache, state); } } #define btrfs_debug_check_extent_io_range(tree, start, end) \ __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) static inline void __btrfs_debug_check_extent_io_range(const char *caller, struct extent_io_tree *tree, u64 start, u64 end) { const struct btrfs_inode *inode; u64 isize; if (tree->owner != IO_TREE_INODE_IO) return; inode = extent_io_tree_to_inode_const(tree); isize = i_size_read(&inode->vfs_inode); if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { btrfs_debug_rl(inode->root->fs_info, "%s: ino %llu isize %llu odd range [%llu,%llu]", caller, btrfs_ino(inode), isize, start, end); } } #else #define btrfs_leak_debug_add_state(state) do {} while (0) #define btrfs_leak_debug_del_state(state) do {} while (0) #define btrfs_extent_state_leak_debug_check() do {} while (0) #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) #endif /* * The only tree allowed to set the inode is IO_TREE_INODE_IO. */ static bool is_inode_io_tree(const struct extent_io_tree *tree) { return tree->owner == IO_TREE_INODE_IO; } /* Return the inode if it's valid for the given tree, otherwise NULL. */ struct btrfs_inode *extent_io_tree_to_inode(struct extent_io_tree *tree) { if (tree->owner == IO_TREE_INODE_IO) return tree->inode; return NULL; } /* Read-only access to the inode. */ const struct btrfs_inode *extent_io_tree_to_inode_const(const struct extent_io_tree *tree) { if (tree->owner == IO_TREE_INODE_IO) return tree->inode; return NULL; } /* For read-only access to fs_info. */ const struct btrfs_fs_info *extent_io_tree_to_fs_info(const struct extent_io_tree *tree) { if (tree->owner == IO_TREE_INODE_IO) return tree->inode->root->fs_info; return tree->fs_info; } void extent_io_tree_init(struct btrfs_fs_info *fs_info, struct extent_io_tree *tree, unsigned int owner) { tree->state = RB_ROOT; spin_lock_init(&tree->lock); tree->fs_info = fs_info; tree->owner = owner; } /* * Empty an io tree, removing and freeing every extent state record from the * tree. This should be called once we are sure no other task can access the * tree anymore, so no tree updates happen after we empty the tree and there * aren't any waiters on any extent state record (EXTENT_LOCKED bit is never * set on any extent state when calling this function). */ void extent_io_tree_release(struct extent_io_tree *tree) { struct rb_root root; struct extent_state *state; struct extent_state *tmp; spin_lock(&tree->lock); root = tree->state; tree->state = RB_ROOT; rbtree_postorder_for_each_entry_safe(state, tmp, &root, rb_node) { /* Clear node to keep free_extent_state() happy. */ RB_CLEAR_NODE(&state->rb_node); ASSERT(!(state->state & EXTENT_LOCKED)); /* * No need for a memory barrier here, as we are holding the tree * lock and we only change the waitqueue while holding that lock * (see wait_extent_bit()). */ ASSERT(!waitqueue_active(&state->wq)); free_extent_state(state); cond_resched_lock(&tree->lock); } /* * Should still be empty even after a reschedule, no other task should * be accessing the tree anymore. */ ASSERT(RB_EMPTY_ROOT(&tree->state)); spin_unlock(&tree->lock); } static struct extent_state *alloc_extent_state(gfp_t mask) { struct extent_state *state; /* * The given mask might be not appropriate for the slab allocator, * drop the unsupported bits */ mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); state = kmem_cache_alloc(extent_state_cache, mask); if (!state) return state; state->state = 0; RB_CLEAR_NODE(&state->rb_node); btrfs_leak_debug_add_state(state); refcount_set(&state->refs, 1); init_waitqueue_head(&state->wq); trace_alloc_extent_state(state, mask, _RET_IP_); return state; } static struct extent_state *alloc_extent_state_atomic(struct extent_state *prealloc) { if (!prealloc) prealloc = alloc_extent_state(GFP_ATOMIC); return prealloc; } void free_extent_state(struct extent_state *state) { if (!state) return; if (refcount_dec_and_test(&state->refs)) { WARN_ON(extent_state_in_tree(state)); btrfs_leak_debug_del_state(state); trace_free_extent_state(state, _RET_IP_); kmem_cache_free(extent_state_cache, state); } } static int add_extent_changeset(struct extent_state *state, u32 bits, struct extent_changeset *changeset, int set) { int ret; if (!changeset) return 0; if (set && (state->state & bits) == bits) return 0; if (!set && (state->state & bits) == 0) return 0; changeset->bytes_changed += state->end - state->start + 1; ret = ulist_add(&changeset->range_changed, state->start, state->end, GFP_ATOMIC); return ret; } static inline struct extent_state *next_state(struct extent_state *state) { struct rb_node *next = rb_next(&state->rb_node); if (next) return rb_entry(next, struct extent_state, rb_node); else return NULL; } static inline struct extent_state *prev_state(struct extent_state *state) { struct rb_node *next = rb_prev(&state->rb_node); if (next) return rb_entry(next, struct extent_state, rb_node); else return NULL; } /* * Search @tree for an entry that contains @offset. Such entry would have * entry->start <= offset && entry->end >= offset. * * @tree: the tree to search * @offset: offset that should fall within an entry in @tree * @node_ret: pointer where new node should be anchored (used when inserting an * entry in the tree) * @parent_ret: points to entry which would have been the parent of the entry, * containing @offset * * Return a pointer to the entry that contains @offset byte address and don't change * @node_ret and @parent_ret. * * If no such entry exists, return pointer to entry that ends before @offset * and fill parameters @node_ret and @parent_ret, ie. does not return NULL. */ static inline struct extent_state *tree_search_for_insert(struct