Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
// SPDX-License-Identifier: GPL-2.0
/*
 * A power allocator to manage temperature
 *
 * Copyright (C) 2014 ARM Ltd.
 *
 */

#define pr_fmt(fmt) "Power allocator: " fmt

#include <linux/slab.h>
#include <linux/thermal.h>

#define CREATE_TRACE_POINTS
#include "thermal_trace_ipa.h"

#include "thermal_core.h"

#define FRAC_BITS 10
#define int_to_frac(x) ((x) << FRAC_BITS)
#define frac_to_int(x) ((x) >> FRAC_BITS)

/**
 * mul_frac() - multiply two fixed-point numbers
 * @x:	first multiplicand
 * @y:	second multiplicand
 *
 * Return: the result of multiplying two fixed-point numbers.  The
 * result is also a fixed-point number.
 */
static inline s64 mul_frac(s64 x, s64 y)
{
	return (x * y) >> FRAC_BITS;
}

/**
 * div_frac() - divide two fixed-point numbers
 * @x:	the dividend
 * @y:	the divisor
 *
 * Return: the result of dividing two fixed-point numbers.  The
 * result is also a fixed-point number.
 */
static inline s64 div_frac(s64 x, s64 y)
{
	return div_s64(x << FRAC_BITS, y);
}

/**
 * struct power_actor - internal power information for power actor
 * @req_power:		requested power value (not weighted)
 * @max_power:		max allocatable power for this actor
 * @granted_power:	granted power for this actor
 * @extra_actor_power:	extra power that this actor can receive
 * @weighted_req_power:	weighted requested power as input to IPA
 */
struct power_actor {
	u32 req_power;
	u32 max_power;
	u32 granted_power;
	u32 extra_actor_power;
	u32 weighted_req_power;
};

/**
 * struct power_allocator_params - parameters for the power allocator governor
 * @allocated_tzp:	whether we have allocated tzp for this thermal zone and
 *			it needs to be freed on unbind
 * @update_cdevs:	whether or not update cdevs on the next run
 * @err_integral:	accumulated error in the PID controller.
 * @prev_err:	error in the previous iteration of the PID controller.
 *		Used to calculate the derivative term.
 * @sustainable_power:	Sustainable power (heat) that this thermal zone can
 *			dissipate
 * @trip_switch_on:	first passive trip point of the thermal zone.  The
 *			governor switches on when this trip point is crossed.
 *			If the thermal zone only has one passive trip point,
 *			@trip_switch_on should be NULL.
 * @trip_max:		last passive trip point of the thermal zone. The
 *			temperature we are controlling for.
 * @total_weight:	Sum of all thermal instances weights
 * @num_actors:		number of cooling devices supporting IPA callbacks
 * @buffer_size:	internal buffer size, to avoid runtime re-calculation
 * @power:		buffer for all power actors internal power information
 */
struct power_allocator_params {
	bool allocated_tzp;
	bool update_cdevs;
	s64 err_integral;
	s32 prev_err;
	u32 sustainable_power;
	const struct thermal_trip *trip_switch_on;
	const struct thermal_trip *trip_max;
	int total_weight;
	unsigned int num_actors;
	unsigned int buffer_size;
	struct power_actor *power;
};

static bool power_actor_is_valid(struct power_allocator_params *params,
				 struct thermal_instance *instance)
{
	return (instance->trip == params->trip_max &&
		 cdev_is_power_actor(instance->cdev));
}

/**
 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
 * @tz: thermal zone we are operating in
 *
 * For thermal zones that don't provide a sustainable_power in their
 * thermal_zone_params, estimate one.  Calculate it using the minimum
 * power of all the cooling devices as that gives a valid value that
 * can give some degree of functionality.  For optimal performance of
 * this governor, provide a sustainable_power in the thermal zone's
 * thermal_zone_params.
 */
static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
{
	struct power_allocator_params *params = tz->governor_data;
	struct thermal_cooling_device *cdev;
	struct thermal_instance *instance;
	u32 sustainable_power = 0;
	u32 min_power;

