Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
// SPDX-License-Identifier: ISC
/*
 * Copyright (C) 2018 Stanislaw Gruszka <stf_xl@wp.pl>
 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
 */

#include <linux/module.h>
#include "mt76x02.h"

#define MT76x02_CCK_RATE(_idx, _rate) {					\
	.bitrate = _rate,					\
	.flags = IEEE80211_RATE_SHORT_PREAMBLE,			\
	.hw_value = (MT_PHY_TYPE_CCK << 8) | (_idx),		\
	.hw_value_short = (MT_PHY_TYPE_CCK << 8) | (8 + (_idx)),	\
}

struct ieee80211_rate mt76x02_rates[] = {
	MT76x02_CCK_RATE(0, 10),
	MT76x02_CCK_RATE(1, 20),
	MT76x02_CCK_RATE(2, 55),
	MT76x02_CCK_RATE(3, 110),
	OFDM_RATE(0, 60),
	OFDM_RATE(1, 90),
	OFDM_RATE(2, 120),
	OFDM_RATE(3, 180),
	OFDM_RATE(4, 240),
	OFDM_RATE(5, 360),
	OFDM_RATE(6, 480),
	OFDM_RATE(7, 540),
};
EXPORT_SYMBOL_GPL(mt76x02_rates);

static const struct ieee80211_iface_limit mt76x02_if_limits[] = {
	{
		.max = 1,
		.types = BIT(NL80211_IFTYPE_ADHOC)
	}, {
		.max = 8,
		.types = BIT(NL80211_IFTYPE_STATION) |
#ifdef CONFIG_MAC80211_MESH
			 BIT(NL80211_IFTYPE_MESH_POINT) |
#endif
			 BIT(NL80211_IFTYPE_P2P_CLIENT) |
			 BIT(NL80211_IFTYPE_P2P_GO) |
			 BIT(NL80211_IFTYPE_AP)
	 },
};

static const struct ieee80211_iface_limit mt76x02u_if_limits[] = {
	{
		.max = 1,
		.types = BIT(NL80211_IFTYPE_ADHOC)
	}, {
		.max = 2,
		.types = BIT(NL80211_IFTYPE_STATION) |
#ifdef CONFIG_MAC80211_MESH
			 BIT(NL80211_IFTYPE_MESH_POINT) |
#endif
			 BIT(NL80211_IFTYPE_P2P_CLIENT) |
			 BIT(NL80211_IFTYPE_P2P_GO) |
			 BIT(NL80211_IFTYPE_AP)
	},
};

static const struct ieee80211_iface_combination mt76x02_if_comb[] = {
	{
		.limits = mt76x02_if_limits,
		.n_limits = ARRAY_SIZE(mt76x02_if_limits),
		.max_interfaces = 8,
		.num_different_channels = 1,
		.beacon_int_infra_match = true,
		.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
				       BIT(NL80211_CHAN_WIDTH_20) |
				       BIT(NL80211_CHAN_WIDTH_40) |
				       BIT(NL80211_CHAN_WIDTH_80),
	}
};

static const struct ieee80211_iface_combination mt76x02u_if_comb[] = {
	{
		.limits = mt76x02u_if_limits,
		.n_limits = ARRAY_SIZE(mt76x02u_if_limits),
		.max_interfaces = 2,
		.num_different_channels = 1,
		.beacon_int_infra_match = true,
	}
};

static void
mt76x02_led_set_config(struct mt76_phy *mphy, u8 delay_on, u8 delay_off)
{
	struct mt76x02_dev *dev = container_of(mphy->dev, struct mt76x02_dev,
					       mt76);
	u32 val;

	val = FIELD_PREP(MT_LED_STATUS_DURATION, 0xff) |
	      FIELD_PREP(MT_LED_STATUS_OFF, delay_off) |
	      FIELD_PREP(MT_LED_STATUS_ON, delay_on);

	mt76_wr(dev, MT_LED_S0(mphy->leds.pin), val);
	mt76_wr(dev, MT_LED_S1(mphy->leds.pin), val);

