Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright © 2018 Intel Corporation */ #include <linux/sort.h> #include "gt/intel_gt_print.h" #include "i915_selftest.h" #include "intel_engine_regs.h" #include "intel_gpu_commands.h" #include "intel_gt_clock_utils.h" #include "selftest_engine.h" #include "selftest_engine_heartbeat.h" #include "selftests/igt_atomic.h" #include "selftests/igt_flush_test.h" #include "selftests/igt_spinner.h" #define COUNT 5 static int cmp_u64(const void *A, const void *B) { const u64 *a = A, *b = B; return *a - *b; } static u64 trifilter(u64 *a) { sort(a, COUNT, sizeof(*a), cmp_u64, NULL); return (a[1] + 2 * a[2] + a[3]) >> 2; } static u32 *emit_wait(u32 *cs, u32 offset, int op, u32 value) { *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | op; *cs++ = value; *cs++ = offset; *cs++ = 0; return cs; } static u32 *emit_store(u32 *cs, u32 offset, u32 value) { *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *cs++ = offset; *cs++ = 0; *cs++ = value; return cs; } static u32 *emit_srm(u32 *cs, i915_reg_t reg, u32 offset) { *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT; *cs++ = i915_mmio_reg_offset(reg); *cs++ = offset; *cs++ = 0; return cs; } static void write_semaphore(u32 *x, u32 value) { WRITE_ONCE(*x, value); wmb(); } static int __measure_timestamps(struct intel_context *ce, u64 *dt, u64 *d_ring, u64 *d_ctx) { struct intel_engine_cs *engine = ce->engine; u32 *sema = memset32(engine->status_page.addr + 1000, 0, 5); u32 offset = i915_ggtt_offset(engine->status_page.vma); struct i915_request *rq; u32 *cs; rq = intel_context_create_request(ce); if (IS_ERR(rq)) return PTR_ERR(rq); cs = intel_ring_begin(rq, 28); if (IS_ERR(cs)) { i915_request_add(rq); return PTR_ERR(cs); } /* Signal & wait for start */ cs = emit_store(cs, offset + 4008, 1); cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_NEQ_SDD, 1); cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4000); cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4004); /* Busy wait */ cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_EQ_SDD, 1); cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4016); cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4012); intel_ring_advance(rq, cs); i915_request_get(rq); i915_request_add(rq); intel_engine_flush_submission(engine); /* Wait for the request to start executing, that then waits for us */ while (READ_ONCE(sema[2]) == 0) cpu_relax(); /* Run the request for a 100us, sampling timestamps before/after */ local_irq_disable(); write_semaphore(&sema[2], 0); while (READ_ONCE(sema[1]) == 0) /* wait for the gpu to catch up */ cpu_relax(); *dt = local_clock(); udelay(100); *dt = local_clock() - *dt; write_semaphore(&sema[2], 1); local_irq_enable(); if (i915_request_wait(rq, 0, HZ / 2) < 0) { i915_request_put(rq); return -ETIME; } i915_request_put(rq); pr_debug("%s CTX_TIMESTAMP: [%x, %x], RING_TIMESTAMP: [%x, %x]\n", engine->name, sema[1], sema[3], sema[0], sema[4]); *d_ctx = sema[3] - sema[1]; *d_ring = sema[4] - sema[0]; return 0; } static int __live_engine_timestamps(struct intel_engine_cs *engine) { u64 s_ring[COUNT], s_ctx[COUNT], st[COUNT], d_ring, d_ctx, dt; struct intel_context *ce; int i, err = 0; ce = intel_context_create(engine); if (IS_ERR(ce)) return PTR_ERR(ce); for (i = 0; i < COUNT; i++) { err = __measure_timestamps(ce, &st[i], &s_ring[i], &s_ctx[i]); if (err) break; } intel_context_put(ce); if (err) return err; dt = trifilter(st); d_ring = trifilter(s_ring); d_ctx = trifilter(s_ctx); pr_info("%s elapsed:%lldns, CTX_TIMESTAMP:%lldns, RING_TIMESTAMP:%lldns\n", engine->name, dt, intel_gt_clock_interval_to_ns(engine->gt, d_ctx), intel_gt_clock_interval_to_ns(engine->gt, d_ring)); d_ring = intel_gt_clock_interval_to_ns(engine->gt, d_ring); if (3 * dt > 4 * d_ring || 4 * dt < 3 * d_ring) { pr_err("%s Mismatch between ring timestamp and walltime!\n", engine->name); return -EINVAL; } d_ring = trifilter(s_ring); d_ctx = trifilter(s_ctx); d_ctx *= engine->gt->clock_frequency; if (GRAPHICS_VER(engine->i915) == 11) d_ring *= 12500000; /* Fixed 80ns for GEN11 ctx timestamp? */ else d_ring *= engine->gt->clock_frequency; if (3 * d_ctx > 4 * d_ring || 4 * d_ctx < 3 * d_ring) { pr_err("%s Mismatch between ring and context timestamps!