	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
		if (!power_actor_is_valid(params, instance))
			continue;

		cdev = instance->cdev;
		if (cdev->ops->state2power(cdev, instance->upper, &min_power))
			continue;

		sustainable_power += min_power;
	}

	return sustainable_power;
}

/**
 * estimate_pid_constants() - Estimate the constants for the PID controller
 * @tz:		thermal zone for which to estimate the constants
 * @sustainable_power:	sustainable power for the thermal zone
 * @trip_switch_on:	trip point for the switch on temperature
 * @control_temp:	target temperature for the power allocator governor
 *
 * This function is used to update the estimation of the PID
 * controller constants in struct thermal_zone_parameters.
 */
static void estimate_pid_constants(struct thermal_zone_device *tz,
				   u32 sustainable_power,
				   const struct thermal_trip *trip_switch_on,
				   int control_temp)
{
	u32 temperature_threshold = control_temp;
	s32 k_i;

	if (trip_switch_on)
		temperature_threshold -= trip_switch_on->temperature;

	/*
	 * estimate_pid_constants() tries to find appropriate default
	 * values for thermal zones that don't provide them. If a
	 * system integrator has configured a thermal zone with two
	 * passive trip points at the same temperature, that person
	 * hasn't put any effort to set up the thermal zone properly
	 * so just give up.
	 */
	if (!temperature_threshold)
		return;

	tz->tzp->k_po = int_to_frac(sustainable_power) /
		temperature_threshold;

	tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
		temperature_threshold;

	k_i = tz->tzp->k_pu / 10;
	tz->tzp->k_i = k_i > 0 ? k_i : 1;

	/*
	 * The default for k_d and integral_cutoff is 0, so we can
	 * leave them as they are.
	 */
}

/**
 * get_sustainable_power() - Get the right sustainable power
 * @tz:		thermal zone for which to estimate the constants
 * @params:	parameters for the power allocator governor
 * @control_temp:	target temperature for the power allocator governor
 *
 * This function is used for getting the proper sustainable power value based
 * on variables which might be updated by the user sysfs interface. If that
 * happen the new value is going to be estimated and updated. It is also used
 * after thermal zone binding, where the initial values where set to 0.
 */
static u32 get_sustainable_power(struct thermal_zone_device *tz,
				 struct power_allocator_params *params,
				 int control_temp)
{
	u32 sustainable_power;

	if (!tz->tzp->sustainable_power)
		sustainable_power = estimate_sustainable_power(tz);
	else
		sustainable_power = tz->tzp->sustainable_power;

	/* Check if it's init value 0 or there was update via sysfs */
	if (sustainable_power != params->sustainable_power) {
		estimate_pid_constants(tz, sustainable_power,
				       params->trip_switch_on, control_temp);

		/* Do the estimation only once and make available in sysfs */
		tz->tzp->sustainable_power = sustainable_power;
		params->sustainable_power = sustainable_power;
	}

	return sustainable_power;
}

/**
 * pid_controller() - PID controller
 * @tz:	thermal zone we are operating in
 * @control_temp:	the target temperature in millicelsius
 * @max_allocatable_power:	maximum allocatable power for this thermal zone
 *
 * This PID controller increases the available power budget so that the
 * temperature of the thermal zone gets as close as possible to
 * @control_temp and limits the power if it exceeds it.  k_po is the
 * proportional term when we are overshooting, k_pu is the
 * proportional term when we are undershooting.  integral_cutoff is a
 * threshold below which we stop accumulating the error.  The
 * accumulated error is only valid if the requested power will make
 * the system warmer.  If the system is mostly idle, there's no point
 * in accumulating positive error.
 *
 * Return: The power budget for the next period.
 */
static u32 pid_controller(struct thermal_zone_device *tz,
			  int control_temp,
			  u32 max_allocatable_power)
{
	struct power_allocator_params *params = tz->governor_data;
	s64 p, i, d, power_range;
	s32 err, max_power_frac;
	u32 sustainable_power;

	max_power_frac = int_to_frac(max_allocatable_power);

	sustainable_power = get_sustainable_power(tz, params, control_temp);

	err = control_temp - tz->temperature;
	err = int_to_frac(err);

	/* Calculate the proportional term */
	p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);

	/*
	 * Calculate the integral term
	 *
	 * if the error is less than cut off allow integration (but
	 * the integral is limited to max power)
	 */
	i = mul_frac(tz->tzp->k_i, params->err_integral);

	if (err < int_to_frac(tz->tzp->integral_cutoff)) {
		s64 i_next = i + mul_frac(tz->tzp->k_i, err);

		if (abs(i_next) < max_power_frac) {
			i = i_next;
			params->err_integral += err;
		}
	}

	/*
	 * Calculate the derivative term
	 *
	 * We do err - prev_err, so with a positive k_d, a decreasing
	 * error (i.e. driving closer to the line) results in less
	 * power being applied, slowing down the controller)
	 */
	d = mul_frac(tz->tzp->k_d, err - params->prev_err);
	d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies));
	params->prev_err = err;

	power_range = p + i + d;