	val = MT_LED_CTRL_REPLAY(mphy->leds.pin) |
	      MT_LED_CTRL_KICK(mphy->leds.pin);
	if (mphy->leds.al)
		val |= MT_LED_CTRL_POLARITY(mphy->leds.pin);
	mt76_wr(dev, MT_LED_CTRL, val);
}

static int
mt76x02_led_set_blink(struct led_classdev *led_cdev,
		      unsigned long *delay_on,
		      unsigned long *delay_off)
{
	struct mt76_phy *mphy = container_of(led_cdev, struct mt76_phy,
					     leds.cdev);
	u8 delta_on, delta_off;

	delta_off = max_t(u8, *delay_off / 10, 1);
	delta_on = max_t(u8, *delay_on / 10, 1);

	mt76x02_led_set_config(mphy, delta_on, delta_off);

	return 0;
}

static void
mt76x02_led_set_brightness(struct led_classdev *led_cdev,
			   enum led_brightness brightness)
{
	struct mt76_phy *mphy = container_of(led_cdev, struct mt76_phy,
					     leds.cdev);

	if (!brightness)
		mt76x02_led_set_config(mphy, 0, 0xff);
	else
		mt76x02_led_set_config(mphy, 0xff, 0);
}

int mt76x02_init_device(struct mt76x02_dev *dev)
{
	struct ieee80211_hw *hw = mt76_hw(dev);
	struct wiphy *wiphy = hw->wiphy;

	INIT_DELAYED_WORK(&dev->mphy.mac_work, mt76x02_mac_work);

	hw->queues = 4;
	hw->max_rates = 1;
	hw->max_report_rates = 7;
	hw->max_rate_tries = 1;
	hw->extra_tx_headroom = 2;

	if (mt76_is_usb(&dev->mt76)) {
		hw->extra_tx_headroom += sizeof(struct mt76x02_txwi) +
					 MT_DMA_HDR_LEN;
		wiphy->iface_combinations = mt76x02u_if_comb;
		wiphy->n_iface_combinations = ARRAY_SIZE(mt76x02u_if_comb);
	} else {
		INIT_DELAYED_WORK(&dev->wdt_work, mt76x02_wdt_work);

		mt76x02_dfs_init_detector(dev);

		wiphy->reg_notifier = mt76x02_regd_notifier;
		wiphy->iface_combinations = mt76x02_if_comb;
		wiphy->n_iface_combinations = ARRAY_SIZE(mt76x02_if_comb);

		/* init led callbacks */
		if (IS_ENABLED(CONFIG_MT76_LEDS)) {
			dev->mphy.leds.cdev.brightness_set =
					mt76x02_led_set_brightness;
			dev->mphy.leds.cdev.blink_set = mt76x02_led_set_blink;
		}
	}

	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_VHT_IBSS);

	hw->sta_data_size = sizeof(struct mt76x02_sta);
	hw->vif_data_size = sizeof(struct mt76x02_vif);

	ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES);
	ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
	ieee80211_hw_set(hw, NEEDS_UNIQUE_STA_ADDR);

	dev->mt76.global_wcid.idx = 255;
	dev->mt76.global_wcid.hw_key_idx = -1;
	dev->slottime = 9;

	if (is_mt76x2(dev)) {
		dev->mphy.sband_2g.sband.ht_cap.cap |=
				IEEE80211_HT_CAP_LDPC_CODING;
		dev->mphy.sband_5g.sband.ht_cap.cap |=
				IEEE80211_HT_CAP_LDPC_CODING;
		dev->mphy.chainmask = 0x202;
		dev->mphy.antenna_mask = 3;
	} else {
		dev->mphy.chainmask = 0x101;
		dev->mphy.antenna_mask = 1;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(mt76x02_init_device);

void mt76x02_configure_filter(struct ieee80211_hw *hw,
			      unsigned int changed_flags,
			      unsigned int *total_flags, u64 multicast)
{
	struct mt76x02_dev *dev = hw->priv;
	u32 flags = 0;

