Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2022 HabanaLabs, Ltd. * All Rights Reserved. */ #include <uapi/drm/habanalabs_accel.h> #include "habanalabs.h" #include "../include/hw_ip/mmu/mmu_general.h" #include <linux/uaccess.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/pci-p2pdma.h> MODULE_IMPORT_NS(DMA_BUF); #define HL_MMU_DEBUG 0 /* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */ #define DRAM_POOL_PAGE_SIZE SZ_8M #define MEM_HANDLE_INVALID ULONG_MAX static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle); static int set_alloc_page_size(struct hl_device *hdev, struct hl_mem_in *args, u32 *page_size) { struct asic_fixed_properties *prop = &hdev->asic_prop; u64 psize; /* * for ASIC that supports setting the allocation page size by user we will address * user's choice only if it is not 0 (as 0 means taking the default page size) */ if (prop->supports_user_set_page_size && args->alloc.page_size) { psize = args->alloc.page_size; if (!is_power_of_2(psize)) { dev_err(hdev->dev, "user page size (%#llx) is not power of 2\n", psize); return -EINVAL; } } else { psize = prop->device_mem_alloc_default_page_size; } *page_size = psize; return 0; } /* * The va ranges in context object contain a list with the available chunks of * device virtual memory. * There is one range for host allocations and one for DRAM allocations. * * On initialization each range contains one chunk of all of its available * virtual range which is a half of the total device virtual range. * * On each mapping of physical pages, a suitable virtual range chunk (with a * minimum size) is selected from the list. If the chunk size equals the * requested size, the chunk is returned. Otherwise, the chunk is split into * two chunks - one to return as result and a remainder to stay in the list. * * On each Unmapping of a virtual address, the relevant virtual chunk is * returned to the list. The chunk is added to the list and if its edges match * the edges of the adjacent chunks (means a contiguous chunk can be created), * the chunks are merged. * * On finish, the list is checked to have only one chunk of all the relevant * virtual range (which is a half of the device total virtual range). * If not (means not all mappings were unmapped), a warning is printed. */ /* * alloc_device_memory() - allocate device memory. * @ctx: pointer to the context structure. * @args: host parameters containing the requested size. * @ret_handle: result handle. * * This function does the following: * - Allocate the requested size rounded up to 'dram_page_size' pages. * - Return unique handle for later map/unmap/free. */ static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args, u32 *ret_handle) { struct hl_device *hdev = ctx->hdev; struct hl_vm *vm = &hdev->vm; struct hl_vm_phys_pg_pack *phys_pg_pack; u64 paddr = 0, total_size, num_pgs, i; u32 num_curr_pgs, page_size; bool contiguous; int handle, rc; num_curr_pgs = 0; rc = set_alloc_page_size(hdev, args, &page_size); if (rc) return rc; num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size); total_size = num_pgs * page_size; if (!total_size) { dev_err(hdev->dev, "Cannot allocate 0 bytes\n"); return -EINVAL; } contiguous = args->flags & HL_MEM_CONTIGUOUS; if (contiguous) { if (is_power_of_2(page_size)) paddr = (uintptr_t) gen_pool_dma_alloc_align(vm->dram_pg_pool, total_size, NULL, page_size); else paddr = gen_pool_alloc(vm->dram_pg_pool, total_size); if (!paddr) { dev_err(hdev->dev, "Cannot allocate %llu contiguous pages with total size of %llu\n", num_pgs, total_size); return -ENOMEM; } } phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL); if (!phys_pg_pack) { rc = -ENOMEM; goto pages_pack_err; } phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK; phys_pg_pack->asid = ctx->asid; phys_pg_pack->npages = num_pgs; phys_pg_pack->page_size = page_size; phys_pg_pack->total_size = total_size; phys_pg_pack->flags = args->flags; phys_pg_pack->contiguous = contiguous; phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL); if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) { rc = -ENOMEM; goto pages_arr_err; } if (phys_pg_pack->contiguous) { for (i = 0 ; i < num_pgs ; i++) phys_pg_pack->pages[i] = paddr + i * page_size; } else { for (i = 0 ; i < num_pgs ; i++) { if (is_power_of_2(page_size)) phys_pg_pack->pages[i] = (uintptr_t)gen_pool_dma_alloc_align(vm->dram_pg_pool, page_size, NULL, page_size); else phys_pg_pack->pages[i] = gen_pool_alloc(vm->dram_pg_pool, page_size); if (!phys_pg_pack->pages[i]) { dev_err(hdev->dev, "Cannot allocate device memory (out of memory)\n"); rc = -ENOMEM; goto page_err; } num_curr_pgs++; } } spin_lock(&vm->idr_lock); handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0, GFP_ATOMIC); spin_unlock(&vm->idr_lock); if (handle < 0) { dev_err(hdev->dev, "Failed to get handle for page\n"); rc = -EFAULT; goto idr_err; } for (i = 0 ; i < num_pgs ; i++) kref_get(&vm->dram_pg_pool_refcount); phys_pg_pack->handle = handle; atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem); atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem); *ret_handle = handle; return 0; idr_err: page_err: if (!phys_pg_pack->contiguous) for (i = 0 ; i < num_curr_pgs ; i++) gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i], page_size); kvfree(phys_pg_pack->pages); pages_arr_err: kfree(phys_pg_pack); pages_pack_err: if (contiguous) gen_pool_free(vm->dram_pg_pool, paddr, total_size); return rc; } /** * dma_map_host_va() - DMA mapping of the given host virtual address. * @hdev: habanalabs device structure. * @addr: the host virtual address of the memory area. * @size: the size of the memory area. * @p_userptr: pointer to result userptr structure. * * This function does the following: * - Allocate userptr structure. * - Pin the given host memory using the userptr structure. * - Perform DMA mapping to have the DMA addresses of the pages. */ static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size, struct hl_userptr **p_userptr) { struct hl_userptr *userptr; int rc; userptr = kzalloc(sizeof(*userptr), GFP_KERNEL); if (!userptr) { rc = -ENOMEM; goto userptr_err; } rc = hl_pin_host_memory(hdev, addr, size, userptr); if (rc) goto pin_err; userptr->dma_mapped = true; userptr->dir = DMA_BIDIRECTIONAL; userptr->vm_type = VM_TYPE_USERPTR; *p_userptr = userptr; rc = hl_dma_map_sgtable(hdev, userptr->sgt, DMA_BIDIRECTIONAL); if (rc) { dev_err(hdev->dev, "failed to map sgt with DMA region\n"); goto dma_map_err; } return 0; dma_map_err: hl_unpin_host_memory(hdev, userptr); pin_err: kfree(userptr); userptr_err: return rc; } /** * dma_unmap_host_va() - DMA unmapping of the given host virtual address. * @hdev: habanalabs device structure. * @userptr: userptr to free. * * This function does the following: * - Unpins the physical pages. * - Frees the userptr structure. */ static void dma_unmap_host_va(struct hl_device *hdev, struct hl_userptr *userptr) { hl_unpin_host_memory(hdev, userptr); kfree(userptr); } /** * dram_pg_pool_do_release() - free DRAM pages pool * @ref: pointer to reference object. * * This function does the following: * - Frees the idr structure of physical pages handles. * - Frees the generic pool of DRAM physical pages. */ static void dram_pg_pool_do_release(struct kref *ref) { struct hl_vm *vm = container_of(ref, struct hl_vm, dram_pg_pool_refcount); /* * free the idr here as only here we know for sure that there are no * allocated physical pages and hence there are no handles in use */ idr_destroy(&vm->phys_pg_pack_handles); gen_pool_destroy(vm->dram_pg_pool); } /** * free_phys_pg_pack() - free physical page pack. * @hdev: habanalabs device structure. * @phys_pg_pack: physical page pack to free. * * This function does the following: * - For DRAM memory only * - iterate over the pack, free each physical block structure by * returning it to the general pool. * - Free the hl_vm_phys_pg_pack structure. */ static void free_phys_pg_pack(struct hl_device *hdev, struct hl_vm_phys_pg_pack *phys_pg_pack) { struct hl_vm *vm = &hdev->vm; u64 i; if (phys_pg_pack->created_from_userptr) goto end; if (phys_pg_pack->contiguous) { gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0], phys_pg_pack->total_size); for (i = 0; i < phys_pg_pack->npages ; i++) kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release); } else { for (i = 0 ; i < phys_pg_pack->npages ; i++) { gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i], phys_pg_pack->page_size); kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release); } } end: kvfree(phys_pg_pack->pages); kfree(phys_pg_pack); return; } /** * free_device_memory() - free device memory. * @ctx: pointer to the context structure. * @args: host parameters containing the requested size. * * This function does the following: * - Free the device memory related to the given handle. */ static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args) { struct hl_device *hdev = ctx->hdev; struct hl_vm *vm = &hdev->vm; struct hl_vm_phys_pg_pack *phys_pg_pack; u32 handle = args->free.handle; spin_lock(&vm->idr_lock); phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); if (!phys_pg_pack) { spin_unlock(&vm->idr_lock); dev_err(hdev->dev, "free device memory failed, no match for handle %u\n", handle); return -EINVAL; } if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) { spin_unlock(&vm->idr_lock); dev_err(hdev->dev, "handle %u is mapped, cannot free\n", handle); return -EINVAL; } /* must remove from idr before the freeing of the physical pages as the refcount of