	/* feed-forward the known sustainable dissipatable power */
	power_range = sustainable_power + frac_to_int(power_range);

	power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);

	trace_thermal_power_allocator_pid(tz, frac_to_int(err),
					  frac_to_int(params->err_integral),
					  frac_to_int(p), frac_to_int(i),
					  frac_to_int(d), power_range);

	return power_range;
}

/**
 * power_actor_set_power() - limit the maximum power a cooling device consumes
 * @cdev:	pointer to &thermal_cooling_device
 * @instance:	thermal instance to update
 * @power:	the power in milliwatts
 *
 * Set the cooling device to consume at most @power milliwatts. The limit is
 * expected to be a cap at the maximum power consumption.
 *
 * Return: 0 on success, -EINVAL if the cooling device does not
 * implement the power actor API or -E* for other failures.
 */
static int
power_actor_set_power(struct thermal_cooling_device *cdev,
		      struct thermal_instance *instance, u32 power)
{
	unsigned long state;
	int ret;

	ret = cdev->ops->power2state(cdev, power, &state);
	if (ret)
		return ret;

	instance->target = clamp_val(state, instance->lower, instance->upper);
	mutex_lock(&cdev->lock);
	__thermal_cdev_update(cdev);
	mutex_unlock(&cdev->lock);

	return 0;
}

/**
 * divvy_up_power() - divvy the allocated power between the actors
 * @power:		buffer for all power actors internal power information
 * @num_actors:		number of power actors in this thermal zone
 * @total_req_power:	sum of all weighted requested power for all actors
 * @power_range:	total allocated power
 *
 * This function divides the total allocated power (@power_range)
 * fairly between the actors.  It first tries to give each actor a
 * share of the @power_range according to how much power it requested
 * compared to the rest of the actors.  For example, if only one actor
 * requests power, then it receives all the @power_range.  If
 * three actors each requests 1mW, each receives a third of the
 * @power_range.
 *
 * If any actor received more than their maximum power, then that
 * surplus is re-divvied among the actors based on how far they are
 * from their respective maximums.
 */
static void divvy_up_power(struct power_actor *power, int num_actors,
			   u32 total_req_power, u32 power_range)
{
	u32 capped_extra_power = 0;
	u32 extra_power = 0;
	int i;

	/*
	 * Prevent division by 0 if none of the actors request power.
	 */
	if (!total_req_power)
		total_req_power = 1;

	for (i = 0; i < num_actors; i++) {
		struct power_actor *pa = &power[i];
		u64 req_range = (u64)pa->req_power * power_range;

		pa->granted_power = DIV_ROUND_CLOSEST_ULL(req_range,
							  total_req_power);

		if (pa->granted_power > pa->max_power) {
			extra_power += pa->granted_power - pa->max_power;
			pa->granted_power = pa->max_power;
		}

		pa->extra_actor_power = pa->max_power - pa->granted_power;
		capped_extra_power += pa->extra_actor_power;
	}

	if (!extra_power || !capped_extra_power)
		return;

	/*
	 * Re-divvy the reclaimed extra among actors based on
	 * how far they are from the max
	 */
	extra_power = min(extra_power, capped_extra_power);

	for (i = 0; i < num_actors; i++) {
		struct power_actor *pa = &power[i];
		u64 extra_range = pa->extra_actor_power;

		extra_range *= extra_power;
		pa->granted_power += DIV_ROUND_CLOSEST_ULL(extra_range,
						capped_extra_power);
	}
}

static void allocate_power(struct thermal_zone_device *tz, int control_temp)
{
	struct power_allocator_params *params = tz->governor_data;
	unsigned int num_actors = params->num_actors;
	struct power_actor *power = params->power;
	struct thermal_cooling_device *cdev;
	struct thermal_instance *instance;
	u32 total_weighted_req_power = 0;
	u32 max_allocatable_power = 0;
	u32 total_granted_power = 0;
	u32 total_req_power = 0;
	u32 power_range, weight;
	int i = 0, ret;

	if (!num_actors)
		return;

	/* Clean all buffers for new power estimations */
	memset(power, 0, params->buffer_size);