#define MT76_FILTER(_flag, _hw) do { \
		flags |= *total_flags & FIF_##_flag;			\
		dev->mt76.rxfilter &= ~(_hw);				\
		dev->mt76.rxfilter |= !(flags & FIF_##_flag) * (_hw);	\
	} while (0)

	mutex_lock(&dev->mt76.mutex);

	dev->mt76.rxfilter &= ~MT_RX_FILTR_CFG_OTHER_BSS;

	MT76_FILTER(FCSFAIL, MT_RX_FILTR_CFG_CRC_ERR);
	MT76_FILTER(PLCPFAIL, MT_RX_FILTR_CFG_PHY_ERR);
	MT76_FILTER(CONTROL, MT_RX_FILTR_CFG_ACK |
			     MT_RX_FILTR_CFG_CTS |
			     MT_RX_FILTR_CFG_CFEND |
			     MT_RX_FILTR_CFG_CFACK |
			     MT_RX_FILTR_CFG_BA |
			     MT_RX_FILTR_CFG_CTRL_RSV);
	MT76_FILTER(PSPOLL, MT_RX_FILTR_CFG_PSPOLL);

	*total_flags = flags;
	mt76_wr(dev, MT_RX_FILTR_CFG, dev->mt76.rxfilter);

	mutex_unlock(&dev->mt76.mutex);
}
EXPORT_SYMBOL_GPL(mt76x02_configure_filter);

int mt76x02_sta_add(struct mt76_dev *mdev, struct ieee80211_vif *vif,
		    struct ieee80211_sta *sta)
{
	struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
	struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv;
	struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
	int idx = 0;

	memset(msta, 0, sizeof(*msta));

	idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT76x02_N_WCIDS);
	if (idx < 0)
		return -ENOSPC;

	msta->vif = mvif;
	msta->wcid.sta = 1;
	msta->wcid.idx = idx;
	msta->wcid.hw_key_idx = -1;
	mt76x02_mac_wcid_setup(dev, idx, mvif->idx, sta->addr);
	mt76x02_mac_wcid_set_drop(dev, idx, false);
	ewma_pktlen_init(&msta->pktlen);

	if (vif->type == NL80211_IFTYPE_AP)
		set_bit(MT_WCID_FLAG_CHECK_PS, &msta->wcid.flags);

	return 0;
}
EXPORT_SYMBOL_GPL(mt76x02_sta_add);

void mt76x02_sta_remove(struct mt76_dev *mdev, struct ieee80211_vif *vif,
			struct ieee80211_sta *sta)
{
	struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
	struct mt76_wcid *wcid = (struct mt76_wcid *)sta->drv_priv;
	int idx = wcid->idx;

	mt76x02_mac_wcid_set_drop(dev, idx, true);
	mt76x02_mac_wcid_setup(dev, idx, 0, NULL);
}
EXPORT_SYMBOL_GPL(mt76x02_sta_remove);

static void
mt76x02_vif_init(struct mt76x02_dev *dev, struct ieee80211_vif *vif,
		 unsigned int idx)
{
	struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
	struct mt76_txq *mtxq;

	memset(mvif, 0, sizeof(*mvif));

	mvif->idx = idx;
	mvif->group_wcid.idx = MT_VIF_WCID(idx);
	mvif->group_wcid.hw_key_idx = -1;
	mt76_wcid_init(&mvif->group_wcid);

	mtxq = (struct mt76_txq *)vif->txq->drv_priv;
	rcu_assign_pointer(dev->mt76.wcid[MT_VIF_WCID(idx)], &mvif->group_wcid);
	mtxq->wcid = MT_VIF_WCID(idx);
}

int
mt76x02_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
	struct mt76x02_dev *dev = hw->priv;
	unsigned int idx = 0;