extent_io_tree *tree, u64 offset, struct rb_node ***node_ret, struct rb_node **parent_ret) { struct rb_root *root = &tree->state; struct rb_node **node = &root->rb_node; struct rb_node *prev = NULL; struct extent_state *entry = NULL; while (*node) { prev = *node; entry = rb_entry(prev, struct extent_state, rb_node); if (offset < entry->start) node = &(*node)->rb_left; else if (offset > entry->end) node = &(*node)->rb_right; else return entry; } if (node_ret) *node_ret = node; if (parent_ret) *parent_ret = prev; /* Search neighbors until we find the first one past the end */ while (entry && offset > entry->end) entry = next_state(entry); return entry; } /* * Search offset in the tree or fill neighbor rbtree node pointers. * * @tree: the tree to search * @offset: offset that should fall within an entry in @tree * @next_ret: pointer to the first entry whose range ends after @offset * @prev_ret: pointer to the first entry whose range begins before @offset * * Return a pointer to the entry that contains @offset byte address. If no * such entry exists, then return NULL and fill @prev_ret and @next_ret. * Otherwise return the found entry and other pointers are left untouched. */ static struct extent_state *tree_search_prev_next(struct extent_io_tree *tree, u64 offset, struct extent_state **prev_ret, struct extent_state **next_ret) { struct rb_root *root = &tree->state; struct rb_node **node = &root->rb_node; struct extent_state *orig_prev; struct extent_state *entry = NULL; ASSERT(prev_ret); ASSERT(next_ret); while (*node) { entry = rb_entry(*node, struct extent_state, rb_node); if (offset < entry->start) node = &(*node)->rb_left; else if (offset > entry->end) node = &(*node)->rb_right; else return entry; } orig_prev = entry; while (entry && offset > entry->end) entry = next_state(entry); *next_ret = entry; entry = orig_prev; while (entry && offset < entry->start) entry = prev_state(entry); *prev_ret = entry; return NULL; } /* * Inexact rb-tree search, return the next entry if @offset is not found */ static inline struct extent_state *tree_search(struct extent_io_tree *tree, u64 offset) { return tree_search_for_insert(tree, offset, NULL, NULL); } static void extent_io_tree_panic(const struct extent_io_tree *tree, const struct extent_state *state, const char *opname, int err) { btrfs_panic(extent_io_tree_to_fs_info(tree), err, "extent io tree error on %s state start %llu end %llu", opname, state->start, state->end); } static void merge_prev_state(struct extent_io_tree *tree, struct extent_state *state) { struct extent_state *prev; prev = prev_state(state); if (prev && prev->end == state->start - 1 && prev->state == state->state) { if (is_inode_io_tree(tree)) btrfs_merge_delalloc_extent(extent_io_tree_to_inode(tree), state, prev); state->start = prev->start; rb_erase(&prev->rb_node, &tree->state); RB_CLEAR_NODE(&prev->rb_node); free_extent_state(prev); } } static void merge_next_state(struct extent_io_tree *tree, struct extent_state *state) { struct extent_state *next; next = next_state(state); if (next && next->start == state->end + 1 && next->state == state->state) { if (is_inode_io_tree(tree)) btrfs_merge_delalloc_extent(extent_io_tree_to_inode(tree), state, next); state->end = next->end; rb_erase(&next->rb_node, &tree->state); RB_CLEAR_NODE(&next->rb_node); free_extent_state(next); } } /* * Utility function to look for merge candidates inside a given range. Any * extents with matching state are merged together into a single extent in the * tree. Extents with EXTENT_IO in their state field are not merged because * the end_io handlers need to be able to do operations on them without * sleeping (or doing allocations/splits). * * This should be called with the tree lock held. */ static void merge_state(struct extent_io_tree *tree, struct extent_state *state) { if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) return; merge_prev_state(tree, state); merge_next_state(tree, state); } static void set_state_bits(struct extent_io_tree *tree, struct extent_state *state, u32 bits, struct extent_changeset *changeset) { u32 bits_to_set = bits & ~EXTENT_CTLBITS; int ret; if (is_inode_io_tree(tree)) btrfs_set_delalloc_extent(extent_io_tree_to_inode(tree), state, bits); ret = add_extent_changeset(state, bits_to_set, changeset, 1); BUG_ON(ret < 0); state->state |= bits_to_set; } /* * Insert an extent_state struct into the tree. 'bits' are set on the * struct before it is inserted. * * Returns a pointer to the struct extent_state record containing the range * requested for insertion, which may be the same as the given struct or it * may be an existing record in the tree that was expanded to accommodate the * requested range. In case of an extent_state different from the one that was * given, the later can be freed or reused by the caller. * * On error it returns an error pointer. * * The tree lock is not taken internally. This is a utility function and * probably isn't what you want to call (see set/clear_extent_bit). */ static struct extent_state *insert_state(struct extent_io_tree *tree, struct extent_state *state, u32 bits, struct extent_changeset *changeset) { struct rb_node **node; struct rb_node *parent = NULL; const u64 start = state->start - 1; const u64 end = state->end + 1; const bool try_merge = !(bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)); set_state_bits(tree, state, bits, changeset); node = &tree->state.rb_node; while (*node) { struct extent_state *entry; parent = *node; entry = rb_entry(parent, struct extent_state, rb_node); if (state->end < entry->start) { if (try_merge && end == entry->start && state->state == entry->state) { if (is_inode_io_tree(tree)) btrfs_merge_delalloc_extent( extent_io_tree_to_inode(tree), state, entry); entry->start = state->start; merge_prev_state(tree, entry); state->state = 0; return entry; } node = &(*node)->rb_left; } else if (state->end > entry->end) { if (try_merge && entry->end == start && state->state == entry->state) { if (is_inode_io_tree(tree)) btrfs_merge_delalloc_extent( extent_io_tree_to_inode(tree), state, entry); entry->end = state->end; merge_next_state(tree, entry); state->state = 0; return entry; } node = &(*node)->rb_right; } else { return ERR_PTR(-EEXIST); } } rb_link_node(&state->rb_node, parent, node); rb_insert_color(&state->rb_node, &tree->state); return state; } /* * Insert state to @tree to the location given by @node and @parent. */ static void insert_state_fast(struct extent_io_tree *tree, struct extent_state *state, struct rb_node **node, struct rb_node *parent, unsigned bits, struct extent_changeset *changeset) { set_state_bits(tree, state, bits, changeset); rb_link_node(&state->rb_node, parent, node); rb_insert_color(&state->rb_node, &tree->state); merge_state(tree, state); } /* * Split a given extent state struct in two, inserting the preallocated * struct 'prealloc' as the newly created second half. 'split' indicates an * offset inside 'orig' where it should be split. * * Before calling, * the tree has 'orig' at [orig->start, orig->end]. After calling, there * are two extent state structs in the tree: * prealloc: [orig->start, split - 1] * orig: [ split, orig->end ] * * The tree locks are not taken by this function. They need to be held * by the caller. */ static int split_state(struct extent_io_tree *tree, struct extent_state *orig, struct extent_state *prealloc, u64 split) { struct rb_node *parent = NULL; struct rb_node **node; if (is_inode_io_tree(tree)) btrfs_split_delalloc_extent(extent_io_tree_to_inode(tree), orig, split); prealloc->start = orig->start; prealloc->end = split - 1; prealloc->state = orig->state; orig->start = split; parent = &orig->rb_node; node = &parent; while (*node) { struct extent_state *entry; parent = *node; entry = rb_entry(parent, struct extent_state, rb_node); if (prealloc->end < entry->start) { node = &(*node)->rb_left; } else if (prealloc->end > entry->end) { node = &(*node)->rb_right; } else { free_extent_state(prealloc); return -EEXIST; } } rb_link_node(&prealloc->rb_node, parent, node); rb_insert_color(&prealloc->rb_node, &tree->state); return 0; } /* * Utility function to clear some bits in an extent state struct. It will * optionally wake up anyone waiting on this state (wake == 1). * * If no bits are set on the state struct after clearing things, the * struct is freed and removed from the tree */ static struct extent_state *clear_state_bit(struct extent_io_tree *tree, struct extent_state *state, u32 bits, int wake, struct extent_changeset *changeset) { struct extent_state *next; u32 bits_to_clear = bits & ~EXTENT_CTLBITS; int ret; if (is_inode_io_tree(tree)) btrfs_clear_delalloc_extent(extent_io_tree_to_inode(tree), state, bits); ret = add_extent_changeset(state, bits_to_clear, changeset, 0); BUG_ON(ret < 0); state->state &= ~bits_to_clear; if (wake) wake_up(&state->wq); if (state->state == 0) { next = next_state(state); if (extent_state_in_tree(state)) { rb_erase(&state->rb_node, &tree->state); RB_CLEAR_NODE(&state->rb_node); free_extent_state(state); } else { WARN_ON(1); } } else { merge_state(tree, state); next = next_state(state); } return next; } /* * Detect if extent bits request NOWAIT semantics and set the gfp mask accordingly, * unset the EXTENT_NOWAIT bit. */ static void set_gfp_mask_from_bits(u32 *bits, gfp_t *mask) { *mask = (*bits & EXTENT_NOWAIT ? GFP_NOWAIT : GFP_NOFS); *bits &= EXTENT_NOWAIT - 1; } /* * Clear some bits on a range in the tree. This may require splitting or * inserting elements in the tree, so the gfp mask is used to indicate which * allocations or sleeping are allowed. * * Pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove the given * range from the tree regardless of state (ie for truncate). * * The range [start, end] is inclusive. * * This takes the tree lock, and returns 0 on success and < 0 on error. */ int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, struct extent_state **cached_state, struct extent_changeset *changeset) { struct extent_state *state; struct extent_state *cached; struct extent_state *prealloc = NULL; u64 last_end; int err; int clear = 0; int wake; int delete = (bits & EXTENT_CLEAR_ALL_BITS); gfp_t mask; set_gfp_mask_from_bits(&bits, &mask); btrfs_debug_check_extent_io_range(tree, start, end); trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); if (delete) bits |= ~EXTENT_CTLBITS; if (bits & EXTENT_DELALLOC) bits |= EXTENT_NORESERVE; wake = (bits & EXTENT_LOCKED) ? 1 : 0; if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) clear = 1; again: if (!prealloc) { /* * Don't care for allocation failure here because we might end * up not needing the pre-allocated extent state at all, which * is the case if we only have in the tree extent states that * cover our input range and don't cover too any other range. * If we end up needing a new extent state we allocate it later. */ prealloc = alloc_extent_state(mask); } spin_lock(&tree->lock); if (cached_state) { cached = *cached_state; if (clear) { *cached_state = NULL; cached_state = NULL; } if (cached && extent_state_in_tree(cached) && cached->start <= start && cached->end > start) { if (clear) refcount_dec(&cached->refs); state = cached; goto hit_next; } if (clear) free_extent_state(cached); } /* This search will find the extents that end after our range starts. */ state = tree_search(tree, start); if (!state) goto out; hit_next: if (state->start > end) goto out; WARN_ON(state->end < start); last_end = state->end; /* The state doesn't have the wanted bits, go ahead. */ if (!