the pool * is also the trigger of the idr destroy */ idr_remove(&vm->phys_pg_pack_handles, handle); spin_unlock(&vm->idr_lock); atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem); atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem); free_phys_pg_pack(hdev, phys_pg_pack); return 0; } /** * clear_va_list_locked() - free virtual addresses list. * @hdev: habanalabs device structure. * @va_list: list of virtual addresses to free. * * This function does the following: * - Iterate over the list and free each virtual addresses block. * * This function should be called only when va_list lock is taken. */ static void clear_va_list_locked(struct hl_device *hdev, struct list_head *va_list) { struct hl_vm_va_block *va_block, *tmp; list_for_each_entry_safe(va_block, tmp, va_list, node) { list_del(&va_block->node); kfree(va_block); } } /** * print_va_list_locked() - print virtual addresses list. * @hdev: habanalabs device structure. * @va_list: list of virtual addresses to print. * * This function does the following: * - Iterate over the list and print each virtual addresses block. * * This function should be called only when va_list lock is taken. */ static void print_va_list_locked(struct hl_device *hdev, struct list_head *va_list) { #if HL_MMU_DEBUG struct hl_vm_va_block *va_block; dev_dbg(hdev->dev, "print va list:\n"); list_for_each_entry(va_block, va_list, node) dev_dbg(hdev->dev, "va block, start: 0x%llx, end: 0x%llx, size: %llu\n", va_block->start, va_block->end, va_block->size); #endif } /** * merge_va_blocks_locked() - merge a virtual block if possible. * @hdev: pointer to the habanalabs device structure. * @va_list: pointer to the virtual addresses block list. * @va_block: virtual block to merge with adjacent blocks. * * This function does the following: * - Merge the given blocks with the adjacent blocks if their virtual ranges * create a contiguous virtual range. * * This Function should be called only when va_list lock is taken. */ static void merge_va_blocks_locked(struct hl_device *hdev, struct list_head *va_list, struct hl_vm_va_block *va_block) { struct hl_vm_va_block *prev, *next; prev = list_prev_entry(va_block, node); if (&prev->node != va_list && prev->end + 1 == va_block->start) { prev->end = va_block->end; prev->size = prev->end - prev->start + 1; list_del(&va_block->node); kfree(va_block); va_block = prev; } next = list_next_entry(va_block, node); if (&next->node != va_list && va_block->end + 1 == next->start) { next->start = va_block->start; next->size = next->end - next->start + 1; list_del(&va_block->node); kfree(va_block); } } /** * add_va_block_locked() - add a virtual block to the virtual addresses list. * @hdev: pointer to the habanalabs device structure. * @va_list: pointer to the virtual addresses block list. * @start: start virtual address. * @end: end virtual address. * * This function does the following: * - Add the given block to the virtual blocks list and merge with other blocks * if a contiguous virtual block can be created. * * This Function should be called only when va_list lock is taken. */ static int add_va_block_locked(struct hl_device *hdev, struct list_head *va_list, u64 start, u64 end) { struct hl_vm_va_block *va_block, *res = NULL; u64 size = end - start + 1; print_va_list_locked(hdev, va_list); list_for_each_entry(va_block, va_list, node) { /* TODO: remove upon matureness */ if (hl_mem_area_crosses_range(start, size, va_block->start, va_block->end)) { dev_err(hdev->dev, "block crossing ranges at start 0x%llx, end 0x%llx\n", va_block->start, va_block->end); return -EINVAL; } if (va_block->end < start) res = va_block; } va_block = kmalloc(sizeof(*va_block), GFP_KERNEL); if (!va_block) return -ENOMEM; va_block->start = start; va_block->end = end; va_block->size = size; if (!res) list_add(&va_block->node, va_list); else list_add(&va_block->node, &res->node); merge_va_blocks_locked(hdev, va_list, va_block); print_va_list_locked(hdev, va_list); return 0; } /** * add_va_block() - wrapper for add_va_block_locked. * @hdev: pointer to the habanalabs device structure. * @va_range: pointer to the virtual addresses range object. * @start: start virtual address. * @end: end virtual address. * * This function does the following: * - Takes the list lock and calls add_va_block_locked. */ static inline int add_va_block(struct hl_device *hdev, struct hl_va_range *va_range, u64 start, u64 end) { int rc; mutex_lock(&va_range->lock); rc = add_va_block_locked(hdev, &va_range->list, start, end); mutex_unlock(&va_range->lock); return rc; } /** * is_hint_crossing_range() - check if hint address crossing specified reserved. * @range_type: virtual space range type. * @start_addr: start virtual address. * @size: block size. * @prop: asic properties structure to retrieve reserved ranges from. */ static inline bool is_hint_crossing_range(enum hl_va_range_type range_type, u64 start_addr, u32 size, struct asic_fixed_properties *prop) { bool range_cross; if (range_type == HL_VA_RANGE_TYPE_DRAM) range_cross = hl_mem_area_crosses_range(start_addr, size, prop->hints_dram_reserved_va_range.start_addr, prop->hints_dram_reserved_va_range.end_addr); else if (range_type == HL_VA_RANGE_TYPE_HOST) range_cross = hl_mem_area_crosses_range(start_addr, size, prop->hints_host_reserved_va_range.start_addr, prop->hints_host_reserved_va_range.end_addr); else range_cross = hl_mem_area_crosses_range(start_addr, size, prop->hints_host_hpage_reserved_va_range.start_addr, prop->hints_host_hpage_reserved_va_range.end_addr); return range_cross; } /** * get_va_block() - get a virtual block for the given size and alignment. * * @hdev: pointer to the habanalabs device structure. * @va_range: pointer to the virtual addresses range. * @size: requested block size. * @hint_addr: hint for requested address by the user. * @va_block_align: required alignment of the virtual block start address. * @range_type: va range type (host, dram) * @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT * * This function does the following: * - Iterate on the virtual block list to find a suitable virtual block for the * given size, hint address and alignment. * - Reserve the requested block and update the list. * - Return the start address of the virtual block. */ static u64 get_va_block(struct hl_device *hdev, struct hl_va_range *va_range, u64 size, u64 hint_addr, u32 va_block_align, enum hl_va_range_type range_type, u32 flags) { struct hl_vm_va_block *va_block, *new_va_block = NULL; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end, align_mask, reserved_valid_start = 0, reserved_valid_size = 0, dram_hint_mask = prop->dram_hints_align_mask; bool add_prev = false; bool is_align_pow_2 = is_power_of_2(va_range->page_size); bool is_hint_dram_addr = hl_is_dram_va(hdev, hint_addr); bool force_hint = flags & HL_MEM_FORCE_HINT; int rc; if (is_align_pow_2) align_mask = ~((u64)va_block_align - 1); else /* * with non-power-of-2 range we work only with page granularity * and the start address is page aligned, * so no need for alignment checking. */ size = DIV_ROUND_UP_ULL(size, va_range->page_size) * va_range->page_size; tmp_hint_addr = hint_addr & ~dram_hint_mask; /* Check if we need to ignore hint address */ if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) || (!is_align_pow_2 && is_hint_dram_addr && do_div(tmp_hint_addr, va_range->page_size))) { if (force_hint) { /* Hint must be respected, so here we just fail */ dev_err(hdev->dev, "Hint address 0x%llx is not page aligned - cannot be respected\n", hint_addr); return 0; } dev_dbg(hdev->dev, "Hint address 0x%llx will be ignored because it is not aligned\n", hint_addr); hint_addr = 0; } mutex_lock(&va_range->lock); print_va_list_locked(hdev, &va_range->list); list_for_each_entry(va_block, &va_range->list, node) { /* Calc the first possible aligned addr */ valid_start = va_block->start; if (is_align_pow_2 && (valid_start & (va_block_align - 1))) { valid_start &= align_mask; valid_start += va_block_align; if (valid_start > va_block->end) continue; } valid_size = va_block->end - valid_start + 1; if (valid_size < size) continue; /* * In case hint address is 0, and hints_range_reservation * property enabled, then avoid allocating va blocks from the * range reserved for hint addresses */ if (prop->hints_range_reservation && !hint_addr) if (is_hint_crossing_range(range_type, valid_start, size, prop)) continue; /* Pick the minimal length block which has the required size */ if (!new_va_block || (valid_size < reserved_valid_size)) { new_va_block = va_block; reserved_valid_start = valid_start; reserved_valid_size = valid_size; } if (hint_addr && hint_addr >= valid_start && (hint_addr + size) <= va_block->end) { new_va_block = va_block; reserved_valid_start = hint_addr; reserved_valid_size = valid_size; break; } } if (!new_va_block) { dev_err(hdev->dev, "no available va block for size %llu\n", size); goto out; } if (force_hint && reserved_valid_start != hint_addr) { /* Hint address must be respected. If we are here - this means * we could not respect it. */ dev_err(hdev->dev, "Hint address 0x%llx could not be respected\n", hint_addr); reserved_valid_start = 0; goto out; } /* * Check if there is some leftover range due to reserving the new * va block, then return it to the main virtual addresses list. */ if (reserved_valid_start > new_va_block->start) { prev_start = new_va_block->start; prev_end = reserved_valid_start - 1; new_va_block->start = reserved_valid_start; new_va_block->size = reserved_valid_size; add_prev = true; } if (new_va_block->size > size) { new_va_block->start += size; new_va_block->size = new_va_block->end - new_va_block->start + 1; } else { list_del(&new_va_block->node); kfree(new_va_block); } if (add_prev) { rc = add_va_block_locked(hdev, &va_range->list, prev_start, prev_end); if (rc) { reserved_valid_start = 0; goto out; } } print_va_list_locked(hdev, &va_range->list); out: mutex_unlock(&va_range->lock); return reserved_valid_start; } /* * hl_reserve_va_block() - reserve a virtual block of a given size. * @hdev: pointer to the habanalabs device structure. * @ctx: current context * @type: virtual addresses range type. * @size: requested block size. * @alignment: required alignment in bytes of the virtual block start address, * 0 means no alignment. * * This function does the following: * - Iterate on the virtual block list to find a suitable virtual block for the * given size and alignment. * - Reserve the requested block and update the list. * - Return the start address of the virtual block. */ u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, enum hl_va_range_type type, u64 size, u32 alignment) { return get_va_block(hdev, ctx->va_range[type], size, 0, max(alignment, ctx->va_range[type]->page_size), type, 0); } /** * hl_get_va_range_type() - get va_range type for the given address and size. * @ctx: context to fetch va_range from. * @address: the start address of the area we want to validate. * @size: the size in bytes of the area we want to validate. * @type: returned va_range type. * * Return: true if the area is inside a valid range, false otherwise. */ static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size, enum hl_va_range_type *type) { int i; for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) { if (hl_mem_area_inside_range(address, size, ctx->va_range[i]->start_addr, ctx->va_range[i]->end_addr)) { *type = i; return 0; } } return -EINVAL; } /** * hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block. * @hdev: pointer to the habanalabs device structure * @ctx: pointer to the context structure. * @start_addr: start virtual address. * @size: number of bytes to unreserve. * * This function does the following: * - Takes the list lock and calls add_va_block_locked. */ int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, u64 start_addr, u64 size) { enum hl_va_range_type type; int rc; rc = hl_get_va_range_type(ctx, start_addr, size, &type); if (rc) { dev_err(hdev->dev, "cannot find va_range for va %#llx size %llu", start_addr, size); return rc; } rc = add_va_block(hdev, ctx->va_range[type], start_addr, start_addr + size - 1); if (rc) dev_warn(hdev->dev, "add va block failed for vaddr: 0x%llx\n", start_addr); return rc; } /** * init_phys_pg_pack_from_userptr() - initialize physical page pack from host * memory * @ctx: pointer to the context structure. * @userptr: userptr to initialize from. * @pphys_pg_pack: result pointer. * @force_regular_page: tell the function to ignore huge page optimization, * even if possible. Needed for cases where the device VA * is allocated before we know the composition of the * physical pages * * This function does the following: * - Create a physical page pack from the physical pages related to the given * virtual block. */ static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx, struct hl_userptr *userptr, struct hl_vm_phys_pg_pack **pphys_pg_pack, bool force_regular_page) { u32 npages, page_size = PAGE_SIZE, huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size; u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size); struct hl_vm_phys_pg_pack *phys_pg_pack; bool first = true, is_huge_page_opt; u64 page_mask, total_npages; struct scatterlist *sg; dma_addr_t dma_addr; int rc, i, j; phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL); if (!phys_pg_pack) return -ENOMEM; phys_pg_pack->vm_type = userptr->vm_type; phys_pg_pack->created_from_userptr = true; phys_pg_pack->asid = ctx->asid; atomic_set(&phys_pg_pack->mapping_cnt, 1); is_huge_page_opt = (force_regular_page ? false : true); /* Only if all dma_addrs are aligned to 2MB and their * sizes is at least 2MB, we can use huge page mapping. * We limit the 2MB optimization to this condition, * since later on we acquire the related VA range as one * consecutive block. */ total_npages = 0; for_each_sgtable_dma_sg(userptr->sgt, sg, i) { npages = hl_get_sg_info(sg, &dma_addr); total_npages += npages; if ((npages % pgs_in_huge_page) || (dma_addr & (huge_page_size - 1))) is_huge_page_opt = false; } if (is_huge_page_opt) { page_size = huge_page_size; do_div(total_npages, pgs_in_huge_page); } page_mask = ~(((u64) page_size) - 1); phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64), GFP_KERNEL); if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) { rc = -ENOMEM; goto page_pack_arr_mem_err; } phys_pg_pack->npages = total_npages; phys_pg_pack->page_size = page_size; phys_pg_pack->total_size = total_npages * page_size; j = 0; for_each_sgtable_dma_sg(userptr->sgt, sg, i) { npages = hl_get_sg_info(sg, &dma_addr); /* align down to physical page size and save the offset */ if (first) { first = false; phys_pg_pack->offset = dma_addr & (page_size - 1); dma_addr &= page_mask; } while (npages) { phys_pg_pack->pages[j++] = dma_addr; dma_addr += page_size; if (is_huge_page_opt) npages -= pgs_in_huge_page; else npages--; } } *pphys_pg_pack = phys_pg_pack; return 0; page_pack_arr_mem_err: kfree(phys_pg_pack); return rc; } /** * map_phys_pg_pack() - maps the physical page pack.. * @ctx: pointer to the context structure. * @vaddr: start address of the virtual area to map from. * @phys_pg_pack: the pack of physical pages to map to. * * This function does the following: * - Maps each chunk of virtual memory to matching physical chunk. * - Stores number of successful mappings in the given argument. * - Returns 0 on success, error code otherwise. */ static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr, struct hl_vm_phys_pg_pack *phys_pg_pack) { struct hl_device *hdev = ctx->hdev; u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i; u32 page_size = phys_pg_pack->page_size; int rc = 0; bool is_host_addr; for (i = 0 ; i < phys_pg_pack->npages ; i++) { paddr = phys_pg_pack->pages[i]; rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size, (i + 1) == phys_pg_pack->npages); if (rc) { dev_err(hdev->dev, "map failed (%d) for handle %u, npages: %llu, mapped: %llu\n", rc, phys_pg_pack->handle, phys_pg_pack->npages, mapped_pg_cnt); goto err; } mapped_pg_cnt++; next_vaddr += page_size; } return 0; err: is_host_addr = !hl_is_dram_va(hdev, vaddr); next_vaddr = vaddr; for (i = 0 ; i < mapped_pg_cnt ; i++) { if (hl_mmu_unmap_page(ctx, next_vaddr, page_size, (i + 1) == mapped_pg_cnt)) dev_warn_ratelimited(hdev->dev, "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n", phys_pg_pack->handle, next_vaddr, phys_pg_pack->pages[i], page_size); next_vaddr += page_size; /* * unmapping on Palladium can be really long, so avoid a CPU * soft lockup bug by sleeping a little between unmapping pages * * In addition, on host num of pages could be huge, * because page size could be 4KB, so when unmapping host * pages sleep every 32K pages to avoid soft lockup */ if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0)) usleep_range(50, 200); } return rc; } /** * unmap_phys_pg_pack() - unmaps the physical page pack. * @ctx: pointer to the context structure. * @vaddr: start address of the virtual area to unmap. * @phys_pg_pack: the pack of physical pages to unmap. */ static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr, struct hl_vm_phys_pg_pack *phys_pg_pack) { struct hl_device *hdev = ctx->hdev; u64 next_vaddr, i; bool is_host_addr; u32 page_size; is_host_addr = !hl_is_dram_va(hdev, vaddr); page_size = phys_pg_pack->page_size; next_vaddr = vaddr; for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) { if (hl_mmu_unmap_page(ctx, next_vaddr, page_size, (i + 1) == phys_pg_pack->npages)) dev_warn_ratelimited(hdev->dev, "unmap failed for vaddr: 0x%llx\n", next_vaddr); /* * unmapping on Palladium can be really long, so avoid a CPU * soft lockup bug by sleeping a little between unmapping pages * * In addition, on host num of pages could be huge, * because page size could be 4KB, so when unmapping host * pages sleep every 32K pages to avoid soft lockup */ if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0)) usleep_range(50, 200); } } /** * map_device_va() - map the given memory. * @ctx: pointer to the context structure. * @args: host parameters with handle/host virtual address. * @device_addr: pointer to result device virtual address. * * This function does the following: * - If given a physical device memory handle, map to a device virtual block * and return the start address of this block. * - If given a host virtual address and size, find the related physical pages, * map a device virtual block to this pages and return the start address of * this block. */ static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, u64 *device_addr) { struct hl_vm_phys_pg_pack *phys_pg_pack; enum hl_va_range_type va_range_type = 0; struct hl_device *hdev = ctx->hdev; struct hl_userptr *userptr = NULL; u32 handle = 0, va_block_align; struct hl_vm_hash_node *hnode; struct hl_vm *vm = &hdev->vm; struct hl_va_range *va_range; bool is_userptr, do_prefetch; u64 ret_vaddr, hint_addr; enum vm_type *vm_type; int rc; /* set map flags */ is_userptr = args->flags & HL_MEM_USERPTR; do_prefetch = hdev->supports_mmu_prefetch && (args->flags & HL_MEM_PREFETCH); /* Assume