	/* Allow to change address in HW if we create first interface. */
	if (!dev->mt76.vif_mask &&
	    (((vif->addr[0] ^ dev->mphy.macaddr[0]) & ~GENMASK(4, 1)) ||
	     memcmp(vif->addr + 1, dev->mphy.macaddr + 1, ETH_ALEN - 1)))
		mt76x02_mac_setaddr(dev, vif->addr);

	if (vif->addr[0] & BIT(1))
		idx = 1 + (((dev->mphy.macaddr[0] ^ vif->addr[0]) >> 2) & 7);

	/*
	 * Client mode typically only has one configurable BSSID register,
	 * which is used for bssidx=0. This is linked to the MAC address.
	 * Since mac80211 allows changing interface types, and we cannot
	 * force the use of the primary MAC address for a station mode
	 * interface, we need some other way of configuring a per-interface
	 * remote BSSID.
	 * The hardware provides an AP-Client feature, where bssidx 0-7 are
	 * used for AP mode and bssidx 8-15 for client mode.
	 * We shift the station interface bss index by 8 to force the
	 * hardware to recognize the BSSID.
	 * The resulting bssidx mismatch for unicast frames is ignored by hw.
	 */
	if (vif->type == NL80211_IFTYPE_STATION)
		idx += 8;

	/* vif is already set or idx is 8 for AP/Mesh/... */
	if (dev->mt76.vif_mask & BIT_ULL(idx) ||
	    (vif->type != NL80211_IFTYPE_STATION && idx > 7))
		return -EBUSY;

	dev->mt76.vif_mask |= BIT_ULL(idx);

	mt76x02_vif_init(dev, vif, idx);
	return 0;
}
EXPORT_SYMBOL_GPL(mt76x02_add_interface);

void mt76x02_remove_interface(struct ieee80211_hw *hw,
			      struct ieee80211_vif *vif)
{
	struct mt76x02_dev *dev = hw->priv;
	struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;

	dev->mt76.vif_mask &= ~BIT_ULL(mvif->idx);
	rcu_assign_pointer(dev->mt76.wcid[mvif->group_wcid.idx], NULL);
	mt76_wcid_cleanup(&dev->mt76, &mvif->group_wcid);
}
EXPORT_SYMBOL_GPL(mt76x02_remove_interface);

int mt76x02_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
			 struct ieee80211_ampdu_params *params)
{
	enum ieee80211_ampdu_mlme_action action = params->action;
	struct ieee80211_sta *sta = params->sta;
	struct mt76x02_dev *dev = hw->priv;
	struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv;
	struct ieee80211_txq *txq = sta->txq[params->tid];
	u16 tid = params->tid;
	u16 ssn = params->ssn;
	struct mt76_txq *mtxq;
	int ret = 0;

	if (!txq)
		return -EINVAL;

	mtxq = (struct mt76_txq *)txq->drv_priv;

	mutex_lock(&dev->mt76.mutex);
	switch (action) {
	case IEEE80211_AMPDU_RX_START:
		mt76_rx_aggr_start(&dev->mt76, &msta->wcid, tid,
				   ssn, params->buf_size);
		mt76_set(dev, MT_WCID_ADDR(msta->wcid.idx) + 4, BIT(16 + tid));
		break;
	case IEEE80211_AMPDU_RX_STOP:
		mt76_rx_aggr_stop(&dev->mt76, &msta->wcid, tid);
		mt76_clear(dev, MT_WCID_ADDR(msta->wcid.idx) + 4,
			   BIT(16 + tid));
		break;
	case IEEE80211_AMPDU_TX_OPERATIONAL:
		mtxq->aggr = true;
		mtxq->send_bar = false;
		ieee80211_send_bar(vif, sta->addr, tid, mtxq->agg_ssn);
		break;
	case IEEE80211_AMPDU_TX_STOP_FLUSH:
	case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
		mtxq->aggr = false;
		break;
	case IEEE80211_AMPDU_TX_START:
		mtxq->agg_ssn = IEEE80211_SN_TO_SEQ(ssn);
		ret = IEEE80211_AMPDU_TX_START_IMMEDIATE;
		break;
	case IEEE80211_AMPDU_TX_STOP_CONT:
		mtxq->aggr = false;
		ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
		break;
	}
	mutex_unlock(&dev->mt76.mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(mt76x02_ampdu_action);

int mt76x02_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
		    struct ieee80211_vif *vif, struct ieee80211_sta *sta,
		    struct ieee80211_key_conf *key)
{
	struct mt76x02_dev *dev = hw->priv;
	struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
	struct mt76x02_sta *msta;
	struct mt76_wcid *wcid;
	int idx = key->keyidx;
	int ret;

