Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 | // SPDX-License-Identifier: GPL-2.0 /* * A power allocator to manage temperature * * Copyright (C) 2014 ARM Ltd. * */ #define pr_fmt(fmt) "Power allocator: " fmt #include <linux/slab.h> #include <linux/thermal.h> #define CREATE_TRACE_POINTS #include "thermal_trace_ipa.h" #include "thermal_core.h" #define FRAC_BITS 10 #define int_to_frac(x) ((x) << FRAC_BITS) #define frac_to_int(x) ((x) >> FRAC_BITS) /** * mul_frac() - multiply two fixed-point numbers * @x: first multiplicand * @y: second multiplicand * * Return: the result of multiplying two fixed-point numbers. The * result is also a fixed-point number. */ static inline s64 mul_frac(s64 x, s64 y) { return (x * y) >> FRAC_BITS; } /** * div_frac() - divide two fixed-point numbers * @x: the dividend * @y: the divisor * * Return: the result of dividing two fixed-point numbers. The * result is also a fixed-point number. */ static inline s64 div_frac(s64 x, s64 y) { return div_s64(x << FRAC_BITS, y); } /** * struct power_actor - internal power information for power actor * @req_power: requested power value (not weighted) * @max_power: max allocatable power for this actor * @granted_power: granted power for this actor * @extra_actor_power: extra power that this actor can receive * @weighted_req_power: weighted requested power as input to IPA */ struct power_actor { u32 req_power; u32 max_power; u32 granted_power; u32 extra_actor_power; u32 weighted_req_power; }; /** * struct power_allocator_params - parameters for the power allocator governor * @allocated_tzp: whether we have allocated tzp for this thermal zone and * it needs to be freed on unbind * @update_cdevs: whether or not update cdevs on the next run * @err_integral: accumulated error in the PID controller. * @prev_err: error in the previous iteration of the PID controller. * Used to calculate the derivative term. * @sustainable_power: Sustainable power (heat) that this thermal zone can * dissipate * @trip_switch_on: first passive trip point of the thermal zone. The * governor switches on when this trip point is crossed. * If the thermal zone only has one passive trip point, * @trip_switch_on should be NULL. * @trip_max: last passive trip point of the thermal zone. The * temperature we are controlling for. * @total_weight: Sum of all thermal instances weights * @num_actors: number of cooling devices supporting IPA callbacks * @buffer_size: internal buffer size, to avoid runtime re-calculation * @power: buffer for all power actors internal power information */ struct power_allocator_params { bool allocated_tzp; bool update_cdevs; s64 err_integral; s32 prev_err; u32 sustainable_power; const struct thermal_trip *trip_switch_on; const struct thermal_trip *trip_max; int total_weight; unsigned int num_actors; unsigned int buffer_size; struct power_actor *power; }; static bool power_actor_is_valid(struct power_allocator_params *params, struct thermal_instance *instance) { return (instance->trip == params->trip_max && cdev_is_power_actor(instance->cdev)); } /** * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone * @tz: thermal zone we are operating in * * For thermal zones that don't provide a sustainable_power in their * thermal_zone_params, estimate one. Calculate it using the minimum * power of all the cooling devices as that gives a valid value that * can give some degree of functionality. For optimal performance of * this governor, provide a sustainable_power in the thermal zone's * thermal_zone_params. */ static u32 estimate_sustainable_power(struct thermal_zone_device *tz) { struct power_allocator_params *params = tz->governor_data; struct thermal_cooling_device *cdev; struct thermal_instance *instance; u32 sustainable_power = 0; u32 min_power; list_for_each_entry(instance, &tz->thermal_instances, tz_node) { if (!power_actor_is_valid(params, instance)) continue; cdev = instance->cdev; if (cdev->ops->state2power(cdev, instance->upper, &min_power)) continue; sustainable_power += min_power; } return sustainable_power; } /** * estimate_pid_constants() - Estimate the constants for the PID controller * @tz: thermal zone for which to estimate the constants * @sustainable_power: sustainable power for the thermal zone * @trip_switch_on: trip point for the switch on temperature * @control_temp: target temperature for the power allocator governor * * This function is used to update the estimation of the PID * controller constants in struct thermal_zone_parameters. */ static void estimate_pid_constants(struct thermal_zone_device *tz, u32 sustainable_power, const struct thermal_trip *trip_switch_on, int control_temp) { u32 temperature_threshold = control_temp; s32 k_i; if (trip_switch_on) temperature_threshold -= trip_switch_on->temperature; /* * estimate_pid_constants() tries to find appropriate default * values for thermal zones that don't provide them. If a * system integrator has configured a thermal zone with two * passive trip points at the same temperature, that person * hasn't put any effort to set up the thermal zone properly * so just give up. */ if (!temperature_threshold) return; tz->tzp->k_po = int_to_frac(sustainable_power) / temperature_threshold; tz->tzp->k_pu = int_to_frac(2 * sustainable_power) / temperature_threshold; k_i = tz->tzp->k_pu / 10; tz->tzp->k_i = k_i > 0 ? k_i : 1; /* * The default for k_d and integral_cutoff is 0, so we can * leave them as they are. */ } /** * get_sustainable_power() - Get the right sustainable power * @tz: thermal zone for which to estimate the constants * @params: parameters for the power allocator governor * @control_temp: target temperature for the power allocator governor * * This function is used for getting the proper sustainable power value based * on variables which might be updated by the user sysfs interface. If that * happen the new value is going to be estimated and updated. It is also used * after thermal zone binding, where the initial values where set to 0. */ static u32 get_sustainable_power(struct thermal_zone_device *tz, struct power_allocator_params *params, int control_temp) { u32 sustainable_power; if (!tz->tzp->sustainable_power) sustainable_power = estimate_sustainable_power(tz); else sustainable_power = tz->tzp->sustainable_power; /* Check if it's init value 0 or there was update via sysfs */ if (sustainable_power != params->sustainable_power) { estimate_pid_constants(tz, sustainable_power, params->trip_switch_on, control_temp); /* Do the estimation only once and make available in sysfs */ tz->tzp->sustainable_power = sustainable_power; params->sustainable_power = sustainable_power; } return sustainable_power; } /** * pid_controller() - PID controller * @tz: thermal zone we are operating in * @control_temp: the target temperature in millicelsius * @max_allocatable_power: maximum allocatable power for this thermal zone * * This PID controller increases the available power budget so that the * temperature of the thermal zone gets as close as possible to * @control_temp and limits the power if it exceeds it. k_po is the * proportional term when we are overshooting, k_pu is the * proportional term when we are undershooting. integral_cutoff is a * threshold below which we stop accumulating the error. The * accumulated error is only valid if the requested power will make * the system warmer. If the system is mostly idle, there's no point * in accumulating positive error. * * Return: The power budget for the next period. */ static u32 pid_controller(struct thermal_zone_device *tz, int control_temp, u32 max_allocatable_power) { struct power_allocator_params *params = tz->governor_data; s64 p, i, d, power_range; s32 err, max_power_frac; u32 sustainable_power; max_power_frac = int_to_frac(max_allocatable_power); sustainable_power = get_sustainable_power(tz, params, control_temp); err = control_temp - tz->temperature; err = int_to_frac(err); /* Calculate the proportional term */ p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err); /* * Calculate the integral term * * if the error is less than cut off allow integration (but * the integral is limited to max power) */ i = mul_frac(tz->tzp->k_i, params->err_integral); if (err < int_to_frac(tz->tzp->integral_cutoff)) { s64 i_next = i + mul_frac(tz->tzp->k_i, err); if (abs(i_next) < max_power_frac) { i = i_next; params->err_integral += err; } } /* * Calculate