failure */ *device_addr = 0; if (is_userptr) { u64 addr = args->map_host.host_virt_addr, size = args->map_host.mem_size; u32 page_size = hdev->asic_prop.pmmu.page_size, huge_page_size = hdev->asic_prop.pmmu_huge.page_size; rc = dma_map_host_va(hdev, addr, size, &userptr); if (rc) return rc; rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack, false); if (rc) { dev_err(hdev->dev, "unable to init page pack for vaddr 0x%llx\n", addr); goto init_page_pack_err; } vm_type = (enum vm_type *) userptr; hint_addr = args->map_host.hint_addr; handle = phys_pg_pack->handle; /* get required alignment */ if (phys_pg_pack->page_size == page_size) { va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST]; va_range_type = HL_VA_RANGE_TYPE_HOST; /* * huge page alignment may be needed in case of regular * page mapping, depending on the host VA alignment */ if (addr & (huge_page_size - 1)) va_block_align = page_size; else va_block_align = huge_page_size; } else { /* * huge page alignment is needed in case of huge page * mapping */ va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]; va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE; va_block_align = huge_page_size; } } else { handle = lower_32_bits(args->map_device.handle); spin_lock(&vm->idr_lock); phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); if (!phys_pg_pack) { spin_unlock(&vm->idr_lock); dev_err(hdev->dev, "no match for handle %u\n", handle); return -EINVAL; } /* increment now to avoid freeing device memory while mapping */ atomic_inc(&phys_pg_pack->mapping_cnt); spin_unlock(&vm->idr_lock); vm_type = (enum vm_type *) phys_pg_pack; hint_addr = args->map_device.hint_addr; /* DRAM VA alignment is the same as the MMU page size */ va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM]; va_range_type = HL_VA_RANGE_TYPE_DRAM; va_block_align = hdev->asic_prop.dmmu.page_size; } /* * relevant for mapping device physical memory only, as host memory is * implicitly shared */ if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) && phys_pg_pack->asid != ctx->asid) { dev_err(hdev->dev, "Failed to map memory, handle %u is not shared\n", handle); rc = -EPERM; goto shared_err; } hnode = kzalloc(sizeof(*hnode), GFP_KERNEL); if (!hnode) { rc = -ENOMEM; goto hnode_err; } if (hint_addr && phys_pg_pack->offset) { if (args->flags & HL_MEM_FORCE_HINT) { /* Fail if hint must be respected but it can't be */ dev_err(hdev->dev, "Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n", hint_addr, phys_pg_pack->offset); rc = -EINVAL; goto va_block_err; } dev_dbg(hdev->dev, "Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n", hint_addr, phys_pg_pack->offset); } ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size, hint_addr, va_block_align, va_range_type, args->flags); if (!ret_vaddr) { dev_err(hdev->dev, "no available va block for handle %u\n", handle); rc = -ENOMEM; goto va_block_err; } mutex_lock(&hdev->mmu_lock); rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack); if (rc) { dev_err(hdev->dev, "mapping page pack failed (%d) for handle %u\n", rc, handle); mutex_unlock(&hdev->mmu_lock); goto map_err; } rc = hl_mmu_invalidate_cache_range(hdev, false, *vm_type | MMU_OP_SKIP_LOW_CACHE_INV, ctx->asid, ret_vaddr, phys_pg_pack->total_size); mutex_unlock(&hdev->mmu_lock); if (rc) goto map_err; /* * prefetch is done upon user's request. it is performed in WQ as and so can * be outside the MMU lock. the operation itself is already protected by the mmu lock */ if (do_prefetch) { rc = hl_mmu_prefetch_cache_range(ctx, *vm_type, ctx->asid, ret_vaddr, phys_pg_pack->total_size); if (rc) goto map_err; } ret_vaddr += phys_pg_pack->offset; hnode->ptr = vm_type; hnode->vaddr = ret_vaddr; hnode->handle = is_userptr ? MEM_HANDLE_INVALID : handle; mutex_lock(&ctx->mem_hash_lock); hash_add(ctx->mem_hash, &hnode->node, ret_vaddr); mutex_unlock(&ctx->mem_hash_lock); *device_addr = ret_vaddr; if (is_userptr) free_phys_pg_pack(hdev, phys_pg_pack); return rc; map_err: if (add_va_block(hdev, va_range, ret_vaddr, ret_vaddr + phys_pg_pack->total_size - 1)) dev_warn(hdev->dev, "release va block failed for handle 0x%x, vaddr: 0x%llx\n", handle, ret_vaddr); va_block_err: kfree(hnode); hnode_err: shared_err: atomic_dec(&phys_pg_pack->mapping_cnt); if (is_userptr) free_phys_pg_pack(hdev, phys_pg_pack); init_page_pack_err: if (is_userptr) dma_unmap_host_va(hdev, userptr); return rc; } /* Should be called while the context's mem_hash_lock is taken */ static struct hl_vm_hash_node *get_vm_hash_node_locked(struct hl_ctx *ctx, u64 vaddr) { struct hl_vm_hash_node *hnode; hash_for_each_possible(ctx->mem_hash, hnode, node, vaddr) if (vaddr == hnode->vaddr) return hnode; return NULL; } /** * unmap_device_va() - unmap the given device virtual address. * @ctx: pointer to the context structure. * @args: host parameters with device virtual address to unmap. * @ctx_free: true if in context free flow, false otherwise. * * This function does the following: * - unmap the physical pages related to the given virtual address. * - return the device virtual block to the virtual block list. */ static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, bool ctx_free) { struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; u64 vaddr = args->unmap.device_virt_addr; struct asic_fixed_properties *prop; struct hl_device *hdev = ctx->hdev; struct hl_userptr *userptr = NULL; struct hl_vm_hash_node *hnode; struct hl_va_range *va_range; enum vm_type *vm_type; bool is_userptr; int rc = 0; prop = &hdev->asic_prop; /* protect from double entrance */ mutex_lock(&ctx->mem_hash_lock); hnode = get_vm_hash_node_locked(ctx, vaddr); if (!hnode) { mutex_unlock(&ctx->mem_hash_lock); dev_err(hdev->dev, "unmap failed, no mem hnode for vaddr 0x%llx\n", vaddr); return -EINVAL; } if (hnode->export_cnt) { mutex_unlock(&ctx->mem_hash_lock); dev_err(hdev->dev, "failed to unmap %#llx, memory is exported\n", vaddr); return -EINVAL; } hash_del(&hnode->node); mutex_unlock(&ctx->mem_hash_lock); vm_type = hnode->ptr; if (*vm_type == VM_TYPE_USERPTR) { is_userptr = true; userptr = hnode->ptr; rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack, false); if (rc) { dev_err(hdev->dev, "unable to init page pack for vaddr 0x%llx\n", vaddr); goto vm_type_err; } if (phys_pg_pack->page_size == hdev->asic_prop.pmmu.page_size) va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST]; else va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]; } else if (*vm_type == VM_TYPE_PHYS_PACK) { is_userptr = false; va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM]; phys_pg_pack = hnode->ptr; } else { dev_warn(hdev->dev, "unmap failed, unknown vm desc for vaddr 0x%llx\n", vaddr); rc = -EFAULT; goto vm_type_err; } if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) { dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr); rc = -EINVAL; goto mapping_cnt_err; } if (!is_userptr && !is_power_of_2(phys_pg_pack->page_size)) vaddr = prop->dram_base_address + DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address, phys_pg_pack->page_size) * phys_pg_pack->page_size; else vaddr &= ~(((u64) phys_pg_pack->page_size) - 1); mutex_lock(&hdev->mmu_lock); unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack); /* * During context free this function is called in a loop to clean all * the context mappings. Hence the cache invalidation can be called once * at the loop end rather than for each iteration */ if (!ctx_free) rc = hl_mmu_invalidate_cache_range(hdev, true, *vm_type, ctx->asid, vaddr, phys_pg_pack->total_size); mutex_unlock(&hdev->mmu_lock); /* * If the context is closing we don't need to check for the MMU cache * invalidation return code and update the VA free list as in this flow * we invalidate the MMU cache outside of this unmap function and the VA * free list will be freed anyway. */ if (!ctx_free) { int tmp_rc; tmp_rc = add_va_block(hdev, va_range, vaddr, vaddr + phys_pg_pack->total_size - 1); if (tmp_rc) { dev_warn(hdev->dev, "add va block failed for vaddr: 0x%llx\n", vaddr); if (!rc) rc = tmp_rc; } } atomic_dec(&phys_pg_pack->mapping_cnt); kfree(hnode); if (is_userptr) { free_phys_pg_pack(hdev, phys_pg_pack); dma_unmap_host_va(hdev, userptr); } return rc; mapping_cnt_err: if (is_userptr) free_phys_pg_pack(hdev, phys_pg_pack); vm_type_err: mutex_lock(&ctx->mem_hash_lock); hash_add(ctx->mem_hash, &hnode->node, vaddr); mutex_unlock(&ctx->mem_hash_lock); return rc; } static int map_block(struct hl_device *hdev, u64 address, u64 *handle, u32 *size) { u32 block_id; int rc; *handle = 0; if (size) *size = 0; rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id); if (rc) return rc; *handle = block_id | HL_MMAP_TYPE_BLOCK; *handle <<= PAGE_SHIFT; return 0; } static void hw_block_vm_close(struct vm_area_struct *vma) { struct hl_vm_hw_block_list_node *lnode = (struct hl_vm_hw_block_list_node *) vma->vm_private_data; struct hl_ctx *ctx = lnode->ctx; long new_mmap_size; new_mmap_size = lnode->mapped_size - (vma->vm_end - vma->vm_start); if (new_mmap_size > 0) { lnode->mapped_size = new_mmap_size; return; } mutex_lock(&ctx->hw_block_list_lock); list_del(&lnode->node); mutex_unlock(&ctx->hw_block_list_lock); hl_ctx_put(ctx); kfree(lnode); vma->vm_private_data = NULL; } static const struct vm_operations_struct hw_block_vm_ops = { .close = hw_block_vm_close }; /** * hl_hw_block_mmap() - mmap a hw block to user. * @hpriv: pointer to the private data of the fd * @vma: pointer to vm_area_struct of the process * * Driver increments context reference for every HW block mapped in