// SPDX-License-Identifier: GPL-2.0
//
// bxcan.c - STM32 Basic Extended CAN controller driver
//
// Copyright (c) 2022 Dario Binacchi <dario.binacchi@amarulasolutions.com>
//
// NOTE: The ST documentation uses the terms master/slave instead of
// primary/secondary.
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/bitfield.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
#include <linux/can/rx-offload.h>
#include <linux/clk.h>
#include <linux/ethtool.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#define BXCAN_NAPI_WEIGHT 3
#define BXCAN_TIMEOUT_US 10000
#define BXCAN_RX_MB_NUM 2
#define BXCAN_TX_MB_NUM 3
/* Primary control register (MCR) bits */
#define BXCAN_MCR_RESET BIT(15)
#define BXCAN_MCR_TTCM BIT(7)
#define BXCAN_MCR_ABOM BIT(6)
#define BXCAN_MCR_AWUM BIT(5)
#define BXCAN_MCR_NART BIT(4)
#define BXCAN_MCR_RFLM BIT(3)
#define BXCAN_MCR_TXFP BIT(2)
#define BXCAN_MCR_SLEEP BIT(1)
#define BXCAN_MCR_INRQ BIT(0)
/* Primary status register (MSR) bits */
#define BXCAN_MSR_ERRI BIT(2)
#define BXCAN_MSR_SLAK BIT(1)
#define BXCAN_MSR_INAK BIT(0)
/* Transmit status register (TSR) bits */
#define BXCAN_TSR_RQCP2 BIT(16)
#define BXCAN_TSR_RQCP1 BIT(8)
#define BXCAN_TSR_RQCP0 BIT(0)
/* Receive FIFO 0 register (RF0R) bits */
#define BXCAN_RF0R_RFOM0 BIT(5)
#define BXCAN_RF0R_FMP0_MASK GENMASK(1, 0)
/* Interrupt enable register (IER) bits */
#define BXCAN_IER_SLKIE BIT(17)
#define BXCAN_IER_WKUIE BIT(16)
#define BXCAN_IER_ERRIE BIT(15)
#define BXCAN_IER_LECIE BIT(11)
#define BXCAN_IER_BOFIE BIT(10)
#define BXCAN_IER_EPVIE BIT(9)
#define BXCAN_IER_EWGIE BIT(8)
#define BXCAN_IER_FOVIE1 BIT(6)
#define BXCAN_IER_FFIE1 BIT(5)
#define BXCAN_IER_FMPIE1 BIT(4)
#define BXCAN_IER_FOVIE0 BIT(3)
#define BXCAN_IER_FFIE0 BIT(2)
#define BXCAN_IER_FMPIE0 BIT(1)
#define BXCAN_IER_TMEIE BIT(0)
/* Error status register (ESR) bits */
#define BXCAN_ESR_REC_MASK GENMASK(31, 24)
#define BXCAN_ESR_TEC_MASK GENMASK(23, 16)
#define BXCAN_ESR_LEC_MASK GENMASK(6, 4)
#define BXCAN_ESR_BOFF BIT(2)
#define BXCAN_ESR_EPVF BIT(1)
#define BXCAN_ESR_EWGF BIT(0)
/* Bit timing register (BTR) bits */
#define BXCAN_BTR_SILM BIT(31)
#define BXCAN_BTR_LBKM BIT(30)
#define BXCAN_BTR_SJW_MASK GENMASK(25, 24)
#define BXCAN_BTR_TS2_MASK GENMASK(22, 20)
#define BXCAN_BTR_TS1_MASK GENMASK(19, 16)
#define BXCAN_BTR_BRP_MASK GENMASK(9, 0)
/* TX mailbox identifier register (TIxR, x = 0..2) bits */
#define BXCAN_TIxR_STID_MASK GENMASK(31, 21)
#define BXCAN_TIxR_EXID_MASK GENMASK(31, 3)
#define BXCAN_TIxR_IDE BIT(2)
#define BXCAN_TIxR_RTR BIT(1)
#define BXCAN_TIxR_TXRQ BIT(0)
/* TX mailbox data length and time stamp register (TDTxR, x = 0..2 bits */
#define BXCAN_TDTxR_DLC_MASK GENMASK(3, 0)
/* RX FIFO mailbox identifier register (RIxR, x = 0..1 */
#define BXCAN_RIxR_STID_MASK GENMASK(31, 21)
#define BXCAN_RIxR_EXID_MASK GENMASK(31, 3)
