Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 | /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */ #ifndef __BPF_CORE_READ_H__ #define __BPF_CORE_READ_H__ #include "bpf_helpers.h" /* * enum bpf_field_info_kind is passed as a second argument into * __builtin_preserve_field_info() built-in to get a specific aspect of * a field, captured as a first argument. __builtin_preserve_field_info(field, * info_kind) returns __u32 integer and produces BTF field relocation, which * is understood and processed by libbpf during BPF object loading. See * selftests/bpf for examples. */ enum bpf_field_info_kind { BPF_FIELD_BYTE_OFFSET = 0, /* field byte offset */ BPF_FIELD_BYTE_SIZE = 1, BPF_FIELD_EXISTS = 2, /* field existence in target kernel */ BPF_FIELD_SIGNED = 3, BPF_FIELD_LSHIFT_U64 = 4, BPF_FIELD_RSHIFT_U64 = 5, }; /* second argument to __builtin_btf_type_id() built-in */ enum bpf_type_id_kind { BPF_TYPE_ID_LOCAL = 0, /* BTF type ID in local program */ BPF_TYPE_ID_TARGET = 1, /* BTF type ID in target kernel */ }; /* second argument to __builtin_preserve_type_info() built-in */ enum bpf_type_info_kind { BPF_TYPE_EXISTS = 0, /* type existence in target kernel */ BPF_TYPE_SIZE = 1, /* type size in target kernel */ BPF_TYPE_MATCHES = 2, /* type match in target kernel */ }; /* second argument to __builtin_preserve_enum_value() built-in */ enum bpf_enum_value_kind { BPF_ENUMVAL_EXISTS = 0, /* enum value existence in kernel */ BPF_ENUMVAL_VALUE = 1, /* enum value value relocation */ }; #define __CORE_RELO(src, field, info) \ __builtin_preserve_field_info((src)->field, BPF_FIELD_##info) #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ #define __CORE_BITFIELD_PROBE_READ(dst, src, fld) \ bpf_probe_read_kernel( \ (void *)dst, \ __CORE_RELO(src, fld, BYTE_SIZE), \ (const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET)) #else /* semantics of LSHIFT_64 assumes loading values into low-ordered bytes, so * for big-endian we need to adjust destination pointer accordingly, based on * field byte size */ #define __CORE_BITFIELD_PROBE_READ(dst, src, fld) \ bpf_probe_read_kernel( \ (void *)dst + (8 - __CORE_RELO(src, fld, BYTE_SIZE)), \ __CORE_RELO(src, fld, BYTE_SIZE), \ (const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET)) #endif /* * Extract bitfield, identified by s->field, and return its value as u64. * All this is done in relocatable manner, so bitfield changes such as * signedness, bit size, offset changes, this will be handled automatically. * This version of macro is using bpf_probe_read_kernel() to read underlying * integer storage. Macro functions as an expression and its return type is * bpf_probe_read_kernel()'s return value: 0, on success, <0 on error. */ #define BPF_CORE_READ_BITFIELD_PROBED(s, field) ({ \ unsigned long long val = 0; \ \ __CORE_BITFIELD_PROBE_READ(&val, s, field); \ val <<= __CORE_RELO(s, field, LSHIFT_U64); \ if (__CORE_RELO(s, field, SIGNED)) \ val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64); \ else \ val = val >> __CORE_RELO(s, field, RSHIFT_U64); \ val; \ }) /* * Extract bitfield, identified by s->field, and return its value as u64. * This version of macro is using direct memory reads and should be used from * BPF program types that support such functionality (e.g., typed raw * tracepoints). */ #define BPF_CORE_READ_BITFIELD(s, field) ({ \ const void *p = (const void *)s + __CORE_RELO(s, field, BYTE_OFFSET); \ unsigned long long val; \ \ /* This is a so-called