	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
		struct power_actor *pa = &power[i];

		if (!power_actor_is_valid(params, instance))
			continue;

		cdev = instance->cdev;

		ret = cdev->ops->get_requested_power(cdev, &pa->req_power);
		if (ret)
			continue;

		if (!params->total_weight)
			weight = 1 << FRAC_BITS;
		else
			weight = instance->weight;

		pa->weighted_req_power = frac_to_int(weight * pa->req_power);

		ret = cdev->ops->state2power(cdev, instance->lower,
					     &pa->max_power);
		if (ret)
			continue;

		total_req_power += pa->req_power;
		max_allocatable_power += pa->max_power;
		total_weighted_req_power += pa->weighted_req_power;

		i++;
	}

	power_range = pid_controller(tz, control_temp, max_allocatable_power);

	divvy_up_power(power, num_actors, total_weighted_req_power,
		       power_range);

	i = 0;
	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
		struct power_actor *pa = &power[i];

		if (!power_actor_is_valid(params, instance))
			continue;

		power_actor_set_power(instance->cdev, instance,
				      pa->granted_power);
		total_granted_power += pa->granted_power;

		trace_thermal_power_actor(tz, i, pa->req_power,
					  pa->granted_power);
		i++;
	}

	trace_thermal_power_allocator(tz, total_req_power, total_granted_power,
				      num_actors, power_range,
				      max_allocatable_power, tz->temperature,
				      control_temp - tz->temperature);
}

/**
 * get_governor_trips() - get the two trip points that are key for this governor
 * @tz:	thermal zone to operate on
 * @params:	pointer to private data for this governor
 *
 * The power allocator governor works optimally with two trips points:
 * a "switch on" trip point and a "maximum desired temperature".  These
 * are defined as the first and last passive trip points.
 *
 * If there is only one trip point, then that's considered to be the
 * "maximum desired temperature" trip point and the governor is always
 * on.  If there are no passive or active trip points, then the
 * governor won't do anything.  In fact, its throttle function
 * won't be called at all.
 */
static void get_governor_trips(struct thermal_zone_device *tz,
			       struct power_allocator_params *params)
{
	const struct thermal_trip *first_passive = NULL;
	const struct thermal_trip *last_passive = NULL;
	const struct thermal_trip *last_active = NULL;
	const struct thermal_trip_desc *td;

	for_each_trip_desc(tz, td) {
		const struct thermal_trip *trip = &td->trip;

		switch (trip->type) {
		case THERMAL_TRIP_PASSIVE:
			if (!first_passive) {
				first_passive = trip;
				break;
			}
			last_passive = trip;
			break;
		case THERMAL_TRIP_ACTIVE:
			last_active = trip;
			break;
		default:
			break;
		}
	}

	if (last_passive) {
		params->trip_switch_on = first_passive;
		params->trip_max = last_passive;
	} else if (first_passive) {
		params->trip_switch_on = NULL;
		params->trip_max = first_passive;
	} else {
		params->trip_switch_on = NULL;
		params->trip_max = last_active;
	}
}

static void reset_pid_controller(struct power_allocator_params *params)
{
	params->err_integral = 0;
	params->prev_err = 0;
}

static void allow_maximum_power(struct thermal_zone_device *tz)
{
	struct power_allocator_params *params = tz->governor_data;
	struct thermal_cooling_device *cdev;
	struct thermal_instance *instance;
	u32 req_power;

	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
		if (!power_actor_is_valid(params, instance))
			continue;

		cdev = instance->cdev;

		instance->target = 0;
		mutex_lock(&cdev->lock);
		/*
		 * Call for updating the cooling devices local stats and avoid
		 * periods of dozen of seconds when those have not been
		 * maintained.
		 */
		cdev->ops->get_requested_power(cdev, &req_power);

		if (params->update_cdevs)
			__thermal_cdev_update(cdev);

		mutex_unlock(&cdev->lock);
	}
}

/**
 * check_power_actors() - Check all cooling devices and warn when they are
 *			not power actors
 * @tz:		thermal zone to operate on
 * @params:	power allocator private data
 *
 * Check all cooling devices in the @tz and warn every time they are missing
 * power actor API. The warning should help to investigate the issue, which
 * could be e.g. lack of Energy Model for a given device.
 *
 * If all of the cooling devices currently attached to @tz implement the power
 * actor API, return the number of them (which may be 0, because some cooling
 * devices may be attached later). Otherwise, return -EINVAL.
 */
static int check_power_actors(struct thermal_zone_device *tz,
			      struct power_allocator_params *params)
{
	struct thermal_instance *instance;
	int ret = 0;