#define BXCAN_RIxR_IDE BIT(2)
#define BXCAN_RIxR_RTR BIT(1)
/* RX FIFO mailbox data length and timestamp register (RDTxR, x = 0..1) bits */
#define BXCAN_RDTxR_TIME_MASK GENMASK(31, 16)
#define BXCAN_RDTxR_DLC_MASK GENMASK(3, 0)
#define BXCAN_FMR_REG 0x00
#define BXCAN_FM1R_REG 0x04
#define BXCAN_FS1R_REG 0x0c
#define BXCAN_FFA1R_REG 0x14
#define BXCAN_FA1R_REG 0x1c
#define BXCAN_FiR1_REG(b) (0x40 + (b) * 8)
#define BXCAN_FiR2_REG(b) (0x44 + (b) * 8)
#define BXCAN_FILTER_ID(cfg) ((cfg) == BXCAN_CFG_DUAL_SECONDARY ? 14 : 0)
/* Filter primary register (FMR) bits */
#define BXCAN_FMR_CANSB_MASK GENMASK(13, 8)
#define BXCAN_FMR_FINIT BIT(0)
enum bxcan_lec_code {
BXCAN_LEC_NO_ERROR = 0,
BXCAN_LEC_STUFF_ERROR,
BXCAN_LEC_FORM_ERROR,
BXCAN_LEC_ACK_ERROR,
BXCAN_LEC_BIT1_ERROR,
BXCAN_LEC_BIT0_ERROR,
BXCAN_LEC_CRC_ERROR,
BXCAN_LEC_UNUSED
};
enum bxcan_cfg {
BXCAN_CFG_SINGLE = 0,
BXCAN_CFG_DUAL_PRIMARY,
BXCAN_CFG_DUAL_SECONDARY
};
/* Structure of the message buffer */
struct bxcan_mb {
u32 id; /* can identifier */
u32 dlc; /* data length control and timestamp */
u32 data[2]; /* data */
};
/* Structure of the hardware registers */
struct bxcan_regs {
u32 mcr; /* 0x00 - primary control */
u32 msr; /* 0x04 - primary status */
u32 tsr; /* 0x08 - transmit status */
u32 rf0r; /* 0x0c - FIFO 0 */
u32 rf1r; /* 0x10 - FIFO 1 */
u32 ier; /* 0x14 - interrupt enable */
u32 esr; /* 0x18 - error status */
u32 btr; /* 0x1c - bit timing*/
u32 reserved0[88]; /* 0x20 */
struct bxcan_mb tx_mb[BXCAN_TX_MB_NUM]; /* 0x180 - tx mailbox */
struct bxcan_mb rx_mb[BXCAN_RX_MB_NUM]; /* 0x1b0 - rx mailbox */
};
struct bxcan_priv {
struct can_priv can;
struct can_rx_offload offload;
struct device *dev;
struct net_device *ndev;
struct bxcan_regs __iomem *regs;
struct regmap *gcan;
int tx_irq;
int sce_irq;
enum bxcan_cfg cfg;
struct clk *clk;
spinlock_t rmw_lock; /* lock for read-modify-write operations */
unsigned int tx_head;
unsigned int tx_tail;
u32 timestamp;
};
static const struct can_bittiming_const bxcan_bittiming_const = {
.name = KBUILD_MODNAME,
.tseg1_min = 1,
.tseg1_max = 16,
.tseg2_min = 1,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 1024,
.brp_inc = 1,
};
static inline void bxcan_rmw(struct bxcan_priv *priv, void __iomem *addr,
u32 clear, u32 set)
{
unsigned long flags;
u32 old, val;
spin_lock_irqsave(&priv->rmw_lock, flags);
old = readl(addr);
val = (old & ~clear) | set;
if (val != old)
writel(val, addr);
spin_unlock_irqrestore(&priv->rmw_lock, flags);
}
static void bxcan_disable_filters(struct bxcan_priv *priv, enum bxcan_cfg cfg)
{
unsigned int fid = BXCAN_FILTER_ID(cfg);
u32 fmask = BIT(fid);
regmap_update_bits(priv->gcan, BXCAN_FA1R_REG, fmask, 0);
}
static void bxcan_enable_filters(struct bxcan_priv *priv, enum bxcan_cfg cfg)
{
unsigned int fid = BXCAN_FILTER_ID(cfg);
u32 fmask = BIT(fid);
/* Filter settings:
*
* Accept all messages.