(state->state & bits)) { state = next_state(state); goto next; } /* * | ---- desired range ---- | * | state | or * | ------------- state -------------- | * * We need to split the extent we found, and may flip bits on second * half. * * If the extent we found extends past our range, we just split and * search again. It'll get split again the next time though. * * If the extent we found is inside our range, we clear the desired bit * on it. */ if (state->start < start) { prealloc = alloc_extent_state_atomic(prealloc); if (!prealloc) goto search_again; err = split_state(tree, state, prealloc, start); if (err) extent_io_tree_panic(tree, state, "split", err); prealloc = NULL; if (err) goto out; if (state->end <= end) { state = clear_state_bit(tree, state, bits, wake, changeset); goto next; } goto search_again; } /* * | ---- desired range ---- | * | state | * We need to split the extent, and clear the bit on the first half. */ if (state->start <= end && state->end > end) { prealloc = alloc_extent_state_atomic(prealloc); if (!prealloc) goto search_again; err = split_state(tree, state, prealloc, end + 1); if (err) extent_io_tree_panic(tree, state, "split", err); if (wake) wake_up(&state->wq); clear_state_bit(tree, prealloc, bits, wake, changeset); prealloc = NULL; goto out; } state = clear_state_bit(tree, state, bits, wake, changeset); next: if (last_end == (u64)-1) goto out; start = last_end + 1; if (start <= end && state && !need_resched()) goto hit_next; search_again: if (start > end) goto out; spin_unlock(&tree->lock); if (gfpflags_allow_blocking(mask)) cond_resched(); goto again; out: spin_unlock(&tree->lock); if (prealloc) free_extent_state(prealloc); return 0; } /* * Wait for one or more bits to clear on a range in the state tree. * The range [start, end] is inclusive. * The tree lock is taken by this function */ static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, struct extent_state **cached_state) { struct extent_state *state; btrfs_debug_check_extent_io_range(tree, start, end); spin_lock(&tree->lock); again: /* * Maintain cached_state, as we may not remove it from the tree if there * are more bits than the bits we're waiting on set on this state. */ if (cached_state && *cached_state) { state = *cached_state; if (extent_state_in_tree(state) && state->start <= start && start < state->end) goto process_node; } while (1) { /* * This search will find all the extents that end after our * range starts. */ state = tree_search(tree, start); process_node: if (!state) break; if (state->start > end) goto out; if (state->state & bits) { DEFINE_WAIT(wait); start = state->start; refcount_inc(&state->refs); prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); spin_unlock(&tree->lock); schedule(); spin_lock(&tree->lock); finish_wait(&state->wq, &wait); free_extent_state(state); goto again; } start = state->end + 1; if (start > end) break; if (!cond_resched_lock(&tree->lock)) { state = next_state(state); goto process_node; } } out: /* This state is no longer useful, clear it and free it up. */ if (cached_state && *cached_state) { state = *cached_state; *cached_state = NULL; free_extent_state(state); } spin_unlock(&tree->lock); } static void cache_state_if_flags(struct extent_state *state, struct extent_state **cached_ptr, unsigned flags) { if (cached_ptr && !(*cached_ptr)) { if (!flags || (state->state & flags)) { *cached_ptr = state; refcount_inc(&state->refs); } } } static void cache_state(struct extent_state *state, struct extent_state **cached_ptr) { return cache_state_if_flags(state, cached_ptr, EXTENT_LOCKED | EXTENT_BOUNDARY); } /* * Find the first state struct with 'bits' set after 'start', and return it. * tree->lock must be held. NULL will returned if nothing was found after * 'start'. */ static struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits) { struct extent_state *state; /* * This search will find all the extents that end after our range * starts. */ state = tree_search(tree, start); while (state) { if (state->end >= start && (state->state & bits)) return state; state = next_state(state); } return NULL; } /* * Find the first offset in the io tree with one or more @bits set. * * Note: If there are multiple bits set in @bits, any of them will match. * * Return true if we find something, and update @start_ret and @end_ret. * Return false if we found nothing. */ bool find_first_extent_bit(struct extent_io_tree *tree, u64 start, u64 *start_ret, u64 *end_ret, u32 bits, struct extent_state **cached_state) { struct extent_state *state; bool ret = false; spin_lock(&tree->lock); if (cached_state && *cached_state) { state = *cached_state; if (state->end == start - 1 && extent_state_in_tree(state)) { while ((state = next_state(state)) != NULL) { if (state->state & bits) break; } /* * If we found the next extent state, clear cached_state * so that we can cache the next extent state below and * avoid future calls going over the same extent state * again. If we haven't found any, clear as well since * it's now useless. */ free_extent_state(*cached_state); *cached_state = NULL; if (state) goto got_it; goto out; } free_extent_state(*cached_state); *cached_state = NULL; } state = find_first_extent_bit_state(tree, start, bits); got_it: if (state) { cache_state_if_flags(state, cached_state, 0); *start_ret = state->start; *end_ret = state->end; ret = true; } out: spin_unlock(&tree->lock); return