order * to prevent user from closing FD without unmapping first */ int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma) { struct hl_vm_hw_block_list_node *lnode; struct hl_device *hdev = hpriv->hdev; struct hl_ctx *ctx = hpriv->ctx; u32 block_id, block_size; int rc; /* We use the page offset to hold the block id and thus we need to clear * it before doing the mmap itself */ block_id = vma->vm_pgoff; vma->vm_pgoff = 0; /* Driver only allows mapping of a complete HW block */ block_size = vma->vm_end - vma->vm_start; if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) { dev_err(hdev->dev, "user pointer is invalid - 0x%lx\n", vma->vm_start); return -EINVAL; } lnode = kzalloc(sizeof(*lnode), GFP_KERNEL); if (!lnode) return -ENOMEM; rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size); if (rc) { kfree(lnode); return rc; } hl_ctx_get(ctx); lnode->ctx = ctx; lnode->vaddr = vma->vm_start; lnode->block_size = block_size; lnode->mapped_size = lnode->block_size; lnode->id = block_id; vma->vm_private_data = lnode; vma->vm_ops = &hw_block_vm_ops; mutex_lock(&ctx->hw_block_list_lock); list_add_tail(&lnode->node, &ctx->hw_block_mem_list); mutex_unlock(&ctx->hw_block_list_lock); vma->vm_pgoff = block_id; return 0; } static int set_dma_sg(struct scatterlist *sg, u64 bar_address, u64 chunk_size, struct device *dev, enum dma_data_direction dir) { dma_addr_t addr; int rc; addr = dma_map_resource(dev, bar_address, chunk_size, dir, DMA_ATTR_SKIP_CPU_SYNC); rc = dma_mapping_error(dev, addr); if (rc) return rc; sg_set_page(sg, NULL, chunk_size, 0); sg_dma_address(sg) = addr; sg_dma_len(sg) = chunk_size; return 0; } static struct sg_table *alloc_sgt_from_device_pages(struct hl_device *hdev, u64 *pages, u64 npages, u64 page_size, u64 exported_size, u64 offset, struct device *dev, enum dma_data_direction dir) { u64 dma_max_seg_size, curr_page, size, chunk_size, left_size_to_export, left_size_in_page, left_size_in_dma_seg, device_address, bar_address, start_page; struct asic_fixed_properties *prop = &hdev->asic_prop; struct scatterlist *sg; unsigned int nents, i; struct sg_table *sgt; bool next_sg_entry; int rc; /* Align max segment size to PAGE_SIZE to fit the minimal IOMMU mapping granularity */ dma_max_seg_size = ALIGN_DOWN(dma_get_max_seg_size(dev), PAGE_SIZE); if (dma_max_seg_size < PAGE_SIZE) { dev_err_ratelimited(hdev->dev, "dma_max_seg_size %llu can't be smaller than PAGE_SIZE\n", dma_max_seg_size); return ERR_PTR(-EINVAL); } sgt = kzalloc(sizeof(*sgt), GFP_KERNEL); if (!sgt) return ERR_PTR(-ENOMEM); /* Use the offset to move to the actual first page that is exported */ for (start_page = 0 ; start_page < npages ; ++start_page) { if (offset < page_size) break; /* The offset value was validated so there can't be an underflow */ offset -= page_size; } /* Calculate the required number of entries for the SG table */ curr_page = start_page; nents = 1; left_size_to_export = exported_size; left_size_in_page = page_size - offset; left_size_in_dma_seg = dma_max_seg_size; next_sg_entry = false; while (true) { size = min3(left_size_to_export, left_size_in_page, left_size_in_dma_seg); left_size_to_export -= size; left_size_in_page -= size; left_size_in_dma_seg -= size; if (!left_size_to_export) break; if (!left_size_in_page) { /* left_size_to_export is not zero so there must be another page */ if (pages[curr_page] + page_size != pages[curr_page + 1]) next_sg_entry = true; ++curr_page; left_size_in_page = page_size; } if (!left_size_in_dma_seg) { next_sg_entry = true; left_size_in_dma_seg = dma_max_seg_size; } if (next_sg_entry) { ++nents; next_sg_entry = false; } } rc = sg_alloc_table(sgt, nents, GFP_KERNEL | __GFP_ZERO); if (rc) goto err_free_sgt; /* Prepare the SG table entries */ curr_page = start_page; device_address = pages[curr_page] + offset; left_size_to_export = exported_size; left_size_in_page = page_size - offset; left_size_in_dma_seg = dma_max_seg_size; next_sg_entry = false; for_each_sgtable_dma_sg(sgt, sg, i) { bar_address = hdev->dram_pci_bar_start + (device_address - prop->dram_base_address); chunk_size = 0; for ( ; curr_page < npages ; ++curr_page) { size = min3(left_size_to_export, left_size_in_page, left_size_in_dma_seg); chunk_size += size; left_size_to_export -= size; left_size_in_page -= size; left_size_in_dma_seg -= size; if (!left_size_to_export) break; if (!left_size_in_page) { /* left_size_to_export is not zero so there must be another page */ if (pages[curr_page] + page_size != pages[curr_page + 1]) { device_address = pages[curr_page + 1]; next_sg_entry = true; } left_size_in_page = page_size; } if (!left_size_in_dma_seg) { /* * Skip setting a new device address if already moving to a page * which is not contiguous with the current page. */ if (!next_sg_entry) { device_address += chunk_size; next_sg_entry = true; } left_size_in_dma_seg = dma_max_seg_size; } if (next_sg_entry) { next_sg_entry = false; break; } } rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir); if (rc) goto err_unmap; } /* There should be nothing left to export exactly after looping over all SG elements */ if (left_size_to_export) { dev_err(hdev->dev, "left size to export %#llx after initializing %u SG elements\n", left_size_to_export, sgt->nents); rc = -ENOMEM; goto err_unmap; } /* * Because we are not going to include a CPU list, we want to have some chance that other * users will detect this when going over SG table, by setting the orig_nents to 0 and using * only nents (length of DMA list). */ sgt->orig_nents = 0; dev_dbg(hdev->dev, "prepared SG table with %u entries for importer %s\n", nents, dev_name(dev)); for_each_sgtable_dma_sg(sgt, sg, i) dev_dbg(hdev->dev, "SG entry %d: address %#llx, length %#x\n", i, sg_dma_address(sg), sg_dma_len(sg)); return sgt; err_unmap: for_each_sgtable_dma_sg(sgt, sg, i) { if (!sg_dma_len(sg)) continue; dma_unmap_resource(dev, sg_dma_address(sg), sg_dma_len(sg), dir, DMA_ATTR_SKIP_CPU_SYNC); } sg_free_table(sgt); err_free_sgt: kfree(sgt); return ERR_PTR(rc); } static int hl_dmabuf_attach(struct dma_buf *dmabuf, struct dma_buf_attachment *attachment) { struct hl_dmabuf_priv *hl_dmabuf; struct hl_device *hdev; int rc; hl_dmabuf = dmabuf->priv; hdev = hl_dmabuf->ctx->hdev; rc = pci_p2pdma_distance(hdev->pdev, attachment->dev, true); if (rc < 0) attachment->peer2peer = false; return 0; } static struct sg_table *hl_map_dmabuf(struct dma_buf_attachment *attachment, enum dma_data_direction dir) { u64 *pages, npages, page_size, exported_size, offset; struct dma_buf *dma_buf = attachment->dmabuf; struct hl_vm_phys_pg_pack *phys_pg_pack; struct hl_dmabuf_priv *hl_dmabuf; struct hl_device *hdev; struct sg_table *sgt; hl_dmabuf = dma_buf->priv; hdev = hl_dmabuf->ctx->hdev; if (!attachment->peer2peer) { dev_dbg(hdev->dev, "Failed to map dmabuf because p2p is disabled\n"); return ERR_PTR(-EPERM); } exported_size = hl_dmabuf->dmabuf->size; offset = hl_dmabuf->offset; phys_pg_pack = hl_dmabuf->phys_pg_pack; if (phys_pg_pack) { pages = phys_pg_pack->pages; npages = phys_pg_pack->npages; page_size = phys_pg_pack->page_size; } else { pages = &hl_dmabuf->device_phys_addr; npages = 1; page_size = hl_dmabuf->dmabuf->size; } sgt = alloc_sgt_from_device_pages(hdev, pages, npages, page_size, exported_size, offset, attachment->dev, dir); if (IS_ERR(sgt)) dev_err(hdev->dev, "failed (%ld) to initialize sgt for dmabuf\n", PTR_ERR(sgt)); return sgt; } static void hl_unmap_dmabuf(struct dma_buf_attachment *attachment, struct sg_table *sgt, enum dma_data_direction dir) { struct scatterlist *sg; int i; /* The memory behind the dma-buf has *always* resided on the device itself, i.e. it lives * only in the 'device' domain (after all, it maps a PCI bar address which points to the * device memory). * * Therefore, it was never in the 'CPU' domain and hence, there is no need to perform * a sync of the memory to the CPU's cache, as it never resided inside that cache. */ for_each_sgtable_dma_sg(sgt, sg, i) dma_unmap_resource(attachment->dev, sg_dma_address(sg), sg_dma_len(sg), dir, DMA_ATTR_SKIP_CPU_SYNC); /* Need to restore orig_nents because sg_free_table use that field */ sgt->orig_nents = sgt->nents; sg_free_table(sgt); kfree(sgt); } static struct hl_vm_hash_node *memhash_node_export_get(struct hl_ctx *ctx, u64 addr) { struct hl_device *hdev = ctx->hdev; struct hl_vm_hash_node *hnode; /* get the memory handle */ mutex_lock(&ctx->mem_hash_lock); hnode = get_vm_hash_node_locked(ctx, addr); if (!hnode) { mutex_unlock(&ctx->mem_hash_lock); dev_dbg(hdev->dev, "map address %#llx not found\n", addr); return ERR_PTR(-EINVAL); } if (upper_32_bits(hnode->handle)) { mutex_unlock(&ctx->mem_hash_lock); dev_dbg(hdev->dev, "invalid handle %#llx for map address %#llx\n", hnode->handle, addr); return ERR_PTR(-EINVAL); } /* * node found, increase export count so this memory cannot be unmapped * and the hash node cannot be deleted. */ hnode->export_cnt++; mutex_unlock(&ctx->mem_hash_lock); return hnode; } static void memhash_node_export_put(struct hl_ctx *ctx, struct hl_vm_hash_node *hnode) { mutex_lock(&ctx->mem_hash_lock); hnode->export_cnt--; mutex_unlock(&ctx->mem_hash_lock); } static void hl_release_dmabuf(struct dma_buf *dmabuf) { struct hl_dmabuf_priv *hl_dmabuf = dmabuf->priv; struct hl_ctx *ctx; if (!hl_dmabuf) return; ctx = hl_dmabuf->ctx; if (hl_dmabuf->memhash_hnode) memhash_node_export_put(ctx, hl_dmabuf->memhash_hnode); atomic_dec(&ctx->hdev->dmabuf_export_cnt); hl_ctx_put(ctx); /* Paired with get_file() in export_dmabuf() */ fput(ctx->hpriv->file_priv->filp); kfree(hl_dmabuf); } static