* Assign filter 0 to CAN1 and filter 14 to CAN2 in identifier
* mask mode with 32 bits width.
*/
/* Enter filter initialization mode and assing filters to CAN
* controllers.
*/
regmap_update_bits(priv->gcan, BXCAN_FMR_REG,
BXCAN_FMR_CANSB_MASK | BXCAN_FMR_FINIT,
FIELD_PREP(BXCAN_FMR_CANSB_MASK, 14) |
BXCAN_FMR_FINIT);
/* Deactivate filter */
regmap_update_bits(priv->gcan, BXCAN_FA1R_REG, fmask, 0);
/* Two 32-bit registers in identifier mask mode */
regmap_update_bits(priv->gcan, BXCAN_FM1R_REG, fmask, 0);
/* Single 32-bit scale configuration */
regmap_update_bits(priv->gcan, BXCAN_FS1R_REG, fmask, fmask);
/* Assign filter to FIFO 0 */
regmap_update_bits(priv->gcan, BXCAN_FFA1R_REG, fmask, 0);
/* Accept all messages */
regmap_write(priv->gcan, BXCAN_FiR1_REG(fid), 0);
regmap_write(priv->gcan, BXCAN_FiR2_REG(fid), 0);
/* Activate filter */
regmap_update_bits(priv->gcan, BXCAN_FA1R_REG, fmask, fmask);
/* Exit filter initialization mode */
regmap_update_bits(priv->gcan, BXCAN_FMR_REG, BXCAN_FMR_FINIT, 0);
}
static inline u8 bxcan_get_tx_head(const struct bxcan_priv *priv)
{
return priv->tx_head % BXCAN_TX_MB_NUM;
}
static inline u8 bxcan_get_tx_tail(const struct bxcan_priv *priv)
{
return priv->tx_tail % BXCAN_TX_MB_NUM;
}
static inline u8 bxcan_get_tx_free(const struct bxcan_priv *priv)
{
return BXCAN_TX_MB_NUM - (priv->tx_head - priv->tx_tail);
}
static bool bxcan_tx_busy(const struct bxcan_priv *priv)
{
if (bxcan_get_tx_free(priv) > 0)
return false;
netif_stop_queue(priv->ndev);
/* Memory barrier before checking tx_free (head and tail) */
smp_mb();
if (bxcan_get_tx_free(priv) == 0) {
netdev_dbg(priv->ndev,
"Stopping tx-queue (tx_head=0x%08x, tx_tail=0x%08x, len=%d).\n",
priv->tx_head, priv->tx_tail,
priv->tx_head - priv->tx_tail);
return true;
}
netif_start_queue(priv->ndev);
return false;
}
static int bxcan_chip_softreset(struct bxcan_priv *priv)
{
struct bxcan_regs __iomem *regs = priv->regs;
u32 value;
bxcan_rmw(priv, ®s->mcr, 0, BXCAN_MCR_RESET);
return readx_poll_timeout(readl, ®s->msr, value,
value & BXCAN_MSR_SLAK, BXCAN_TIMEOUT_US,
USEC_PER_SEC);
}
static int bxcan_enter_init_mode(struct bxcan_priv *priv)
{
struct bxcan_regs __iomem *regs = priv->regs;
u32 value;
bxcan_rmw(priv, ®s->mcr, 0, BXCAN_MCR_INRQ);
return readx_poll_timeout(readl, ®s->msr, value,
value & BXCAN_MSR_INAK, BXCAN_TIMEOUT_US,
USEC_PER_SEC);
}
static int bxcan_leave_init_mode(struct bxcan_priv *priv)