ret; } /* * Find a contiguous area of bits * * @tree: io tree to check * @start: offset to start the search from * @start_ret: the first offset we found with the bits set * @end_ret: the final contiguous range of the bits that were set * @bits: bits to look for * * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges * to set bits appropriately, and then merge them again. During this time it * will drop the tree->lock, so use this helper if you want to find the actual * contiguous area for given bits. We will search to the first bit we find, and * then walk down the tree until we find a non-contiguous area. The area * returned will be the full contiguous area with the bits set. */ int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start, u64 *start_ret, u64 *end_ret, u32 bits) { struct extent_state *state; int ret = 1; ASSERT(!btrfs_fs_incompat(extent_io_tree_to_fs_info(tree), NO_HOLES)); spin_lock(&tree->lock); state = find_first_extent_bit_state(tree, start, bits); if (state) { *start_ret = state->start; *end_ret = state->end; while ((state = next_state(state)) != NULL) { if (state->start > (*end_ret + 1)) break; *end_ret = state->end; } ret = 0; } spin_unlock(&tree->lock); return ret; } /* * Find a contiguous range of bytes in the file marked as delalloc, not more * than 'max_bytes'. start and end are used to return the range, * * True is returned if we find something, false if nothing was in the tree. */ bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start, u64 *end, u64 max_bytes, struct extent_state **cached_state) { struct extent_state *state; u64 cur_start = *start; bool found = false; u64 total_bytes = 0; spin_lock(&tree->lock); /* * This search will find all the extents that end after our range * starts. */ state = tree_search(tree, cur_start); if (!state) { *end = (u64)-1; goto out; } while (state) { if (found && (state->start != cur_start || (state->state & EXTENT_BOUNDARY))) { goto out; } if (!(state->state & EXTENT_DELALLOC)) { if (!found) *end = state->end; goto out; } if (!found) { *start = state->start; *cached_state = state; refcount_inc(&state->refs); } found = true; *end = state->end; cur_start = state->end + 1; total_bytes += state->end - state->start + 1; if (total_bytes >= max_bytes) break; state = next_state(state); } out: spin_unlock(&tree->lock); return found; } /* * Set some bits on a range in the tree. This may require allocations or * sleeping. By default all allocations use GFP_NOFS, use EXTENT_NOWAIT for * GFP_NOWAIT. * * If any of the exclusive bits are set, this will fail with -EEXIST if some * part of the range already has the desired bits set. The extent_state of the * existing range is returned in failed_state in this case, and the start of the * existing range is returned in failed_start. failed_state is used as an * optimization for wait_extent_bit, failed_start must be used as the source of * truth as failed_state may have changed since we returned. * * [start, end] is inclusive This takes the tree lock. */ static int __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, u64 *failed_start, struct extent_state **failed_state, struct extent_state **cached_state, struct extent_changeset *changeset) { struct extent_state *state; struct extent_state *prealloc = NULL; struct rb_node **p = NULL; struct rb_node *parent = NULL; int ret = 0; u64 last_start; u64 last_end; u32 exclusive_bits = (bits & EXTENT_LOCKED); gfp_t mask; set_gfp_mask_from_bits(&bits, &mask); btrfs_debug_check_extent_io_range(tree, start, end); trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); if (exclusive_bits) ASSERT(failed_start); else ASSERT(failed_start == NULL && failed_state == NULL); again: if (!prealloc) { /* * Don't care for allocation failure here because we might end * up not needing the pre-allocated extent state at all, which * is the case if we only have in the tree extent states that * cover our input range and don't cover too any other range. * If we end up needing a new extent state we allocate it later. */ prealloc = alloc_extent_state(mask); } spin_lock(&tree->lock); if (cached_state && *cached_state) { state = *cached_state; if (state->start <= start && state->end > start && extent_state_in_tree(state)) goto hit_next; } /* * This search will find all the extents that end after our range * starts. */ state = tree_search_for_insert(tree, start, &p, &parent); if (!state) { prealloc = alloc_extent_state_atomic(prealloc); if (!prealloc) goto search_again; prealloc->start = start; prealloc->end = end; insert_state_fast(tree, prealloc, p, parent, bits, changeset); cache_state(prealloc, cached_state); prealloc = NULL; goto out; } hit_next: last_start = state->start; last_end = state->end; /* * | ---- desired range ---- | * | state | * * Just lock what we found and keep going */ if (state->start == start && state->end <= end) { if (state->state & exclusive_bits) { *failed_start = state->start; cache_state(state, failed_state); ret = -EEXIST; goto out; } set_state_bits(tree, state, bits, changeset); cache_state(state, cached_state); merge_state(tree, state); if (last_end == (u64)-1) goto out; start = last_end + 1; state = next_state(state); if (start < end && state && state->start == start && !need_resched()) goto hit_next; goto search_again; } /* * | ---- desired range ---- | * | state | * or * | ------------- state -------------- | * * We need to split the extent we found, and may flip bits on second * half. * * If the extent we found extends past our range, we just split and * search again. It'll get split again the next time though. * * If the extent we found is inside our range, we set the