const struct dma_buf_ops habanalabs_dmabuf_ops = { .attach = hl_dmabuf_attach, .map_dma_buf = hl_map_dmabuf, .unmap_dma_buf = hl_unmap_dmabuf, .release = hl_release_dmabuf, }; static int export_dmabuf(struct hl_ctx *ctx, struct hl_dmabuf_priv *hl_dmabuf, u64 total_size, int flags, int *dmabuf_fd) { DEFINE_DMA_BUF_EXPORT_INFO(exp_info); struct hl_device *hdev = ctx->hdev; int rc, fd; exp_info.ops = &habanalabs_dmabuf_ops; exp_info.size = total_size; exp_info.flags = flags; exp_info.priv = hl_dmabuf; hl_dmabuf->dmabuf = dma_buf_export(&exp_info); if (IS_ERR(hl_dmabuf->dmabuf)) { dev_err(hdev->dev, "failed to export dma-buf\n"); return PTR_ERR(hl_dmabuf->dmabuf); } fd = dma_buf_fd(hl_dmabuf->dmabuf, flags); if (fd < 0) { dev_err(hdev->dev, "failed to get a file descriptor for a dma-buf, %d\n", fd); rc = fd; goto err_dma_buf_put; } hl_dmabuf->ctx = ctx; hl_ctx_get(hl_dmabuf->ctx); atomic_inc(&ctx->hdev->dmabuf_export_cnt); /* Get compute device file to enforce release order, such that all exported dma-buf will be * released first and only then the compute device. * Paired with fput() in hl_release_dmabuf(). */ get_file(ctx->hpriv->file_priv->filp); *dmabuf_fd = fd; return 0; err_dma_buf_put: hl_dmabuf->dmabuf->priv = NULL; dma_buf_put(hl_dmabuf->dmabuf); return rc; } static int validate_export_params_common(struct hl_device *hdev, u64 addr, u64 size, u64 offset) { if (!PAGE_ALIGNED(addr)) { dev_dbg(hdev->dev, "exported device memory address 0x%llx should be aligned to PAGE_SIZE 0x%lx\n", addr, PAGE_SIZE); return -EINVAL; } if (!size || !PAGE_ALIGNED(size)) { dev_dbg(hdev->dev, "exported device memory size %llu should be a multiple of PAGE_SIZE %lu\n", size, PAGE_SIZE); return -EINVAL; } if (!PAGE_ALIGNED(offset)) { dev_dbg(hdev->dev, "exported device memory offset %llu should be a multiple of PAGE_SIZE %lu\n", offset, PAGE_SIZE); return -EINVAL; } return 0; } static int validate_export_params_no_mmu(struct hl_device *hdev, u64 device_addr, u64 size) { struct asic_fixed_properties *prop = &hdev->asic_prop; u64 bar_address; int rc; rc = validate_export_params_common(hdev, device_addr, size, 0); if (rc) return rc; if (device_addr < prop->dram_user_base_address || (device_addr + size) > prop->dram_end_address || (device_addr + size) < device_addr) { dev_dbg(hdev->dev, "DRAM memory range 0x%llx (+0x%llx) is outside of DRAM boundaries\n", device_addr, size); return -EINVAL; } bar_address = hdev->dram_pci_bar_start + (device_addr - prop->dram_base_address); if ((bar_address + size) > (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) || (bar_address + size) < bar_address) { dev_dbg(hdev->dev, "DRAM memory range 0x%llx (+0x%llx) is outside of PCI BAR boundaries\n", device_addr, size); return -EINVAL; } return 0; } static int validate_export_params(struct hl_device *hdev, u64 device_addr, u64 size, u64 offset, struct hl_vm_phys_pg_pack *phys_pg_pack) { struct asic_fixed_properties *prop = &hdev->asic_prop; u64 bar_address; int i, rc; rc = validate_export_params_common(hdev, device_addr, size, offset); if (rc) return rc; if ((offset + size) > phys_pg_pack->total_size) { dev_dbg(hdev->dev, "offset %#llx and size %#llx exceed total map size %#llx\n", offset, size, phys_pg_pack->total_size); return -EINVAL; } for (i = 0 ; i < phys_pg_pack->npages ; i++) { bar_address = hdev->dram_pci_bar_start + (phys_pg_pack->pages[i] - prop->dram_base_address); if ((bar_address + phys_pg_pack->page_size) > (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) || (bar_address + phys_pg_pack->page_size) < bar_address) { dev_dbg(hdev->dev, "DRAM memory range 0x%llx (+0x%x) is outside of PCI BAR boundaries\n", phys_pg_pack->pages[i], phys_pg_pack->page_size); return -EINVAL; } } return 0; } static struct hl_vm_phys_pg_pack *get_phys_pg_pack_from_hash_node(struct hl_device *hdev, struct hl_vm_hash_node *hnode) { struct hl_vm_phys_pg_pack *phys_pg_pack; struct hl_vm *vm = &hdev->vm; spin_lock(&vm->idr_lock); phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, (u32) hnode->handle); if (!phys_pg_pack) { spin_unlock(&vm->idr_lock); dev_dbg(hdev->dev, "no match for handle 0x%x\n", (u32) hnode->handle); return ERR_PTR(-EINVAL); } spin_unlock(&vm->idr_lock); if (phys_pg_pack->vm_type != VM_TYPE_PHYS_PACK) { dev_dbg(hdev->dev, "handle 0x%llx does not represent DRAM memory\n", hnode->handle); return ERR_PTR(-EINVAL); } return phys_pg_pack; } /** * export_dmabuf_from_addr() - export a dma-buf object for the given memory * address and size. * @ctx: pointer to the context structure. * @addr: device address. * @size: size of device memory to export. * @offset: the offset into the buffer from which to start exporting * @flags: DMA-BUF file/FD flags. * @dmabuf_fd: pointer to result FD that represents the dma-buf object. * * Create and export a dma-buf object for an existing memory allocation inside * the device memory, and return a FD which is associated with the dma-buf * object. * * Return: 0 on success, non-zero for failure. */ static int export_dmabuf_from_addr(struct hl_ctx *ctx, u64 addr, u64 size, u64 offset, int flags, int *dmabuf_fd) { struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; struct hl_vm_hash_node *hnode = NULL; struct asic_fixed_properties *prop; struct hl_dmabuf_priv *hl_dmabuf; struct hl_device *hdev; int rc; hdev = ctx->hdev; prop = &hdev->asic_prop; /* offset must be 0 in devices without virtual memory support */ if (!prop->dram_supports_virtual_memory && offset) { dev_dbg(hdev->dev, "offset is not allowed in device without virtual memory\n"); return -EINVAL; } hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL); if (!hl_dmabuf) return -ENOMEM; if (prop->dram_supports_virtual_memory) { hnode = memhash_node_export_get(ctx, addr); if (IS_ERR(hnode)) { rc = PTR_ERR(hnode); goto err_free_dmabuf_wrapper; } phys_pg_pack = get_phys_pg_pack_from_hash_node(hdev, hnode); if (IS_ERR(phys_pg_pack)) { rc = PTR_ERR(phys_pg_pack); goto dec_memhash_export_cnt; } rc = validate_export_params(hdev, addr, size, offset, phys_pg_pack); if (rc) goto dec_memhash_export_cnt; hl_dmabuf->phys_pg_pack = phys_pg_pack; hl_dmabuf->memhash_hnode = hnode; hl_dmabuf->offset = offset; } else { rc = validate_export_params_no_mmu(hdev, addr, size); if (rc) goto err_free_dmabuf_wrapper; hl_dmabuf->device_phys_addr = addr; } rc = export_dmabuf(ctx, hl_dmabuf, size, flags, dmabuf_fd); if (rc) goto dec_memhash_export_cnt; return 0; dec_memhash_export_cnt: if (prop->dram_supports_virtual_memory) memhash_node_export_put(ctx, hnode); err_free_dmabuf_wrapper: kfree(hl_dmabuf); return rc; } static void ts_buff_release(struct hl_mmap_mem_buf *buf) { struct hl_ts_buff *ts_buff = buf->private; vfree(ts_buff->kernel_buff_address); vfree(ts_buff->user_buff_address); kfree(ts_buff); } static int hl_ts_mmap(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args) { struct hl_ts_buff *ts_buff = buf->private; vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE); return remap_vmalloc_range(vma, ts_buff->user_buff_address, 0); } static int hl_ts_alloc_buf(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args) { struct hl_ts_buff *ts_buff = NULL; u32 num_elements; size_t size; void *p; num_elements = *(u32 *)args; ts_buff = kzalloc(sizeof(*ts_buff), gfp); if (!ts_buff) return -ENOMEM; /* Allocate the user buffer */ size = num_elements * sizeof(u64); p = vmalloc_user(size); if (!p) goto free_mem; ts_buff->user_buff_address = p; buf->mappable_size = size; /* Allocate the internal kernel buffer */ size = num_elements * sizeof(struct hl_user_pending_interrupt); p = vzalloc(size); if (!p) goto free_user_buff; ts_buff->kernel_buff_address = p; ts_buff->kernel_buff_size = size; buf->private = ts_buff; return 0; free_user_buff: vfree(ts_buff->user_buff_address); free_mem: kfree(ts_buff); return -ENOMEM; } static struct hl_mmap_mem_buf_behavior hl_ts_behavior = { .topic = "TS", .mem_id = HL_MMAP_TYPE_TS_BUFF, .mmap = hl_ts_mmap, .alloc = hl_ts_alloc_buf, .release = ts_buff_release, }; /** * allocate_timestamps_buffers() - allocate timestamps buffers * This function will allocate ts buffer that will later on be mapped to the user * in order to be able to read the timestamp. * in addition it'll allocate an extra buffer for registration management. * since we cannot fail during registration for out-of-memory situation, so * we'll prepare a pool which will be used as user interrupt nodes and instead * of dynamically allocating nodes while registration we'll pick the node from * this pool. in addition it'll add node to the mapping hash which will be used * to map user ts buffer to the internal kernel ts buffer. * @hpriv: pointer to the private data of the fd * @args: ioctl input * @handle: user timestamp buffer handle as an output */ static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle) { struct hl_mem_mgr *mmg = &hpriv->mem_mgr; struct hl_mmap_mem_buf *buf; if (args->num_of_elements > TS_MAX_ELEMENTS_NUM) { dev_err(mmg->dev, "Num of elements exceeds Max allowed number (0x%x > 0x%x)\n", args->num_of_elements, TS_MAX_ELEMENTS_NUM); return -EINVAL; } buf = hl_mmap_mem_buf_alloc(mmg, &hl_ts_behavior, GFP_KERNEL, &args->num_of_elements); if (!buf) return -ENOMEM; *handle = buf->handle; return 0; } int hl_mem_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv) { struct hl_fpriv *hpriv = file_priv->driver_priv; enum hl_device_status status; union hl_mem_args *args = data; struct hl_device *hdev = hpriv->hdev; struct hl_ctx *ctx = hpriv->ctx; u64 block_handle, device_addr = 