{
struct bxcan_regs __iomem *regs = priv->regs;
u32 value;
bxcan_rmw(priv, ®s->mcr, BXCAN_MCR_INRQ, 0);
return readx_poll_timeout(readl, ®s->msr, value,
!(value & BXCAN_MSR_INAK), BXCAN_TIMEOUT_US,
USEC_PER_SEC);
}
static int bxcan_enter_sleep_mode(struct bxcan_priv *priv)
{
struct bxcan_regs __iomem *regs = priv->regs;
u32 value;
bxcan_rmw(priv, ®s->mcr, 0, BXCAN_MCR_SLEEP);
return readx_poll_timeout(readl, ®s->msr, value,
value & BXCAN_MSR_SLAK, BXCAN_TIMEOUT_US,
USEC_PER_SEC);
}
static int bxcan_leave_sleep_mode(struct bxcan_priv *priv)
{
struct bxcan_regs __iomem *regs = priv->regs;
u32 value;
bxcan_rmw(priv, ®s->mcr, BXCAN_MCR_SLEEP, 0);
return readx_poll_timeout(readl, ®s->msr, value,
!(value & BXCAN_MSR_SLAK), BXCAN_TIMEOUT_US,
USEC_PER_SEC);
}
static inline
struct bxcan_priv *rx_offload_to_priv(struct can_rx_offload *offload)
{
return container_of(offload, struct bxcan_priv, offload);
}
static struct sk_buff *bxcan_mailbox_read(struct can_rx_offload *offload,
unsigned int mbxno, u32 *timestamp,
bool drop)
{
struct bxcan_priv *priv = rx_offload_to_priv(offload);
struct bxcan_regs __iomem *regs = priv->regs;
struct bxcan_mb __iomem *mb_regs = ®s->rx_mb[0];
struct sk_buff *skb = NULL;
struct can_frame *cf;
u32 rf0r, id, dlc;
rf0r = readl(®s->rf0r);
if (unlikely(drop)) {
skb = ERR_PTR(-ENOBUFS);
goto mark_as_read;
}
if (!(rf0r & BXCAN_RF0R_FMP0_MASK))
goto mark_as_read;
skb = alloc_can_skb(offload->dev, &cf);
if (unlikely(!skb)) {
skb = ERR_PTR(-ENOMEM);
goto mark_as_read;
}
id = readl(&mb_regs->id);
if (id & BXCAN_RIxR_IDE)
cf->can_id = FIELD_GET(BXCAN_RIxR_EXID_MASK, id) | CAN_EFF_FLAG;
else
cf->can_id = FIELD_GET(BXCAN_RIxR_STID_MASK, id) & CAN_SFF_MASK;
dlc = readl(&mb_regs->dlc);
priv->timestamp = FIELD_GET(BXCAN_RDTxR_TIME_MASK, dlc);
cf->len = can_cc_dlc2len(FIELD_GET(BXCAN_RDTxR_DLC_MASK, dlc));
if (id & BXCAN_RIxR_RTR) {
cf->can_id |= CAN_RTR_FLAG;
} else {
int i, j;
for (i = 0, j = 0; i < cf->len; i += 4, j++)
*(u32 *)(cf->data + i) = readl(&mb_regs->data[j]);
}
mark_as_read:
rf0r |= BXCAN_RF0R_RFOM0;
writel(rf0r, ®s->rf0r);
return skb;
}
static irqreturn_t bxcan_rx_isr(int irq, void *dev_id)
{
struct net_device *ndev = dev_id;
struct bxcan_priv *priv = netdev_priv(ndev);
struct bxcan_regs __iomem *regs = priv->regs;
u32 rf0r;
rf0r = readl(®s->rf0r);
if (!(rf0r & BXCAN_RF0R_FMP0_MASK))
return IRQ_NONE;
can_rx_offload_irq_offload_fifo(&priv->offload);