desired bit * on it. */ if (state->start < start) { if (state->state & exclusive_bits) { *failed_start = start; cache_state(state, failed_state); ret = -EEXIST; goto out; } /* * If this extent already has all the bits we want set, then * skip it, not necessary to split it or do anything with it. */ if ((state->state & bits) == bits) { start = state->end + 1; cache_state(state, cached_state); goto search_again; } prealloc = alloc_extent_state_atomic(prealloc); if (!prealloc) goto search_again; ret = split_state(tree, state, prealloc, start); if (ret) extent_io_tree_panic(tree, state, "split", ret); prealloc = NULL; if (ret) goto out; if (state->end <= end) { set_state_bits(tree, state, bits, changeset); cache_state(state, cached_state); merge_state(tree, state); if (last_end == (u64)-1) goto out; start = last_end + 1; state = next_state(state); if (start < end && state && state->start == start && !need_resched()) goto hit_next; } goto search_again; } /* * | ---- desired range ---- | * | state | or | state | * * There's a hole, we need to insert something in it and ignore the * extent we found. */ if (state->start > start) { u64 this_end; struct extent_state *inserted_state; if (end < last_start) this_end = end; else this_end = last_start - 1; prealloc = alloc_extent_state_atomic(prealloc); if (!prealloc) goto search_again; /* * Avoid to free 'prealloc' if it can be merged with the later * extent. */ prealloc->start = start; prealloc->end = this_end; inserted_state = insert_state(tree, prealloc, bits, changeset); if (IS_ERR(inserted_state)) { ret = PTR_ERR(inserted_state); extent_io_tree_panic(tree, prealloc, "insert", ret); } cache_state(inserted_state, cached_state); if (inserted_state == prealloc) prealloc = NULL; start = this_end + 1; goto search_again; } /* * | ---- desired range ---- | * | state | * * We need to split the extent, and set the bit on the first half */ if (state->start <= end && state->end > end) { if (state->state & exclusive_bits) { *failed_start = start; cache_state(state, failed_state); ret = -EEXIST; goto out; } prealloc = alloc_extent_state_atomic(prealloc); if (!prealloc) goto search_again; ret = split_state(tree, state, prealloc, end + 1); if (ret) extent_io_tree_panic(tree, state, "split", ret); set_state_bits(tree, prealloc, bits, changeset); cache_state(prealloc, cached_state); merge_state(tree, prealloc); prealloc = NULL; goto out; } search_again: if (start > end) goto out; spin_unlock(&tree->lock); if (gfpflags_allow_blocking(mask)) cond_resched(); goto again; out: spin_unlock(&tree->lock); if (prealloc) free_extent_state(prealloc); return ret; } int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, struct extent_state **cached_state) { return __set_extent_bit(tree, start, end, bits, NULL, NULL, cached_state, NULL); } /* * Convert all bits in a given range from one bit to another * * @tree: the io tree to search * @start: the start offset in bytes * @end: the end offset in bytes (inclusive) * @bits: the bits to set in this range * @clear_bits: the bits to clear in this range * @cached_state: state that we're going to cache * * This will go through and set bits for the given range. If any states exist * already in this range they are set with the given bit and cleared of the * clear_bits. This is only meant to be used by things that are mergeable, ie. * converting from say DELALLOC to DIRTY. This is not meant to be used with * boundary bits like LOCK. * * All allocations are done with GFP_NOFS. */ int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, u32 clear_bits, struct extent_state **cached_state) { struct extent_state *state; struct extent_state *prealloc = NULL; struct rb_node **p = NULL; struct rb_node *parent = NULL; int ret = 0; u64 last_start; u64 last_end; bool first_iteration = true; btrfs_debug_check_extent_io_range(tree, start, end); trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, clear_bits); again: if (!prealloc) { /* * Best effort, don't worry if extent state allocation fails * here for the first iteration. We might have a cached state * that matches exactly the target range, in which case no * extent state allocations are needed. We'll only know this * after locking the tree. */ prealloc = alloc_extent_state(GFP_NOFS); if (!prealloc && !first_iteration) return -ENOMEM; } spin_lock(&tree->lock); if (cached_state && *cached_state) { state = *cached_state; if (state->start <= start && state->end > start && extent_state_in_tree(state)) goto hit_next; } /* * This search will find all the extents that end after our range * starts. */ state = tree_search_for_insert(tree, start, &p, &parent); if (!state) { prealloc = alloc_extent_state_atomic(prealloc); if (!prealloc) { ret = -ENOMEM; goto out; } prealloc->start = start; prealloc->end = end; insert_state_fast(tree, prealloc, p, parent, bits, NULL); cache_state(prealloc, cached_state); prealloc = NULL; goto out; } hit_next: last_start = state->start; last_end = state->end; /* * | ---- desired range ---- | * | state | * * Just lock what we found and keep going. */ if (state->start == start && state->end <= end) { set_state_bits(tree, state, bits, NULL); cache_state(state, cached_state); state = clear_state_bit(tree, state, clear_bits, 0, NULL); if (last_end == (u64)-1) goto out; start = last_end + 1; if (start < end && state && state->start == start && !need_resched()) goto hit_next; goto search_again; } /* * | ---- desired range ---- | * | state | * or * | ------------- state -------------- | * * We need to split the extent we found, and may flip bits on second * half. * * If the extent we found extends past our range, we just split