0; u32 handle = 0, block_size; int rc, dmabuf_fd = -EBADF; if (!hl_device_operational(hdev, &status)) { dev_dbg_ratelimited(hdev->dev, "Device is %s. Can't execute MEMORY IOCTL\n", hdev->status[status]); return -EBUSY; } switch (args->in.op) { case HL_MEM_OP_ALLOC: if (args->in.alloc.mem_size == 0) { dev_err(hdev->dev, "alloc size must be larger than 0\n"); rc = -EINVAL; goto out; } /* If DRAM does not support virtual memory the driver won't * handle the allocation/freeing of that memory. However, for * system administration/monitoring purposes, the driver will * keep track of the amount of DRAM memory that is allocated * and freed by the user. Because this code totally relies on * the user's input, the driver can't ensure the validity * of this accounting. */ if (!hdev->asic_prop.dram_supports_virtual_memory) { atomic64_add(args->in.alloc.mem_size, &ctx->dram_phys_mem); atomic64_add(args->in.alloc.mem_size, &hdev->dram_used_mem); dev_dbg(hdev->dev, "DRAM alloc is not supported\n"); rc = 0; memset(args, 0, sizeof(*args)); args->out.handle = 0; goto out; } rc = alloc_device_memory(ctx, &args->in, &handle); memset(args, 0, sizeof(*args)); args->out.handle = (__u64) handle; break; case HL_MEM_OP_FREE: /* If DRAM does not support virtual memory the driver won't * handle the allocation/freeing of that memory. However, for * system administration/monitoring purposes, the driver will * keep track of the amount of DRAM memory that is allocated * and freed by the user. Because this code totally relies on * the user's input, the driver can't ensure the validity * of this accounting. */ if (!hdev->asic_prop.dram_supports_virtual_memory) { atomic64_sub(args->in.alloc.mem_size, &ctx->dram_phys_mem); atomic64_sub(args->in.alloc.mem_size, &hdev->dram_used_mem); dev_dbg(hdev->dev, "DRAM alloc is not supported\n"); rc = 0; goto out; } rc = free_device_memory(ctx, &args->in); break; case HL_MEM_OP_MAP: rc = map_device_va(ctx, &args->in, &device_addr); memset(args, 0, sizeof(*args)); args->out.device_virt_addr = device_addr; break; case HL_MEM_OP_UNMAP: rc = unmap_device_va(ctx, &args->in, false); break; case HL_MEM_OP_MAP_BLOCK: rc = map_block(hdev, args->in.map_block.block_addr, &block_handle, &block_size); args->out.block_handle = block_handle; args->out.block_size = block_size; break; case HL_MEM_OP_EXPORT_DMABUF_FD: rc = export_dmabuf_from_addr(ctx, args->in.export_dmabuf_fd.addr, args->in.export_dmabuf_fd.mem_size, args->in.export_dmabuf_fd.offset, args->in.flags, &dmabuf_fd); memset(args, 0, sizeof(*args)); args->out.fd = dmabuf_fd; break; case HL_MEM_OP_TS_ALLOC: rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle); break; default: dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n"); rc = -EINVAL; break; } out: return rc; } static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size, u32 npages, u64 start, u32 offset, struct hl_userptr *userptr) { int rc; if (!access_ok((void __user *) (uintptr_t) addr, size)) { dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr); return -EFAULT; } userptr->pages = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL); if (!userptr->pages) return -ENOMEM; rc = pin_user_pages_fast(start, npages, FOLL_WRITE | FOLL_LONGTERM, userptr->pages); if (rc != npages) { dev_err(hdev->dev, "Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n", rc, addr, size, npages); if (rc < 0) goto destroy_pages; npages = rc; rc = -EFAULT; goto put_pages; } userptr->npages = npages; rc = sg_alloc_table_from_pages(userptr->sgt, userptr->pages, npages, offset, size, GFP_KERNEL); if (rc < 0) { dev_err(hdev->dev, "failed to create SG table from pages\n"); goto put_pages; } return 0; put_pages: unpin_user_pages(userptr->pages, npages); destroy_pages: kvfree(userptr->pages); return rc; } /** * hl_pin_host_memory() - pins a chunk of host memory. * @hdev: pointer to the habanalabs device structure. * @addr: the host virtual address of the memory area. * @size: the size of the memory area. * @userptr: pointer to hl_userptr structure. * * This function does the following: * - Pins the physical pages. * - Create an SG list from those pages. */ int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, struct hl_userptr *userptr) { u64 start, end; u32 npages, offset; int rc; if (!size) { dev_err(hdev->dev, "size to pin is invalid - %llu\n", size); return -EINVAL; } /* * If the combination of the address and size requested for this memory * region causes an integer overflow, return error. */ if (((addr + size) < addr) || PAGE_ALIGN(addr + size) < (addr + size)) { dev_err(hdev->dev, "user pointer 0x%llx + %llu causes integer overflow\n", addr, size); return -EINVAL; } userptr->pid = current->pid; userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_KERNEL); if (!userptr->sgt) return -ENOMEM; start = addr & PAGE_MASK; offset = addr & ~PAGE_MASK; end = PAGE_ALIGN(addr + size); npages = (end - start) >> PAGE_SHIFT; userptr->size = size; userptr->addr = addr; userptr->dma_mapped = false; INIT_LIST_HEAD(&userptr->job_node); rc = get_user_memory(hdev, addr, size, npages, start, offset, userptr); if (rc) { dev_err(hdev->dev, "failed to get user memory for address 0x%llx\n", addr); goto free_sgt; } hl_debugfs_add_userptr(hdev, userptr); return 0; free_sgt: kfree(userptr->sgt); return rc; } /* * hl_unpin_host_memory - unpins a chunk of host memory. * @hdev: pointer to the habanalabs device structure * @userptr: pointer to hl_userptr structure * * This function does the following: * - Unpins the physical pages related to the host memory * - Free the SG list */ void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr) { hl_debugfs_remove_userptr(hdev, userptr); if (userptr->dma_mapped) hl_dma_unmap_sgtable(hdev, userptr->sgt, userptr->dir); unpin_user_pages_dirty_lock(userptr->pages, userptr->npages, true); kvfree(userptr->pages); list_del(&userptr->job_node); sg_free_table(userptr->sgt); kfree(userptr->sgt); } /** * hl_userptr_delete_list() - clear userptr list. * @hdev: pointer to the habanalabs device structure. * @userptr_list: pointer to the list to clear. * * This function does the following: * - Iterates over the list and unpins the host memory and frees the userptr * structure. */ void hl_userptr_delete_list(struct hl_device *hdev, struct list_head *userptr_list) { struct hl_userptr *userptr, *tmp; list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) { hl_unpin_host_memory(hdev, userptr); kfree(userptr); } INIT_LIST_HEAD(userptr_list); } /** * hl_userptr_is_pinned() - returns whether the given userptr is pinned. * @hdev: pointer to the habanalabs device structure. * @addr: user address to check. * @size: user block size to check. * @userptr_list: pointer to the list to clear. * @userptr: pointer to userptr to check. * * This function does the following: * - Iterates over the list and checks if the given userptr is in it, means is * pinned. If so, returns true, otherwise returns false. */ bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size, struct list_head *userptr_list, struct hl_userptr **userptr) { list_for_each_entry((*userptr), userptr_list, job_node) { if ((addr == (*userptr)->addr) && (size == (*userptr)->size)) return true; } return false; } /** * va_range_init() - initialize virtual addresses range. * @hdev: pointer to the habanalabs device structure. * @va_ranges: pointer to va_ranges array. * @range_type: virtual address range type. * @start: range start address, inclusive. * @end: range end address, inclusive. * @page_size: page size for this va_range. * * This function does the following: * - Initializes the virtual addresses list of the given range with the given * addresses. */ static int va_range_init(struct hl_device *hdev, struct hl_va_range **va_ranges, enum hl_va_range_type range_type, u64 start, u64 end, u32 page_size) { struct hl_va_range *va_range = va_ranges[range_type]; int rc; INIT_LIST_HEAD(&va_range->list); /* * PAGE_SIZE alignment * it is the caller's responsibility to align the addresses if the * page size is not a power of 2 */ if (is_power_of_2(page_size)) { start = round_up(start, page_size); /* * The end of the range is inclusive, hence we need to align it * to the end of the last full page in the range. For example if * end = 0x3ff5 with page size 0x1000, we need to align it to * 0x2fff. The remaining 0xff5 bytes do not form a full page. */ end = round_down(end + 1, page_size) - 1; } if (start >= end) { dev_err(hdev->dev, "too small vm range for va list\n"); return -EFAULT; } rc = add_va_block(hdev, va_range, start, end); if (rc) { dev_err(hdev->dev, "Failed to init host va list\n"); return rc; } va_range->start_addr = start; va_range->end_addr = end; va_range->page_size = page_size; return 0; } /** * va_range_fini() - clear a virtual addresses range. * @hdev: pointer to the habanalabs structure. * @va_range: pointer to virtual addresses range. * * This function does the following: * - Frees the virtual addresses block list and its lock. */ static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range) { mutex_lock(&va_range->lock); clear_va_list_locked(hdev, &va_range->list); mutex_unlock(&va_range->lock); mutex_destroy(&va_range->lock); kfree(va_range); } /** * vm_ctx_init_with_ranges() - initialize virtual memory for context. * @ctx: pointer to the habanalabs context structure. * @host_range_start: host virtual addresses range start. * @host_range_end: host virtual addresses range end. * @host_page_size: host page size. * @host_huge_range_start: host virtual addresses range start for