can_rx_offload_irq_finish(&priv->offload);
return IRQ_HANDLED;
}
static irqreturn_t bxcan_tx_isr(int irq, void *dev_id)
{
struct net_device *ndev = dev_id;
struct bxcan_priv *priv = netdev_priv(ndev);
struct bxcan_regs __iomem *regs = priv->regs;
struct net_device_stats *stats = &ndev->stats;
u32 tsr, rqcp_bit;
int idx;
tsr = readl(®s->tsr);
if (!(tsr & (BXCAN_TSR_RQCP0 | BXCAN_TSR_RQCP1 | BXCAN_TSR_RQCP2)))
return IRQ_NONE;
while (priv->tx_head - priv->tx_tail > 0) {
idx = bxcan_get_tx_tail(priv);
rqcp_bit = BXCAN_TSR_RQCP0 << (idx << 3);
if (!(tsr & rqcp_bit))
break;
stats->tx_packets++;
stats->tx_bytes += can_get_echo_skb(ndev, idx, NULL);
priv->tx_tail++;
}
writel(tsr, ®s->tsr);
if (bxcan_get_tx_free(priv)) {
/* Make sure that anybody stopping the queue after
* this sees the new tx_ring->tail.
*/
smp_mb();
netif_wake_queue(ndev);
}
return IRQ_HANDLED;
}
static void bxcan_handle_state_change(struct net_device *ndev, u32 esr)
{
struct bxcan_priv *priv = netdev_priv(ndev);
enum can_state new_state = priv->can.state;
struct can_berr_counter bec;
enum can_state rx_state, tx_state;
struct sk_buff *skb;
struct can_frame *cf;
/* Early exit if no error flag is set */
if (!(esr & (BXCAN_ESR_EWGF | BXCAN_ESR_EPVF | BXCAN_ESR_BOFF)))
return;
bec.txerr = FIELD_GET(BXCAN_ESR_TEC_MASK, esr);
bec.rxerr = FIELD_GET(BXCAN_ESR_REC_MASK, esr);
if (esr & BXCAN_ESR_BOFF)
new_state = CAN_STATE_BUS_OFF;
else if (esr & BXCAN_ESR_EPVF)
new_state = CAN_STATE_ERROR_PASSIVE;
else if (esr & BXCAN_ESR_EWGF)
new_state = CAN_STATE_ERROR_WARNING;
/* state hasn't changed */
if (unlikely(new_state == priv->can.state))
return;
skb = alloc_can_err_skb(ndev, &cf);
tx_state = bec.txerr >= bec.rxerr ? new_state : 0;
rx_state = bec.txerr <= bec.rxerr ? new_state : 0;
can_change_state(ndev, cf, tx_state, rx_state);
if (new_state == CAN_STATE_BUS_OFF) {
can_bus_off(ndev);
} else if (skb) {
cf->can_id |= CAN_ERR_CNT;
cf->data[6] = bec.txerr;
cf->data[7] = bec.rxerr;
}
if (skb) {
int err;
err = can_rx_offload_queue_timestamp(&priv->offload, skb,
priv->timestamp);
if (err)
ndev->stats.rx_fifo_errors++;
}
}
static void bxcan_handle_bus_err(struct net_device *ndev, u32 esr)
{
struct bxcan_priv *priv = netdev_priv(ndev);
enum bxcan_lec_code lec_code;
struct can_frame *cf;
struct sk_buff *skb;
lec_code = FIELD_GET(BXCAN_ESR_LEC_MASK, esr);
/* Early exit if no lec update or no error.