\n", engine->name); return -EINVAL; } return 0; } static int live_engine_timestamps(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; /* * Check that CS_TIMESTAMP / CTX_TIMESTAMP are in sync, i.e. share * the same CS clock. */ if (GRAPHICS_VER(gt->i915) < 8) return 0; for_each_engine(engine, gt, id) { int err; st_engine_heartbeat_disable(engine); err = __live_engine_timestamps(engine); st_engine_heartbeat_enable(engine); if (err) return err; } return 0; } static int __spin_until_busier(struct intel_engine_cs *engine, ktime_t busyness) { ktime_t start, unused, dt; if (!intel_engine_uses_guc(engine)) return 0; /* * In GuC mode of submission, the busyness stats may get updated after * the batch starts running. Poll for a change in busyness and timeout * after 500 us. */ start = ktime_get(); while (intel_engine_get_busy_time(engine, &unused) == busyness) { dt = ktime_get() - start; if (dt > 10000000) { pr_err("active wait timed out %lld\n", dt); ENGINE_TRACE(engine, "active wait time out %lld\n", dt); return -ETIME; } } return 0; } static int live_engine_busy_stats(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; struct igt_spinner spin; int err = 0; /* * Check that if an engine supports busy-stats, they tell the truth. */ if (igt_spinner_init(&spin, gt)) return -ENOMEM; GEM_BUG_ON(intel_gt_pm_is_awake(gt)); for_each_engine(engine, gt, id) { struct i915_request *rq; ktime_t busyness, dummy; ktime_t de, dt; ktime_t t[2]; if (!intel_engine_supports_stats(engine)) continue; if (!intel_engine_can_store_dword(engine)) continue; if (intel_gt_pm_wait_for_idle(gt)) { err = -EBUSY; break; } st_engine_heartbeat_disable(engine); ENGINE_TRACE(engine, "measuring idle time\n"); preempt_disable(); de = intel_engine_get_busy_time(engine, &t[0]); udelay(100); de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de); preempt_enable(); dt = ktime_sub(t[1], t[0]); if (de < 0 || de > 10) { pr_err("%s: reported %lldns [%d%%] busyness while sleeping [for %lldns]\n", engine->name, de, (int)div64_u64(100 * de, dt), dt); GEM_TRACE_DUMP(); err = -EINVAL; goto end; } /* 100% busy */ rq = igt_spinner_create_request(&spin, engine->kernel_context, MI_NOOP); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto end; } i915_request_add(rq); busyness = intel_engine_get_busy_time(engine, &dummy); if (!igt_wait_for_spinner(&spin, rq)) { intel_gt_set_wedged(engine->gt); err = -ETIME; goto end; } err = __spin_until_busier(engine, busyness); if (err) { GEM_TRACE_DUMP(); goto end; } ENGINE_TRACE(engine, "measuring busy time\n"); preempt_disable(); de = intel_engine_get_busy_time(engine, &t[0]); mdelay(100); de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de); preempt_enable(); dt = ktime_sub(t[1], t[0]); if (100 * de < 95 * dt || 95 * de > 100 * dt) { pr_err("%s: reported %lldns [%d%%] busyness while spinning [for %lldns]\n", engine->name, de, (int)div64_u64(100 * de, dt), dt); GEM_TRACE_DUMP(); err = -EINVAL; goto end; } end: st_engine_heartbeat_enable(engine); igt_spinner_end(&spin); if (igt_flush_test(gt->i915)) err = -EIO; if (err) break; } igt_spinner_fini(&spin); if (igt_flush_test(gt->i915)) err = -EIO; return err; } static int live_engine_pm(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; /* * Check we can call intel_engine_pm_put from any context. No * failures are reported directly, but if we mess up lockdep should * tell us. */ if (intel_gt_pm_wait_for_idle(gt)) { pr_err("Unable to flush GT pm before test\n"); return -EBUSY; } GEM_BUG_ON(intel_gt_pm_is_awake(gt)); for_each_engine(engine, gt, id) { const typeof(*igt_atomic_phases) *p; for (p = igt_atomic_phases; p->name; p++) { /* * Acquisition is always synchronous, except if we * know that the engine is already awake, in which * case we should use intel_engine_pm_get_if_awake() * to atomically grab the wakeref. * * In practice, * intel_engine_pm_get(); * intel_engine_pm_put(); * occurs in one thread, while simultaneously * intel_engine_pm_get_if_awake(); * intel_engine_pm_put(); * occurs from atomic context in another. */ GEM_BUG_ON(intel_engine_pm_is_awake(engine)); intel_engine_pm_get(engine); p->critical_section_begin(); if (!intel_engine_pm_get_if_awake(engine)) pr_err("intel_engine_pm_get_if_awake(%s) failed under %s\n", engine->name, p->name); else intel_engine_pm_put_async(engine); intel_engine_pm_put_async(engine); p->critical_section_end(); intel_engine_pm_flush(engine); if (intel_engine_pm_is_awake(engine)) { pr_err("%s is still awake after flushing pm\n", engine->name); return -EINVAL; } /* gt wakeref is async (deferred to workqueue) */ if (intel_gt_pm_wait_for_idle(gt)) { gt_err(gt, "GT failed to idle\n"); return -EINVAL; } } } return 0; } int live_engine_pm_selftests(struct intel_gt *gt) { static const struct i915_subtest tests[] = { SUBTEST(live_engine_timestamps), SUBTEST(live_engine_busy_stats), SUBTEST(live_engine_pm), }; return intel_gt_live_subtests(tests, gt); } |