memory * allocated with huge pages. * @host_huge_range_end: host virtual addresses range end for memory allocated * with huge pages. * @host_huge_page_size: host huge page size. * @dram_range_start: dram virtual addresses range start. * @dram_range_end: dram virtual addresses range end. * @dram_page_size: dram page size. * * This function initializes the following: * - MMU for context. * - Virtual address to area descriptor hashtable. * - Virtual block list of available virtual memory. */ static int vm_ctx_init_with_ranges(struct hl_ctx *ctx, u64 host_range_start, u64 host_range_end, u32 host_page_size, u64 host_huge_range_start, u64 host_huge_range_end, u32 host_huge_page_size, u64 dram_range_start, u64 dram_range_end, u32 dram_page_size) { struct hl_device *hdev = ctx->hdev; int i, rc; for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) { ctx->va_range[i] = kzalloc(sizeof(struct hl_va_range), GFP_KERNEL); if (!ctx->va_range[i]) { rc = -ENOMEM; goto free_va_range; } } rc = hl_mmu_ctx_init(ctx); if (rc) { dev_err(hdev->dev, "failed to init context %d\n", ctx->asid); goto free_va_range; } mutex_init(&ctx->mem_hash_lock); hash_init(ctx->mem_hash); mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_HOST, host_range_start, host_range_end, host_page_size); if (rc) { dev_err(hdev->dev, "failed to init host vm range\n"); goto mmu_ctx_fini; } if (hdev->pmmu_huge_range) { mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_HOST_HUGE, host_huge_range_start, host_huge_range_end, host_huge_page_size); if (rc) { dev_err(hdev->dev, "failed to init host huge vm range\n"); goto clear_host_va_range; } } else { kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]); ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] = ctx->va_range[HL_VA_RANGE_TYPE_HOST]; } mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock); rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_DRAM, dram_range_start, dram_range_end, dram_page_size); if (rc) { dev_err(hdev->dev, "failed to init dram vm range\n"); goto clear_host_huge_va_range; } hl_debugfs_add_ctx_mem_hash(hdev, ctx); return 0; clear_host_huge_va_range: mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock); if (hdev->pmmu_huge_range) { mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list); mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); } clear_host_va_range: if (hdev->pmmu_huge_range) mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list); mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); mmu_ctx_fini: mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); mutex_destroy(&ctx->mem_hash_lock); hl_mmu_ctx_fini(ctx); free_va_range: for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) kfree(ctx->va_range[i]); return rc; } int hl_vm_ctx_init(struct hl_ctx *ctx) { struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; u64 host_range_start, host_range_end, host_huge_range_start, host_huge_range_end, dram_range_start, dram_range_end; u32 host_page_size, host_huge_page_size, dram_page_size; atomic64_set(&ctx->dram_phys_mem, 0); /* * In case of DRAM mapping, the returned address is the physical * address of the memory related to the given handle. */ if (ctx->hdev->mmu_disable) return 0; dram_range_start = prop->dmmu.start_addr; dram_range_end = prop->dmmu.end_addr - 1; dram_page_size = prop->dram_page_size ? prop->dram_page_size : prop->dmmu.page_size; host_range_start = prop->pmmu.start_addr; host_range_end = prop->pmmu.end_addr - 1; host_page_size = prop->pmmu.page_size; host_huge_range_start = prop->pmmu_huge.start_addr; host_huge_range_end = prop->pmmu_huge.end_addr - 1; host_huge_page_size = prop->pmmu_huge.page_size; return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end, host_page_size, host_huge_range_start, host_huge_range_end, host_huge_page_size, dram_range_start, dram_range_end, dram_page_size); } /** * hl_vm_ctx_fini() - virtual memory teardown of context. * @ctx: pointer to the habanalabs context structure. * * This function perform teardown the following: * - Virtual block list of available virtual memory. * - Virtual address to area descriptor hashtable. * - MMU for context. * * In addition this function does the following: * - Unmaps the existing hashtable nodes if the hashtable is not empty. The * hashtable should be empty as no valid mappings should exist at this * point. * - Frees any existing physical page list from the idr which relates to the * current context asid. * - This function checks the virtual block list for correctness. At this point * the list should contain one element which describes the whole virtual * memory range of the context. Otherwise, a warning is printed. */ void hl_vm_ctx_fini(struct hl_ctx *ctx) { struct hl_vm_phys_pg_pack *phys_pg_list, *tmp_phys_node; struct hl_device *hdev = ctx->hdev; struct hl_vm_hash_node *hnode; struct hl_vm *vm = &hdev->vm; struct hlist_node *tmp_node; struct list_head free_list; struct hl_mem_in args; int i; if (hdev->mmu_disable) return; hl_debugfs_remove_ctx_mem_hash(hdev, ctx); /* * Clearly something went wrong on hard reset so no point in printing * another side effect error */ if (!hdev->reset_info.hard_reset_pending && !hash_empty(ctx->mem_hash)) dev_dbg(hdev->dev, "user released device without removing its memory mappings\n"); hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) { dev_dbg(hdev->dev, "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n", hnode->vaddr, ctx->asid); args.unmap.device_virt_addr = hnode->vaddr; unmap_device_va(ctx, &args, true); } mutex_lock(&hdev->mmu_lock); /* invalidate the cache once after the unmapping loop */ hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR); hl_mmu_invalidate_cache(hdev, true, MMU_OP_PHYS_PACK); mutex_unlock(&hdev->mmu_lock); INIT_LIST_HEAD(&free_list); spin_lock(&vm->idr_lock); idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i) if (phys_pg_list->asid == ctx->asid) { dev_dbg(hdev->dev, "page list 0x%px of asid %d is still alive\n", phys_pg_list, ctx->asid); atomic64_sub(phys_pg_list->total_size, &hdev->dram_used_mem); idr_remove(&vm->phys_pg_pack_handles, i); list_add(&phys_pg_list->node, &free_list); } spin_unlock(&vm->idr_lock); list_for_each_entry_safe(phys_pg_list, tmp_phys_node, &free_list, node) free_phys_pg_pack(hdev, phys_pg_list); va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]); va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]); if (hdev->pmmu_huge_range) va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]); mutex_destroy(&ctx->mem_hash_lock); hl_mmu_ctx_fini(ctx); /* In this case we need to clear the global accounting of DRAM usage * because the user notifies us on allocations. If the user is no more, * all DRAM is available */ if (ctx->asid != HL_KERNEL_ASID_ID && !hdev->asic_prop.dram_supports_virtual_memory) atomic64_set(&hdev->dram_used_mem, 0); } /** * hl_vm_init() - initialize virtual memory module. * @hdev: pointer to the habanalabs device structure. * * This function initializes the following: * - MMU module. * - DRAM physical pages pool of 2MB. * - Idr for device memory allocation handles. */ int hl_vm_init(struct hl_device *hdev) { struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_vm *vm = &hdev->vm; int rc; if (is_power_of_2(prop->dram_page_size)) vm->dram_pg_pool = gen_pool_create(__ffs(prop->dram_page_size), -1); else vm->dram_pg_pool = gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1); if (!vm->dram_pg_pool) { dev_err(hdev->dev, "Failed to create dram page pool\n"); return -ENOMEM; } kref_init(&vm->dram_pg_pool_refcount); rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address, prop->dram_end_address - prop->dram_user_base_address, -1); if (rc) { dev_err(hdev->dev, "Failed to add memory to dram page pool %d\n", rc); goto pool_add_err; } spin_lock_init(&vm->idr_lock); idr_init(&vm->phys_pg_pack_handles); atomic64_set(&hdev->dram_used_mem, 0); vm->init_done = true; return 0; pool_add_err: gen_pool_destroy(vm->dram_pg_pool); return rc; } /** * hl_vm_fini() - virtual memory module teardown. * @hdev: pointer to the habanalabs device structure. * * This function perform teardown to the following: * - Idr for device memory allocation handles. * - DRAM physical pages pool of 2MB. * - MMU module. */ void hl_vm_fini(struct hl_device *hdev) { struct hl_vm *vm = &hdev->vm; if (!vm->init_done) return; /* * At this point all the contexts should be freed and hence no DRAM * memory should be in use. Hence the DRAM pool should be freed here. */ if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1) dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n", __func__); vm->init_done = false; } /** * hl_hw_block_mem_init() - HW block memory initialization. * @ctx: pointer to the habanalabs context structure. * * This function initializes the HW block virtual mapped addresses list and * it's lock. */ void hl_hw_block_mem_init(struct hl_ctx *ctx) { mutex_init(&ctx->hw_block_list_lock); INIT_LIST_HEAD(&ctx->hw_block_mem_list); } /** * hl_hw_block_mem_fini() - HW block memory teardown. * @ctx: pointer to the habanalabs context structure. * * This function clears the HW block virtual mapped addresses list and destroys * it's lock. */ void hl_hw_block_mem_fini(struct hl_ctx *ctx) { struct hl_vm_hw_block_list_node *lnode, *tmp; if (!list_empty(&ctx->hw_block_mem_list)) dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n"); list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) { list_del(&lnode->node); kfree(lnode); } mutex_destroy(&ctx->hw_block_list_lock); } |