the derivative term * * We do err - prev_err, so with a positive k_d, a decreasing * error (i.e. driving closer to the line) results in less * power being applied, slowing down the controller) */ d = mul_frac(tz->tzp->k_d, err - params->prev_err); d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies)); params->prev_err = err; power_range = p + i + d; /* feed-forward the known sustainable dissipatable power */ power_range = sustainable_power + frac_to_int(power_range); power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power); trace_thermal_power_allocator_pid(tz, frac_to_int(err), frac_to_int(params->err_integral), frac_to_int(p), frac_to_int(i), frac_to_int(d), power_range); return power_range; } /** * power_actor_set_power() - limit the maximum power a cooling device consumes * @cdev: pointer to &thermal_cooling_device * @instance: thermal instance to update * @power: the power in milliwatts * * Set the cooling device to consume at most @power milliwatts. The limit is * expected to be a cap at the maximum power consumption. * * Return: 0 on success, -EINVAL if the cooling device does not * implement the power actor API or -E* for other failures. */ static int power_actor_set_power(struct thermal_cooling_device *cdev, struct thermal_instance *instance, u32 power) { unsigned long state; int ret; ret = cdev->ops->power2state(cdev, power, &state); if (ret) return ret; instance->target = clamp_val(state, instance->lower, instance->upper); mutex_lock(&cdev->lock); __thermal_cdev_update(cdev); mutex_unlock(&cdev->lock); return 0; } /** * divvy_up_power() - divvy the allocated power between the actors * @power: buffer for all power actors internal power information * @num_actors: number of power actors in this thermal zone * @total_req_power: sum of all weighted requested power for all actors * @power_range: total allocated power * * This function divides the total allocated power (@power_range) * fairly between the actors. It first tries to give each actor a * share of the @power_range according to how much power it requested * compared to the rest of the actors. For example, if only one actor * requests power, then it receives all the @power_range. If * three actors each requests 1mW, each receives a third of the * @power_range. * * If any actor received more than their maximum power, then that * surplus is re-divvied among the actors based on how far they are * from their respective maximums. */ static void divvy_up_power(struct power_actor *power, int num_actors, u32 total_req_power, u32 power_range) { u32 capped_extra_power = 0; u32 extra_power = 0; int i; /* * Prevent division by 0 if none of the actors request power. */ if (!total_req_power) total_req_power = 1; for (i = 0; i < num_actors; i++) { struct power_actor *pa = &power[i]; u64 req_range = (u64)pa->req_power * power_range; pa->granted_power = DIV_ROUND_CLOSEST_ULL(req_range, total_req_power); if (pa->granted_power > pa->max_power) { extra_power += pa->granted_power - pa->max_power; pa->granted_power = pa->max_power; } pa->extra_actor_power = pa->max_power - pa->granted_power; capped_extra_power += pa->extra_actor_power; } if (!extra_power || !capped_extra_power) return; /* * Re-divvy the reclaimed extra among actors based on * how far they are from the max */ extra_power = min(extra_power, capped_extra_power); for (i = 0; i < num_actors; i++) { struct power_actor *pa = &power[i]; u64 extra_range = pa->extra_actor_power; extra_range *= extra_power; pa->granted_power += DIV_ROUND_CLOSEST_ULL(extra_range, capped_extra_power); } } static void allocate_power(struct thermal_zone_device *tz, int control_temp) { struct power_allocator_params *params = tz->governor_data; unsigned int num_actors = params->num_actors; struct power_actor *power = params->power; struct thermal_cooling_device *cdev; struct thermal_instance *instance; u32 total_weighted_req_power = 0; u32 max_allocatable_power = 0; u32 total_granted_power = 0; u32 total_req_power = 0; u32 power_range, weight; int i = 0, ret; if (!num_actors) return; /* Clean all buffers for new power estimations */ memset(power, 0, params->buffer_size); list_for_each_entry(instance, &tz->thermal_instances, tz_node) { struct