* No lec update means that no CAN bus event has been detected
* since CPU wrote BXCAN_LEC_UNUSED value to status reg.
*/
if (lec_code == BXCAN_LEC_UNUSED || lec_code == BXCAN_LEC_NO_ERROR)
return;
/* Common for all type of bus errors */
priv->can.can_stats.bus_error++;
/* Propagate the error condition to the CAN stack */
skb = alloc_can_err_skb(ndev, &cf);
if (skb)
cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
switch (lec_code) {
case BXCAN_LEC_STUFF_ERROR:
netdev_dbg(ndev, "Stuff error\n");
ndev->stats.rx_errors++;
if (skb)
cf->data[2] |= CAN_ERR_PROT_STUFF;
break;
case BXCAN_LEC_FORM_ERROR:
netdev_dbg(ndev, "Form error\n");
ndev->stats.rx_errors++;
if (skb)
cf->data[2] |= CAN_ERR_PROT_FORM;
break;
case BXCAN_LEC_ACK_ERROR:
netdev_dbg(ndev, "Ack error\n");
ndev->stats.tx_errors++;
if (skb) {
cf->can_id |= CAN_ERR_ACK;
cf->data[3] = CAN_ERR_PROT_LOC_ACK;
}
break;
case BXCAN_LEC_BIT1_ERROR:
netdev_dbg(ndev, "Bit error (recessive)\n");
ndev->stats.tx_errors++;
if (skb)
cf->data[2] |= CAN_ERR_PROT_BIT1;
break;
case BXCAN_LEC_BIT0_ERROR:
netdev_dbg(ndev, "Bit error (dominant)\n");
ndev->stats.tx_errors++;
if (skb)
cf->data[2] |= CAN_ERR_PROT_BIT0;
break;
case BXCAN_LEC_CRC_ERROR:
netdev_dbg(ndev, "CRC error\n");
ndev->stats.rx_errors++;
if (skb) {
cf->data[2] |= CAN_ERR_PROT_BIT;
cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
}
break;
default:
break;
}
if (skb) {
int err;
err = can_rx_offload_queue_timestamp(&priv->offload, skb,
priv->timestamp);
if (err)
ndev->stats.rx_fifo_errors++;
}
}
static irqreturn_t bxcan_state_change_isr(int irq, void *dev_id)
{
struct net_device *ndev = dev_id;
struct bxcan_priv *priv = netdev_priv(ndev);
struct bxcan_regs __iomem *regs = priv->regs;
u32 msr, esr;
msr = readl(®s->msr);
if (!(msr & BXCAN_MSR_ERRI))
return IRQ_NONE;
esr = readl(®s->esr);
bxcan_handle_state_change(ndev, esr);
if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
bxcan_handle_bus_err(ndev, esr);
msr |= BXCAN_MSR_ERRI;
writel(msr, ®s->msr);
can_rx_offload_irq_finish(&priv->offload);
return IRQ_HANDLED;
}
static int bxcan_chip_start(struct net_device *ndev)
{
struct bxcan_priv *priv = netdev_priv(ndev);
struct bxcan_regs __iomem *regs = priv->regs;
struct can_bittiming *bt = &priv->can.bittiming;
u32 clr, set;
int err;
err = bxcan_chip_softreset(priv);
if (err) {
netdev_err(ndev, "failed to reset chip, error %pe\n",
ERR_PTR(err));
return err;
}
err = bxcan_leave_sleep_mode(priv);
if (err) {
netdev_err(ndev, "failed to leave sleep mode, error %pe\n",
ERR_PTR(err));
goto failed_leave_sleep;
}