	/* fall back to sw encryption for unsupported ciphers */
	switch (key->cipher) {
	case WLAN_CIPHER_SUITE_WEP40:
	case WLAN_CIPHER_SUITE_WEP104:
	case WLAN_CIPHER_SUITE_TKIP:
	case WLAN_CIPHER_SUITE_CCMP:
		break;
	default:
		return -EOPNOTSUPP;
	}

	/*
	 * The hardware does not support per-STA RX GTK, fall back
	 * to software mode for these.
	 */
	if ((vif->type == NL80211_IFTYPE_ADHOC ||
	     vif->type == NL80211_IFTYPE_MESH_POINT) &&
	    (key->cipher == WLAN_CIPHER_SUITE_TKIP ||
	     key->cipher == WLAN_CIPHER_SUITE_CCMP) &&
	    !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
		return -EOPNOTSUPP;

	/*
	 * In USB AP mode, broadcast/multicast frames are setup in beacon
	 * data registers and sent via HW beacons engine, they require to
	 * be already encrypted.
	 */
	if (mt76_is_usb(&dev->mt76) &&
	    vif->type == NL80211_IFTYPE_AP &&
	    !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
		return -EOPNOTSUPP;

	/* MT76x0 GTK offloading does not work with more than one VIF */
	if (is_mt76x0(dev) && !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
		return -EOPNOTSUPP;

	msta = sta ? (struct mt76x02_sta *)sta->drv_priv : NULL;
	wcid = msta ? &msta->wcid : &mvif->group_wcid;

	if (cmd != SET_KEY) {
		if (idx == wcid->hw_key_idx) {
			wcid->hw_key_idx = -1;
			wcid->sw_iv = false;
		}

		return 0;
	}

	key->hw_key_idx = wcid->idx;
	wcid->hw_key_idx = idx;
	if (key->flags & IEEE80211_KEY_FLAG_RX_MGMT) {
		key->flags |= IEEE80211_KEY_FLAG_SW_MGMT_TX;
		wcid->sw_iv = true;
	}
	mt76_wcid_key_setup(&dev->mt76, wcid, key);

	if (!msta) {
		if (key || wcid->hw_key_idx == idx) {
			ret = mt76x02_mac_wcid_set_key(dev, wcid->idx, key);
			if (ret)
				return ret;
		}

		return mt76x02_mac_shared_key_setup(dev, mvif->idx, idx, key);
	}

	return mt76x02_mac_wcid_set_key(dev, msta->wcid.idx, key);
}
EXPORT_SYMBOL_GPL(mt76x02_set_key);

int mt76x02_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
		    unsigned int link_id, u16 queue,
		    const struct ieee80211_tx_queue_params *params)
{
	struct mt76x02_dev *dev = hw->priv;
	u8 cw_min = 5, cw_max = 10, qid;
	u32 val;

	qid = dev->mphy.q_tx[queue]->hw_idx;

	if (params->cw_min)
		cw_min = fls(params->cw_min);
	if (params->cw_max)
		cw_max = fls(params->cw_max);

	val = FIELD_PREP(MT_EDCA_CFG_TXOP, params->txop) |
	      FIELD_PREP(MT_EDCA_CFG_AIFSN, params->aifs) |
	      FIELD_PREP(MT_EDCA_CFG_CWMIN, cw_min) |
	      FIELD_PREP(MT_EDCA_CFG_CWMAX, cw_max);
	mt76_wr(dev, MT_EDCA_CFG_AC(qid), val);