power_actor *pa = &power[i]; if (!power_actor_is_valid(params, instance)) continue; cdev = instance->cdev; ret = cdev->ops->get_requested_power(cdev, &pa->req_power); if (ret) continue; if (!params->total_weight) weight = 1 << FRAC_BITS; else weight = instance->weight; pa->weighted_req_power = frac_to_int(weight * pa->req_power); ret = cdev->ops->state2power(cdev, instance->lower, &pa->max_power); if (ret) continue; total_req_power += pa->req_power; max_allocatable_power += pa->max_power; total_weighted_req_power += pa->weighted_req_power; i++; } power_range = pid_controller(tz, control_temp, max_allocatable_power); divvy_up_power(power, num_actors, total_weighted_req_power, power_range); i = 0; list_for_each_entry(instance, &tz->thermal_instances, tz_node) { struct power_actor *pa = &power[i]; if (!power_actor_is_valid(params, instance)) continue; power_actor_set_power(instance->cdev, instance, pa->granted_power); total_granted_power += pa->granted_power; trace_thermal_power_actor(tz, i, pa->req_power, pa->granted_power); i++; } trace_thermal_power_allocator(tz, total_req_power, total_granted_power, num_actors, power_range, max_allocatable_power, tz->temperature, control_temp - tz->temperature); } /** * get_governor_trips() - get the two trip points that are key for this governor * @tz: thermal zone to operate on * @params: pointer to private data for this governor * * The power allocator governor works optimally with two trips points: * a "switch on" trip point and a "maximum desired temperature". These * are defined as the first and last passive trip points. * * If there is only one trip point, then that's considered to be the * "maximum desired temperature" trip point and the governor is always * on. If there are no passive or active trip points, then the * governor won't do anything. In fact, its throttle function * won't be called at all. */ static void get_governor_trips(struct thermal_zone_device *tz, struct power_allocator_params *params) { const struct thermal_trip *first_passive = NULL; const struct thermal_trip *last_passive = NULL; const struct thermal_trip *last_active = NULL; const struct thermal_trip_desc *td; for_each_trip_desc(tz, td) { const struct thermal_trip *trip = &td->trip; switch (trip->type) { case THERMAL_TRIP_PASSIVE: if (!first_passive) { first_passive = trip; break; } last_passive = trip; break; case THERMAL_TRIP_ACTIVE: last_active = trip; break; default: break; } } if (last_passive) { params->trip_switch_on = first_passive; params->trip_max = last_passive; } else if (first_passive) { params->trip_switch_on = NULL; params->trip_max = first_passive; } else { params->trip_switch_on = NULL; params->trip_max = last_active; } } static void reset_pid_controller(struct power_allocator_params *params) { params->err_integral = 0; params->prev_err = 0; } static void allow_maximum_power(struct thermal_zone_device *tz) { struct power_allocator_params *params = tz->governor_data; struct thermal_cooling_device *cdev; struct thermal_instance *instance; u32 req_power; list_for_each_entry(instance, &tz->thermal_instances, tz_node) { if (!power_actor_is_valid(params, instance)) continue; cdev = instance->cdev; instance->target = 0; mutex_lock(&cdev->lock); /* * Call for updating the cooling devices local stats and avoid * periods of dozen of seconds when those have not been * maintained. */ cdev->ops->get_requested_power(cdev, &req_power); if (params->update_cdevs) __thermal_cdev_update(cdev); mutex_unlock(&cdev->lock); } } /** * check_power_actors() - Check all cooling devices and warn when they are * not power actors * @tz: thermal zone to operate on * @params: power allocator private data * * Check all cooling devices in the @tz and warn every time they are missing * power actor API. The warning should help to investigate the issue, which * could be e.g. lack of Energy Model for a given device. * * If all of the cooling devices currently attached to @tz implement the power * actor API, return the number of them (which may be 0, because some cooling * devices may be attached later). Otherwise, return -EINVAL. */ static int check_power_actors(struct thermal_zone_device *tz, struct