and * search again. It'll get split again the next time though. * * If the extent we found is inside our range, we set the desired bit * on it. */ if (state->start < start) { prealloc = alloc_extent_state_atomic(prealloc); if (!prealloc) { ret = -ENOMEM; goto out; } ret = split_state(tree, state, prealloc, start); if (ret) extent_io_tree_panic(tree, state, "split", ret); prealloc = NULL; if (ret) goto out; if (state->end <= end) { set_state_bits(tree, state, bits, NULL); cache_state(state, cached_state); state = clear_state_bit(tree, state, clear_bits, 0, NULL); if (last_end == (u64)-1) goto out; start = last_end + 1; if (start < end && state && state->start == start && !need_resched()) goto hit_next; } goto search_again; } /* * | ---- desired range ---- | * | state | or | state | * * There's a hole, we need to insert something in it and ignore the * extent we found. */ if (state->start > start) { u64 this_end; struct extent_state *inserted_state; if (end < last_start) this_end = end; else this_end = last_start - 1; prealloc = alloc_extent_state_atomic(prealloc); if (!prealloc) { ret = -ENOMEM; goto out; } /* * Avoid to free 'prealloc' if it can be merged with the later * extent. */ prealloc->start = start; prealloc->end = this_end; inserted_state = insert_state(tree, prealloc, bits, NULL); if (IS_ERR(inserted_state)) { ret = PTR_ERR(inserted_state); extent_io_tree_panic(tree, prealloc, "insert", ret); } cache_state(inserted_state, cached_state); if (inserted_state == prealloc) prealloc = NULL; start = this_end + 1; goto search_again; } /* * | ---- desired range ---- | * | state | * * We need to split the extent, and set the bit on the first half. */ if (state->start <= end && state->end > end) { prealloc = alloc_extent_state_atomic(prealloc); if (!prealloc) { ret = -ENOMEM; goto out; } ret = split_state(tree, state, prealloc, end + 1); if (ret) extent_io_tree_panic(tree, state, "split", ret); set_state_bits(tree, prealloc, bits, NULL); cache_state(prealloc, cached_state); clear_state_bit(tree, prealloc, clear_bits, 0, NULL); prealloc = NULL; goto out; } search_again: if (start > end) goto out; spin_unlock(&tree->lock); cond_resched(); first_iteration = false; goto again; out: spin_unlock(&tree->lock); if (prealloc) free_extent_state(prealloc); return ret; } /* * Find the first range that has @bits not set. This range could start before * @start. * * @tree: the tree to search * @start: offset at/after which the found extent should start * @start_ret: records the beginning of the range * @end_ret: records the end of the range (inclusive) * @bits: the set of bits which must be unset * * Since unallocated range is also considered one which doesn't have the bits * set it's possible that @end_ret contains -1, this happens in case the range * spans (last_range_end, end of device]. In this case it's up to the caller to * trim @end_ret to the appropriate size. */ void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 *start_ret, u64 *end_ret, u32 bits) { struct extent_state *state; struct extent_state *prev = NULL, *next = NULL; spin_lock(&tree->lock); /* Find first extent with bits cleared */ while (1) { state = tree_search_prev_next(tree, start, &prev, &next); if (!state && !next && !prev) { /* * Tree is completely empty, send full range and let * caller deal with it */ *start_ret = 0; *end_ret = -1; goto out; } else if (!state && !next) { /* * We are past the last allocated chunk, set start at * the end of the last extent. */ *start_ret = prev->end + 1; *end_ret = -1; goto out; } else if (!state) { state = next; } /* * At this point 'state' either contains 'start' or start is * before 'state' */ if (in_range(start, state->start, state->end - state->start + 1)) { if (state->state & bits) { /* * |--range with bits sets--| * | * start */ start = state->end + 1; } else { /* * 'start' falls within a range that doesn't * have the bits set, so take its start as the * beginning of the desired range * * |--range with bits cleared----| * | * start */ *start_ret = state->start; break; } } else { /* * |---prev range---|---hole/unset---|---node range---| * | * start * * or * * |---hole/unset--||--first node--| * 0 | * start */ if (prev) *start_ret = prev->end + 1; else *start_ret = 0; break; } } /* * Find the longest stretch from start until an entry which has the * bits set */ while (state) { if (state->end >= start && !(state->state & bits)) { *end_ret = state->end; } else { *end_ret = state->start - 1; break; } state = next_state(state); } out: spin_unlock(&tree->lock); } /* * Count the number of bytes in the tree that have a given bit(s) set for a * given range. * * @tree: The io tree to search. * @start: The start offset of the range. This value is updated to the * offset of the first byte found with the given bit(s), so it * can end up being bigger than the initial value. * @search_end: The end offset (inclusive value) of the search range. * @max_bytes: The maximum byte count we are interested. The search stops * once it reaches this count. * @bits: The bits the range must have in order to be accounted for. * If multiple bits are set, then only subranges that have all * the bits set are accounted for. * @contig: Indicate if we should ignore holes in the range or not. If * this is true, then stop once we find a hole. * @cached_state: A cached state to be used across multiple calls to this * function in order to speedup searches. Use NULL if this is * called only once or if each call does not start where the * previous one ended. * * Returns the total number of bytes found within the given range that have * all given bits set. If the returned number of bytes is greater than zero * then @start is updated with the offset of the first byte with the bits set. */ u64 count_range_bits(struct extent_io_tree *tree, u64 *start, u64 search_end, u64 max_bytes, u32 bits, int contig, struct extent_state **cached_state) { struct extent_state *state = NULL; struct extent_state *cached; u64 cur_start = *start; u64 total_bytes = 0; u64 last = 0; int found = 0; if (WARN_ON(search_end < cur_start)) return 0; spin_lock(&tree->lock); if (!cached_state || !