barrier_var() operation that makes specified \ * variable "a black box" for optimizing compiler. \ * It forces compiler to perform BYTE_OFFSET relocation on p and use \ * its calculated value in the switch below, instead of applying \ * the same relocation 4 times for each individual memory load. \ */ \ asm volatile("" : "=r"(p) : "0"(p)); \ \ switch (__CORE_RELO(s, field, BYTE_SIZE)) { \ case 1: val = *(const unsigned char *)p; break; \ case 2: val = *(const unsigned short *)p; break; \ case 4: val = *(const unsigned int *)p; break; \ case 8: val = *(const unsigned long long *)p; break; \ default: val = 0; break; \ } \ val <<= __CORE_RELO(s, field, LSHIFT_U64); \ if (__CORE_RELO(s, field, SIGNED)) \ val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64); \ else \ val = val >> __CORE_RELO(s, field, RSHIFT_U64); \ val; \ }) /* * Write to a bitfield, identified by s->field. * This is the inverse of BPF_CORE_WRITE_BITFIELD(). */ #define BPF_CORE_WRITE_BITFIELD(s, field, new_val) ({ \ void *p = (void *)s + __CORE_RELO(s, field, BYTE_OFFSET); \ unsigned int byte_size = __CORE_RELO(s, field, BYTE_SIZE); \ unsigned int lshift = __CORE_RELO(s, field, LSHIFT_U64); \ unsigned int rshift = __CORE_RELO(s, field, RSHIFT_U64); \ unsigned long long mask, val, nval = new_val; \ unsigned int rpad = rshift - lshift; \ \ asm volatile("" : "+r"(p)); \ \ switch (byte_size) { \ case 1: val = *(unsigned char *)p; break; \ case 2: val = *(unsigned short *)p; break; \ case 4: val = *(unsigned int *)p; break; \ case 8: val = *(unsigned long long *)p; break; \ } \ \ mask = (~0ULL << rshift) >> lshift; \ val = (val & ~mask) | ((nval << rpad) & mask); \ \ switch (byte_size) { \ case 1: *(unsigned char *)p = val; break; \ case 2: *(unsigned short *)p = val; break; \ case 4: *(unsigned int *)p = val; break; \ case 8: *(unsigned long long *)p = val; break; \ } \ }) /* Differentiator between compilers builtin implementations. This is a * requirement due to the compiler parsing differences where GCC optimizes * early in parsing those constructs of type pointers to the builtin specific * type, resulting in not being possible to collect the required type * information in the builtin expansion. */ #ifdef __clang__ #define ___bpf_typeof(type) ((typeof(type) *) 0) #else #define ___bpf_typeof1(type, NR) ({ \ extern typeof(type) *___concat(bpf_type_tmp_, NR); \ ___concat(bpf_type_tmp_, NR); \ }) #define ___bpf_typeof(type) ___bpf_typeof1(type, __COUNTER__) #endif #ifdef __clang__ #define ___bpf_field_ref1(field) (field) #define ___bpf_field_ref2(type, field) (___bpf_typeof(type)->field) #else #define ___bpf_field_ref1(field) (&(field)) #define ___bpf_field_ref2(type, field) (&(___bpf_typeof(type)->field)) #endif #define ___bpf_field_ref(args...) \ ___bpf_apply(___bpf_field_ref, ___bpf_narg(args))(args) /* * Convenience macro to check that field actually exists in target kernel's. * Returns: * 1, if matching field is present in target kernel; * 0, if no matching field found. * * Supports two forms: * - field reference through variable access: * bpf_core_field_exists(p->my_field); * - field reference through type and field names: * bpf_core_field_exists(struct my_type, my_field). */ #define bpf_core_field_exists(field...) \ __builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_EXISTS) /* * Convenience macro to get the byte size of a field. Works for integers, * struct/unions, pointers, arrays, and enums. * * Supports two forms: * - field reference through variable