power_allocator_params *params) { struct thermal_instance *instance; int ret = 0; list_for_each_entry(instance, &tz->thermal_instances, tz_node) { if (instance->trip != params->trip_max) continue; if (!cdev_is_power_actor(instance->cdev)) { dev_warn(&tz->device, "power_allocator: %s is not a power actor\n", instance->cdev->type); return -EINVAL; } ret++; } return ret; } static int allocate_actors_buffer(struct power_allocator_params *params, int num_actors) { int ret; kfree(params->power); /* There might be no cooling devices yet. */ if (!num_actors) { ret = 0; goto clean_state; } params->power = kcalloc(num_actors, sizeof(struct power_actor), GFP_KERNEL); if (!params->power) { ret = -ENOMEM; goto clean_state; } params->num_actors = num_actors; params->buffer_size = num_actors * sizeof(struct power_actor); return 0; clean_state: params->num_actors = 0; params->buffer_size = 0; params->power = NULL; return ret; } static void power_allocator_update_tz(struct thermal_zone_device *tz, enum thermal_notify_event reason) { struct power_allocator_params *params = tz->governor_data; struct thermal_instance *instance; int num_actors = 0; switch (reason) { case THERMAL_TZ_BIND_CDEV: case THERMAL_TZ_UNBIND_CDEV: list_for_each_entry(instance, &tz->thermal_instances, tz_node) if (power_actor_is_valid(params, instance)) num_actors++; if (num_actors == params->num_actors) return; allocate_actors_buffer(params, num_actors); break; case THERMAL_INSTANCE_WEIGHT_CHANGED: params->total_weight = 0; list_for_each_entry(instance, &tz->thermal_instances, tz_node) if (power_actor_is_valid(params, instance)) params->total_weight += instance->weight; break; default: break; } } /** * power_allocator_bind() - bind the power_allocator governor to a thermal zone * @tz: thermal zone to bind it to * * Initialize the PID controller parameters and bind it to the thermal * zone. * * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL * when there are unsupported cooling devices in the @tz. */ static int power_allocator_bind(struct thermal_zone_device *tz) { struct power_allocator_params *params; int ret; params = kzalloc(sizeof(*params), GFP_KERNEL); if (!params) return -ENOMEM; get_governor_trips(tz, params); ret = check_power_actors(tz, params); if (ret < 0) { dev_warn(&tz->device, "power_allocator: binding failed\n"); kfree(params); return ret; } ret = allocate_actors_buffer(params, ret); if (ret) { dev_warn(&tz->device, "power_allocator: allocation failed\n"); kfree(params); return ret; } if (!tz->tzp) { tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL); if (!tz->tzp) { ret = -ENOMEM; goto free_params; } params->allocated_tzp = true; } if (!tz->tzp->sustainable_power) dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n"); else params->sustainable_power = tz->tzp->sustainable_power; if (params->trip_max) estimate_pid_constants(tz, tz->tzp->sustainable_power, params->trip_switch_on, params->trip_max->temperature); reset_pid_controller(params); tz->governor_data = params; return 0; free_params: kfree(params->power); kfree(params); return ret; } static void power_allocator_unbind(struct thermal_zone_device *tz) { struct power_allocator_params *params = tz->governor_data; dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id); if (params->allocated_tzp) { kfree(tz->tzp); tz->tzp = NULL; } kfree(params->power); kfree(tz->governor_data); tz->governor_data = NULL; } static void power_allocator_manage(struct thermal_zone_device *tz) { struct power_allocator_params *params = tz->governor_data; const struct thermal_trip *trip = params->trip_switch_on; lockdep_assert_held(&tz->lock); if (trip && tz->temperature < trip->temperature) { reset_pid_controller(params); allow_maximum_power(tz); params->update_cdevs = false; return; } if (!params->trip_max) return; allocate_power(tz, params->trip_max->temperature); params->update_cdevs = true; } static struct thermal_governor thermal_gov_power_allocator = { .name = "power_allocator", .bind_to_tz = power_allocator_bind, .unbind_from_tz = power_allocator_unbind, .manage = power_allocator_manage, .update_tz = power_allocator_update_tz, }; THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator); |