	val = mt76_rr(dev, MT_WMM_TXOP(qid));
	val &= ~(MT_WMM_TXOP_MASK << MT_WMM_TXOP_SHIFT(qid));
	val |= params->txop << MT_WMM_TXOP_SHIFT(qid);
	mt76_wr(dev, MT_WMM_TXOP(qid), val);

	val = mt76_rr(dev, MT_WMM_AIFSN);
	val &= ~(MT_WMM_AIFSN_MASK << MT_WMM_AIFSN_SHIFT(qid));
	val |= params->aifs << MT_WMM_AIFSN_SHIFT(qid);
	mt76_wr(dev, MT_WMM_AIFSN, val);

	val = mt76_rr(dev, MT_WMM_CWMIN);
	val &= ~(MT_WMM_CWMIN_MASK << MT_WMM_CWMIN_SHIFT(qid));
	val |= cw_min << MT_WMM_CWMIN_SHIFT(qid);
	mt76_wr(dev, MT_WMM_CWMIN, val);

	val = mt76_rr(dev, MT_WMM_CWMAX);
	val &= ~(MT_WMM_CWMAX_MASK << MT_WMM_CWMAX_SHIFT(qid));
	val |= cw_max << MT_WMM_CWMAX_SHIFT(qid);
	mt76_wr(dev, MT_WMM_CWMAX, val);

	return 0;
}
EXPORT_SYMBOL_GPL(mt76x02_conf_tx);

void mt76x02_set_tx_ackto(struct mt76x02_dev *dev)
{
	u8 ackto, sifs, slottime = dev->slottime;

	/* As defined by IEEE 802.11-2007 17.3.8.6 */
	slottime += 3 * dev->coverage_class;
	mt76_rmw_field(dev, MT_BKOFF_SLOT_CFG,
		       MT_BKOFF_SLOT_CFG_SLOTTIME, slottime);

	sifs = mt76_get_field(dev, MT_XIFS_TIME_CFG,
			      MT_XIFS_TIME_CFG_OFDM_SIFS);

	ackto = slottime + sifs;
	mt76_rmw_field(dev, MT_TX_TIMEOUT_CFG,
		       MT_TX_TIMEOUT_CFG_ACKTO, ackto);
}
EXPORT_SYMBOL_GPL(mt76x02_set_tx_ackto);

void mt76x02_set_coverage_class(struct ieee80211_hw *hw,
				s16 coverage_class)
{
	struct mt76x02_dev *dev = hw->priv;

	mutex_lock(&dev->mt76.mutex);
	dev->coverage_class = max_t(s16, coverage_class, 0);
	mt76x02_set_tx_ackto(dev);
	mutex_unlock(&dev->mt76.mutex);
}
EXPORT_SYMBOL_GPL(mt76x02_set_coverage_class);

int mt76x02_set_rts_threshold(struct ieee80211_hw *hw, u32 val)
{
	struct mt76x02_dev *dev = hw->priv;

	if (val != ~0 && val > 0xffff)
		return -EINVAL;

	mutex_lock(&dev->mt76.mutex);
	mt76x02_mac_set_rts_thresh(dev, val);
	mutex_unlock(&dev->mt76.mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(mt76x02_set_rts_threshold);

void mt76x02_sta_rate_tbl_update(struct ieee80211_hw *hw,
				 struct ieee80211_vif *vif,
				 struct ieee80211_sta *sta)
{
	struct mt76x02_dev *dev = hw->priv;
	struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv;
	struct ieee80211_sta_rates *rates = rcu_dereference(sta->rates);
	struct ieee80211_tx_rate rate = {};

	if (!rates)
		return;

	rate.idx = rates->rate[0].idx;
	rate.flags = rates->rate[0].flags;
	mt76x02_mac_wcid_set_rate(dev, &msta->wcid, &rate);
}
EXPORT_SYMBOL_GPL(mt76x02_sta_rate_tbl_update);