	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
		if (instance->trip != params->trip_max)
			continue;

		if (!cdev_is_power_actor(instance->cdev)) {
			dev_warn(&tz->device, "power_allocator: %s is not a power actor\n",
				 instance->cdev->type);
			return -EINVAL;
		}
		ret++;
	}

	return ret;
}

static int allocate_actors_buffer(struct power_allocator_params *params,
				  int num_actors)
{
	int ret;

	kfree(params->power);

	/* There might be no cooling devices yet. */
	if (!num_actors) {
		ret = 0;
		goto clean_state;
	}

	params->power = kcalloc(num_actors, sizeof(struct power_actor),
				GFP_KERNEL);
	if (!params->power) {
		ret = -ENOMEM;
		goto clean_state;
	}

	params->num_actors = num_actors;
	params->buffer_size = num_actors * sizeof(struct power_actor);

	return 0;

clean_state:
	params->num_actors = 0;
	params->buffer_size = 0;
	params->power = NULL;
	return ret;
}

static void power_allocator_update_tz(struct thermal_zone_device *tz,
				      enum thermal_notify_event reason)
{
	struct power_allocator_params *params = tz->governor_data;
	struct thermal_instance *instance;
	int num_actors = 0;

	switch (reason) {
	case THERMAL_TZ_BIND_CDEV:
	case THERMAL_TZ_UNBIND_CDEV:
		list_for_each_entry(instance, &tz->thermal_instances, tz_node)
			if (power_actor_is_valid(params, instance))
				num_actors++;

		if (num_actors == params->num_actors)
			return;

		allocate_actors_buffer(params, num_actors);
		break;
	case THERMAL_INSTANCE_WEIGHT_CHANGED:
		params->total_weight = 0;
		list_for_each_entry(instance, &tz->thermal_instances, tz_node)
			if (power_actor_is_valid(params, instance))
				params->total_weight += instance->weight;
		break;
	default:
		break;
	}
}

/**
 * power_allocator_bind() - bind the power_allocator governor to a thermal zone
 * @tz:	thermal zone to bind it to
 *
 * Initialize the PID controller parameters and bind it to the thermal
 * zone.
 *
 * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL
 * when there are unsupported cooling devices in the @tz.
 */
static int power_allocator_bind(struct thermal_zone_device *tz)
{
	struct power_allocator_params *params;
	int ret;

	params = kzalloc(sizeof(*params), GFP_KERNEL);
	if (!params)
		return -ENOMEM;

	get_governor_trips(tz, params);

	ret = check_power_actors(tz, params);
	if (ret < 0) {
		dev_warn(&tz->device, "power_allocator: binding failed\n");
		kfree(params);
		return ret;
	}

	ret = allocate_actors_buffer(params, ret);
	if (ret) {
		dev_warn(&tz->device, "power_allocator: allocation failed\n");
		kfree(params);
		return ret;
	}

	if (!tz->tzp) {
		tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
		if (!tz->tzp) {
			ret = -ENOMEM;
			goto free_params;
		}

		params->allocated_tzp = true;
	}

	if (!tz->tzp->sustainable_power)
		dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
	else
		params->sustainable_power = tz->tzp->sustainable_power;

	if (params->trip_max)
		estimate_pid_constants(tz, tz->tzp->sustainable_power,
				       params->trip_switch_on,
				       params->trip_max->temperature);

	reset_pid_controller(params);

	tz->governor_data = params;

	return 0;

free_params:
	kfree(params->power);
	kfree(params);

	return ret;
}

static void power_allocator_unbind(struct thermal_zone_device *tz)
{
	struct power_allocator_params *params = tz->governor_data;

	dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);

	if (params->allocated_tzp) {
		kfree(tz->tzp);
		tz->tzp = NULL;
	}

	kfree(params->power);
	kfree(tz->governor_data);
	tz->governor_data = NULL;
}

static void power_allocator_manage(struct thermal_zone_device *tz)
{
	struct power_allocator_params *params = tz->governor_data;
	const struct thermal_trip *trip = params->trip_switch_on;

	lockdep_assert_held(&tz->lock);

	if (trip && tz->temperature < trip->temperature) {
		reset_pid_controller(params);
		allow_maximum_power(tz);
		params->update_cdevs = false;
		return;
	}

	if (!params->trip_max)
		return;

	allocate_power(tz, params->trip_max->temperature);
	params->update_cdevs = true;
}

static struct thermal_governor thermal_gov_power_allocator = {
	.name		= "power_allocator",
	.bind_to_tz	= power_allocator_bind,
	.unbind_from_tz	= power_allocator_unbind,
	.manage		= power_allocator_manage,
	.update_tz	= power_allocator_update_tz,
};
THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);