*cached_state) goto search; cached = *cached_state; if (!extent_state_in_tree(cached)) goto search; if (cached->start <= cur_start && cur_start <= cached->end) { state = cached; } else if (cached->start > cur_start) { struct extent_state *prev; /* * The cached state starts after our search range's start. Check * if the previous state record starts at or before the range we * are looking for, and if so, use it - this is a common case * when there are holes between records in the tree. If there is * no previous state record, we can start from our cached state. */ prev = prev_state(cached); if (!prev) state = cached; else if (prev->start <= cur_start && cur_start <= prev->end) state = prev; } /* * This search will find all the extents that end after our range * starts. */ search: if (!state) state = tree_search(tree, cur_start); while (state) { if (state->start > search_end) break; if (contig && found && state->start > last + 1) break; if (state->end >= cur_start && (state->state & bits) == bits) { total_bytes += min(search_end, state->end) + 1 - max(cur_start, state->start); if (total_bytes >= max_bytes) break; if (!found) { *start = max(cur_start, state->start); found = 1; } last = state->end; } else if (contig && found) { break; } state = next_state(state); } if (cached_state) { free_extent_state(*cached_state); *cached_state = state; if (state) refcount_inc(&state->refs); } spin_unlock(&tree->lock); return total_bytes; } /* * Check if the single @bit exists in the given range. */ bool test_range_bit_exists(struct extent_io_tree *tree, u64 start, u64 end, u32 bit) { struct extent_state *state = NULL; bool bitset = false; ASSERT(is_power_of_2(bit)); spin_lock(&tree->lock); state = tree_search(tree, start); while (state && start <= end) { if (state->start > end) break; if (state->state & bit) { bitset = true; break; } /* If state->end is (u64)-1, start will overflow to 0 */ start = state->end + 1; if (start > end || start == 0) break; state = next_state(state); } spin_unlock(&tree->lock); return bitset; } /* * Check if the whole range [@start,@end) contains the single @bit set. */ bool test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bit, struct extent_state *cached) { struct extent_state *state = NULL; bool bitset = true; ASSERT(is_power_of_2(bit)); spin_lock(&tree->lock); if (cached && extent_state_in_tree(cached) && cached->start <= start && cached->end > start) state = cached; else state = tree_search(tree, start); while (state && start <= end) { if (state->start > start) { bitset = false; break; } if (state->start > end) break; if ((state->state & bit) == 0) { bitset = false; break; } if (state->end == (u64)-1) break; /* * Last entry (if state->end is (u64)-1 and overflow happens), * or next entry starts after the range. */ start = state->end + 1; if (start > end || start == 0) break; state = next_state(state); } /* We ran out of states and were still inside of our range. */ if (!state) bitset = false; spin_unlock(&tree->lock); return bitset; } /* Wrappers around set/clear extent bit */ int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, struct extent_changeset *changeset) { /* * We don't support EXTENT_LOCKED yet, as current changeset will * record any bits changed, so for EXTENT_LOCKED case, it will * either fail with -EEXIST or changeset will record the whole * range. */ ASSERT(!(bits & EXTENT_LOCKED)); return __set_extent_bit(tree, start, end, bits, NULL, NULL, NULL, changeset); } int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, struct extent_changeset *changeset) { /* * Don't support EXTENT_LOCKED case, same reason as * set_record_extent_bits(). */ ASSERT(!(bits & EXTENT_LOCKED)); return __clear_extent_bit(tree, start, end, bits, NULL, changeset); } int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end, struct extent_state **cached) { int err; u64 failed_start; err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, &failed_start, NULL, cached, NULL); if (err == -EEXIST) { if (failed_start > start) clear_extent_bit(tree, start, failed_start - 1, EXTENT_LOCKED, cached); return 0; } return 1; } /* * Either insert or lock state struct between start and end use mask to tell * us if waiting is desired. */ int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, struct extent_state **cached_state) { struct extent_state *failed_state = NULL; int err; u64 failed_start; err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, &failed_start, &failed_state, cached_state, NULL); while (err == -EEXIST) { if (failed_start != start) clear_extent_bit(tree, start, failed_start - 1, EXTENT_LOCKED, cached_state); wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED, &failed_state); err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, &failed_start, &failed_state, cached_state, NULL); } return err; } void __cold extent_state_free_cachep(void) { btrfs_extent_state_leak_debug_check(); kmem_cache_destroy(extent_state_cache); } int __init extent_state_init_cachep(void) { extent_state_cache = kmem_cache_create("btrfs_extent_state", sizeof(struct extent_state), 0, 0, NULL); if (!extent_state_cache) return -ENOMEM; return 0; } |