void mt76x02_remove_hdr_pad(struct sk_buff *skb, int len)
{
	int hdrlen;

	if (!len)
		return;

	hdrlen = ieee80211_get_hdrlen_from_skb(skb);
	memmove(skb->data + len, skb->data, hdrlen);
	skb_pull(skb, len);
}
EXPORT_SYMBOL_GPL(mt76x02_remove_hdr_pad);

void mt76x02_sw_scan_complete(struct ieee80211_hw *hw,
			      struct ieee80211_vif *vif)
{
	struct mt76x02_dev *dev = hw->priv;

	clear_bit(MT76_SCANNING, &dev->mphy.state);
	if (dev->cal.gain_init_done) {
		/* Restore AGC gain and resume calibration after scanning. */
		dev->cal.low_gain = -1;
		ieee80211_queue_delayed_work(hw, &dev->cal_work, 0);
	}
}
EXPORT_SYMBOL_GPL(mt76x02_sw_scan_complete);

void mt76x02_sta_ps(struct mt76_dev *mdev, struct ieee80211_sta *sta,
		    bool ps)
{
	struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
	struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv;
	int idx = msta->wcid.idx;

	mt76_stop_tx_queues(&dev->mphy, sta, true);
	if (mt76_is_mmio(mdev))
		mt76x02_mac_wcid_set_drop(dev, idx, ps);
}
EXPORT_SYMBOL_GPL(mt76x02_sta_ps);

void mt76x02_bss_info_changed(struct ieee80211_hw *hw,
			      struct ieee80211_vif *vif,
			      struct ieee80211_bss_conf *info,
			      u64 changed)
{
	struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
	struct mt76x02_dev *dev = hw->priv;

	mutex_lock(&dev->mt76.mutex);

	if (changed & BSS_CHANGED_BSSID)
		mt76x02_mac_set_bssid(dev, mvif->idx, info->bssid);

	if (changed & BSS_CHANGED_HT || changed & BSS_CHANGED_ERP_CTS_PROT)
		mt76x02_mac_set_tx_protection(dev, info->use_cts_prot,
					      info->ht_operation_mode);

	if (changed & BSS_CHANGED_BEACON_INT) {
		mt76_rmw_field(dev, MT_BEACON_TIME_CFG,
			       MT_BEACON_TIME_CFG_INTVAL,
			       info->beacon_int << 4);
		dev->mt76.beacon_int = info->beacon_int;
	}

	if (changed & BSS_CHANGED_BEACON_ENABLED)
		mt76x02_mac_set_beacon_enable(dev, vif, info->enable_beacon);

	if (changed & BSS_CHANGED_ERP_PREAMBLE)
		mt76x02_mac_set_short_preamble(dev, info->use_short_preamble);

	if (changed & BSS_CHANGED_ERP_SLOT) {
		int slottime = info->use_short_slot ? 9 : 20;

		dev->slottime = slottime;
		mt76x02_set_tx_ackto(dev);
	}

	mutex_unlock(&dev->mt76.mutex);
}
EXPORT_SYMBOL_GPL(mt76x02_bss_info_changed);

void mt76x02_config_mac_addr_list(struct mt76x02_dev *dev)
{
	struct ieee80211_hw *hw = mt76_hw(dev);
	struct wiphy *wiphy = hw->wiphy;
	int i;

	for (i = 0; i < ARRAY_SIZE(dev->macaddr_list); i++) {
		u8 *addr = dev->macaddr_list[i].addr;

		memcpy(addr, dev->mphy.macaddr, ETH_ALEN);

		if (!i)
			continue;

		addr[0] |= BIT(1);
		addr[0] ^= ((i - 1) << 2);
	}
	wiphy->addresses = dev->macaddr_list;
	wiphy->n_addresses = ARRAY_SIZE(dev->macaddr_list);
}
EXPORT_SYMBOL_GPL(mt76x02_config_mac_addr_list);

MODULE_DESCRIPTION("MediaTek MT76x02 helpers");
MODULE_LICENSE("Dual BSD/GPL");