access: * bpf_core_field_size(p->my_field); * - field reference through type and field names: * bpf_core_field_size(struct my_type, my_field). */ #define bpf_core_field_size(field...) \ __builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_BYTE_SIZE) /* * Convenience macro to get field's byte offset. * * Supports two forms: * - field reference through variable access: * bpf_core_field_offset(p->my_field); * - field reference through type and field names: * bpf_core_field_offset(struct my_type, my_field). */ #define bpf_core_field_offset(field...) \ __builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_BYTE_OFFSET) /* * Convenience macro to get BTF type ID of a specified type, using a local BTF * information. Return 32-bit unsigned integer with type ID from program's own * BTF. Always succeeds. */ #define bpf_core_type_id_local(type) \ __builtin_btf_type_id(*___bpf_typeof(type), BPF_TYPE_ID_LOCAL) /* * Convenience macro to get BTF type ID of a target kernel's type that matches * specified local type. * Returns: * - valid 32-bit unsigned type ID in kernel BTF; * - 0, if no matching type was found in a target kernel BTF. */ #define bpf_core_type_id_kernel(type) \ __builtin_btf_type_id(*___bpf_typeof(type), BPF_TYPE_ID_TARGET) /* * Convenience macro to check that provided named type * (struct/union/enum/typedef) exists in a target kernel. * Returns: * 1, if such type is present in target kernel's BTF; * 0, if no matching type is found. */ #define bpf_core_type_exists(type) \ __builtin_preserve_type_info(*___bpf_typeof(type), BPF_TYPE_EXISTS) /* * Convenience macro to check that provided named type * (struct/union/enum/typedef) "matches" that in a target kernel. * Returns: * 1, if the type matches in the target kernel's BTF; * 0, if the type does not match any in the target kernel */ #define bpf_core_type_matches(type) \ __builtin_preserve_type_info(*___bpf_typeof(type), BPF_TYPE_MATCHES) /* * Convenience macro to get the byte size of a provided named type * (struct/union/enum/typedef) in a target kernel. * Returns: * >= 0 size (in bytes), if type is present in target kernel's BTF; * 0, if no matching type is found. */ #define bpf_core_type_size(type) \ __builtin_preserve_type_info(*___bpf_typeof(type), BPF_TYPE_SIZE) /* * Convenience macro to check that provided enumerator value is defined in * a target kernel. * Returns: * 1, if specified enum type and its enumerator value are present in target * kernel's BTF; * 0, if no matching enum and/or enum value within that enum is found. */ #ifdef __clang__ #define bpf_core_enum_value_exists(enum_type, enum_value) \ __builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_EXISTS) #else #define bpf_core_enum_value_exists(enum_type, enum_value) \ __builtin_preserve_enum_value(___bpf_typeof(enum_type), enum_value, BPF_ENUMVAL_EXISTS) #endif /* * Convenience macro to get the integer value of an enumerator value in * a target kernel. * Returns: * 64-bit value, if specified enum type and its enumerator value are * present in target kernel's BTF; * 0, if no matching enum and/or enum value within that enum is found. */ #ifdef __clang__ #define bpf_core_enum_value(enum_type, enum_value) \ __builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_VALUE) #else #define bpf_core_enum_value(enum_type, enum_value) \ __builtin_preserve_enum_value(___bpf_typeof(enum_type), enum_value, BPF_ENUMVAL_VALUE) #endif /* * bpf_core_read() abstracts away bpf_probe_read_kernel() call and captures * offset relocation for source address using __builtin_preserve_access_index() * built-in, provided by Clang. * * __builtin_preserve_access_index() takes as an argument an expression of * taking an address of a field within struct/union. It makes compiler emit * a relocation, which records BTF type ID describing root struct/union and an * accessor string which describes exact embedded field that was used to take * an address. See detailed description of this relocation format and * semantics in comments to struct bpf_core_relo in include/uapi/linux/bpf.h. * * This relocation allows libbpf to adjust BPF instruction to use correct * actual field offset, based on target kernel BTF type that matches original * (local) BTF, used to record relocation. */ #define bpf_core_read(dst, sz, src) \ bpf_probe_read_kernel(dst, sz, (const void *)__builtin_preserve_access_index(src)) /* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */ #define bpf_core_read_user(dst, sz, src) \ bpf_probe_read_user(dst, sz, (const void *)__builtin_preserve_access_index(src)) /* * bpf_core_read_str() is a thin wrapper around bpf_probe_read_str() * additionally emitting BPF CO-RE field relocation for specified source * argument. */ #define bpf_core_read_str(dst, sz, src) \ bpf_probe_read_kernel_str(dst, sz, (const void *)__builtin_preserve_access_index(src)) /* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */ #define bpf_core_read_user_str(dst, sz, src) \ bpf_probe_read_user_str(dst, sz, (const void *)__builtin_preserve_access_index(src)) extern void *bpf_rdonly_cast(const void *obj, __u32 btf_id) __ksym __weak; /* * Cast provided pointer *ptr* into a pointer to a specified *type* in such * a way that BPF verifier will become aware of associated kernel-side BTF * type. This allows to access members of kernel types directly without the * need to use BPF_CORE_READ() macros. */ #define bpf_core_cast(ptr, type) \ ((typeof(type) *)bpf_rdonly_cast((ptr), bpf_core_type_id_kernel(type))) #define ___concat(a, b) a ## b #define ___apply(fn, n) ___concat(fn, n) #define ___nth(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, __11, N, ...) N /* * return number of provided arguments; used for switch-based variadic macro * definitions (see ___last, ___arrow, etc below) */ #define ___narg(...) ___nth(_, ##__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) /* * return 0 if no arguments are passed, N - otherwise; used for * recursively-defined macros to specify termination (0) case, and generic * (N) case (e.g., ___read_ptrs, ___core_read) */ #define ___empty(...) ___nth(_, ##__VA_ARGS__, N, N, N, N, N, N, N, N, N, N, 0) #define ___last1(x) x #define ___last2(a, x) x #define ___last3(a, b, x) x #define ___last4(a, b, c, x) x #define ___last5(a, b, c, d, x) x #define ___last6(a, b, c, d, e, x) x #define ___last7(a, b, c, d, e, f, x) x #define ___last8(a, b, c, d, e, f, g, x) x #define ___last9(a, b, c, d, e, f, g, h, x) x #define ___last10(a, b, c, d, e, f, g, h, i, x) x #define ___last(...) ___apply(___last, ___narg(__VA_ARGS__))(__VA_ARGS__) #define ___nolast2(a, _) a #define ___nolast3(a, b, _) a, b #define ___nolast4(a, b, c, _) a, b, c #define ___nolast5(a, b, c, d, _) a, b, c, d #define ___nolast6(a, b, c, d, e, _) a, b, c, d, e #define ___nolast7(a, b, c, d, e, f, _) a, b, c, d, e, f #define ___nolast8(a, b, c, d, e, f, g, _) a, b, c, d, e, f, g #define ___nolast9(a, b, c, d, e, f, g, h, _) a, b, c, d, e, f, g, h #define ___nolast10(a, b, c, d, e, f, g, h, i, _) a, b, c, d, e, f, g, h, i #define ___nolast(...) ___apply(___nolast, ___narg(__VA_ARGS__))(__VA_ARGS__) #define ___arrow1(a) a #define ___arrow2(a, b) a->b #define ___arrow3(a, b, c) a->b->c #define ___arrow4(a, b, c, d) a->b->c->d #define ___arrow5(a, b, c, d, e) a->b->c->d->e #define ___arrow6(a, b, c, d, e, f) a->b->c->d->e->f #define ___arrow7(a, b, c, d, e, f, g) a->b->c->d->e->f->g #define ___arrow8(a, b, c, d, e, f, g, h) a->b->c->d->e->f->g->h #define ___arrow9(a, b, c, d, e, f, g, h, i) a->b->c->d->e->f->g->h->i #define ___arrow10(a, b, c, d, e, f, g, h, i, j) a->b->c->d->e->f->g->h->i->j #define ___arrow(...) ___apply(___arrow, ___narg(__VA_ARGS__))(__VA_ARGS__) #define ___type(...) typeof(___arrow(__VA_ARGS__)) #define ___read(read_fn, dst, src_type, src, accessor) \ read_fn((void *)(dst), sizeof(*(dst)), &((src_type)(src))->accessor) /* "recursively" read a sequence of inner pointers using local __t var */ #define ___rd_first(fn, src, a) ___read(fn, &__t, ___type(src), src, a); #define ___rd_last(fn, ...) \ ___read(fn, &__t, ___type(___nolast(__VA_ARGS__)), __t, ___last(__VA_ARGS__)); #define ___rd_p1(fn, ...) const void *__t; ___rd_first(fn, __VA_ARGS__) #define ___rd_p2(fn, ...) ___rd_p1(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__) #define ___rd_p3(fn, ...) ___rd_p2(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__) #define ___rd_p4(fn, ...) ___rd_p3(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__) #define ___rd_p5(fn, ...) ___rd_p4(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__) #define ___rd_p6(fn, ...) ___rd_p5(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__) #define ___rd_p7(fn, ...) ___rd_p6(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__) #define ___rd_p8(fn, ...) ___rd_p7(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__) #define ___rd_p9(fn, ...) ___rd_p8(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__) #define ___read_ptrs(fn, src, ...) \ ___apply(___rd_p, ___narg(__VA_ARGS__))(fn, src, __VA_ARGS__) #define ___core_read0(fn, fn_ptr, dst, src, a) \ ___read(fn, dst, ___type(src), src, a); #define ___core_readN(fn, fn_ptr, dst, src, ...) \ ___read_ptrs(fn_ptr, src, ___nolast(__VA_ARGS__)) \ ___read(fn, dst, ___type(src, ___nolast(__VA_ARGS__)), __t, \ ___last(__VA_ARGS__)); #define ___core_read(fn, fn_ptr, dst, src, a, ...) \ ___apply(___core_read, ___empty(__VA_ARGS__))(fn, fn_ptr, dst, \ src, a, ##__VA_ARGS__) /* * BPF_CORE_READ_INTO() is a more performance-conscious variant of * BPF_CORE_READ(), in which final field is read into user-provided storage. * See BPF_CORE_READ() below for more details on general usage. */ #define BPF_CORE_READ_INTO(dst, src, a, ...) ({ \ ___core_read(bpf_core_read, bpf_core_read, \ dst, (src), a, ##__VA_ARGS__) \ }) /* * Variant of BPF_CORE_READ_INTO() for reading from user-space memory. * * NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */ #define BPF_CORE_READ_USER_INTO(dst, src, a, ...) ({ \ ___core_read(bpf_core_read_user, bpf_core_read_user, \ dst, (src), a, ##__VA_ARGS__) \ }) /* Non-CO-RE variant of BPF_CORE_READ_INTO() */ #define BPF_PROBE_READ_INTO(dst, src, a, ...) ({ \ ___core_read(bpf_probe_read_kernel, bpf_probe_read_kernel, \ dst, (src), a, ##__VA_ARGS__) \ }) /* Non-CO-RE variant of BPF_CORE_READ_USER_INTO(). * * As no CO-RE relocations are emitted, source types can be arbitrary and are * not restricted to kernel types only. */ #define BPF_PROBE_READ_USER_INTO(dst, src, a, ...) ({ \ ___core_read(bpf_probe_read_user, bpf_probe_read_user, \ dst, (src), a, ##__VA_ARGS__) \ }) /* * BPF_CORE_READ_STR_INTO() does same "pointer chasing" as * BPF_CORE_READ() for intermediate pointers, but then executes (and returns * corresponding error code) bpf_core_read_str() for final string read. */ #define BPF_CORE_READ_STR_INTO(dst, src, a, ...) ({ \ ___core_read(bpf_core_read_str, bpf_core_read, \ dst, (src), a, ##__VA_ARGS__) \ }) /* * Variant of BPF_CORE_READ_STR_INTO() for reading from user-space memory. * * NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */ #define BPF_CORE_READ_USER_STR_INTO(dst, src, a, ...) ({ \ ___core_read(bpf_core_read_user_str, bpf_core_read_user, \ dst, (src), a, ##__VA_ARGS__) \ }) /* Non-CO-RE variant of BPF_CORE_READ_STR_INTO() */ #define BPF_PROBE_READ_STR_INTO(dst, src, a, ...) ({ \ ___core_read(bpf_probe_read_kernel_str, bpf_probe_read_kernel, \ dst, (src), a, ##__VA_ARGS__) \ }) /* * Non-CO-RE variant of BPF_CORE_READ_USER_STR_INTO(). * * As no CO-RE relocations are emitted, source types can be arbitrary and are * not restricted to kernel types only. */ #define BPF_PROBE_READ_USER_STR_INTO(dst, src, a, ...) ({ \ ___core_read(bpf_probe_read_user_str, bpf_probe_read_user, \ dst, (src), a, ##__VA_ARGS__) \ }) /* * BPF_CORE_READ() is used to simplify BPF CO-RE relocatable read, especially * when there are few pointer chasing steps. * E.g., what in non-BPF world (or in BPF w/ BCC) would be something like: * int x = s->a.b.c->d.e->f->g; * can be succinctly achieved using BPF_CORE_READ as: * int x = BPF_CORE_READ(s, a.b.c, d.e, f, g); * * BPF_CORE_READ will decompose above statement into 4 bpf_core_read (BPF * CO-RE relocatable bpf_probe_read_kernel() wrapper) calls, logically * equivalent to: * 1. const void *__t = s->a.b.c; * 2. __t = __t->d.e; * 3. __t = __t->f; * 4. return __t->g; * * Equivalence is logical, because there is a heavy type casting/preservation * involved, as well as all the reads are happening through * bpf_probe_read_kernel() calls using __builtin_preserve_access_index() to * emit CO-RE relocations. * * N.B. Only up to 9 "field accessors" are supported, which should be more * than enough for any practical purpose. */ #define BPF_CORE_READ(src, a, ...) ({ \ ___type((src), a, ##__VA_ARGS__) __r; \ BPF_CORE_READ_INTO(&__r, (src), a, ##__VA_ARGS__); \ __r; \ }) /* * Variant of BPF_CORE_READ() for reading from user-space memory. * * NOTE: all the source types involved are still *kernel types* and need to * exist in kernel (or kernel module) BTF, otherwise CO-RE relocation will * fail. Custom user types are not relocatable with CO-RE. * The typical situation in which BPF_CORE_READ_USER() might be used is to * read kernel UAPI types from the user-space memory passed in as a syscall * input argument. */ #define BPF_CORE_READ_USER(src, a, ...) ({ \ ___type((src), a, ##__VA_ARGS__) __r; \ BPF_CORE_READ_USER_INTO(&__r, (src), a, ##__VA_ARGS__); \ __r; \ }) /* Non-CO-RE variant of BPF_CORE_READ() */ #define BPF_PROBE_READ(src, a, ...) ({ \ ___type((src), a, ##__VA_ARGS__) __r; \ BPF_PROBE_READ_INTO(&__r, (src), a, ##__VA_ARGS__); \ __r; \ }) /* * Non-CO-RE variant of BPF_CORE_READ_USER(). * * As no CO-RE relocations are emitted, source types can be arbitrary and are * not restricted to kernel types only. */ #define BPF_PROBE_READ_USER(src, a, ...) ({ \ ___type((src), a, ##__VA_ARGS__) __r; \ BPF_PROBE_READ_USER_INTO(&__r, (src), a, ##__VA_ARGS__); \ __r; \ }) #endif |