err = bxcan_enter_init_mode(priv);
if (err) {
netdev_err(ndev, "failed to enter init mode, error %pe\n",
ERR_PTR(err));
goto failed_enter_init;
}
/* MCR
*
* select request order priority
* enable time triggered mode
* bus-off state left on sw request
* sleep mode left on sw request
* retransmit automatically on error
* do not lock RX FIFO on overrun
*/
bxcan_rmw(priv, ®s->mcr,
BXCAN_MCR_ABOM | BXCAN_MCR_AWUM | BXCAN_MCR_NART |
BXCAN_MCR_RFLM, BXCAN_MCR_TTCM | BXCAN_MCR_TXFP);
/* Bit timing register settings */
set = FIELD_PREP(BXCAN_BTR_BRP_MASK, bt->brp - 1) |
FIELD_PREP(BXCAN_BTR_TS1_MASK, bt->phase_seg1 +
bt->prop_seg - 1) |
FIELD_PREP(BXCAN_BTR_TS2_MASK, bt->phase_seg2 - 1) |
FIELD_PREP(BXCAN_BTR_SJW_MASK, bt->sjw - 1);
/* loopback + silent mode put the controller in test mode,
* useful for hot self-test
*/
if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
set |= BXCAN_BTR_LBKM;
if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
set |= BXCAN_BTR_SILM;
bxcan_rmw(priv, ®s->btr, BXCAN_BTR_SILM | BXCAN_BTR_LBKM |
BXCAN_BTR_BRP_MASK | BXCAN_BTR_TS1_MASK | BXCAN_BTR_TS2_MASK |
BXCAN_BTR_SJW_MASK, set);
bxcan_enable_filters(priv, priv->cfg);
/* Clear all internal status */
priv->tx_head = 0;
priv->tx_tail = 0;
err = bxcan_leave_init_mode(priv);
if (err) {
netdev_err(ndev, "failed to leave init mode, error %pe\n",
ERR_PTR(err));
goto failed_leave_init;
}
/* Set a `lec` value so that we can check for updates later */
bxcan_rmw(priv, ®s->esr, BXCAN_ESR_LEC_MASK,
FIELD_PREP(BXCAN_ESR_LEC_MASK, BXCAN_LEC_UNUSED));
/* IER
*
* Enable interrupt for:
* bus-off
* passive error
* warning error
* last error code
* RX FIFO pending message
* TX mailbox empty
*/
clr = BXCAN_IER_WKUIE | BXCAN_IER_SLKIE | BXCAN_IER_FOVIE1 |
BXCAN_IER_FFIE1 | BXCAN_IER_FMPIE1 | BXCAN_IER_FOVIE0 |
BXCAN_IER_FFIE0;
set = BXCAN_IER_ERRIE | BXCAN_IER_BOFIE | BXCAN_IER_EPVIE |
BXCAN_IER_EWGIE | BXCAN_IER_FMPIE0 | BXCAN_IER_TMEIE;
if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
set |= BXCAN_IER_LECIE;
else
clr |= BXCAN_IER_LECIE;
bxcan_rmw(priv, ®s->ier, clr, set);
priv->can.state = CAN_STATE_ERROR_ACTIVE;
return 0;
failed_leave_init:
failed_enter_init:
failed_leave_sleep:
bxcan_chip_softreset(priv);
return err;
}
static int bxcan_open(struct net_device *ndev)
{
struct bxcan_priv *priv = netdev_priv(ndev);
int err;
err = clk_prepare_enable(priv->clk);
if (err) {
netdev_err(ndev, "failed to enable clock, error %pe\n",
ERR_PTR(err));
return err;
}
err = open_candev(ndev);
if (err) {
netdev_err(ndev, "open_candev() failed, error %pe\n",
ERR_PTR(err));
goto out_disable_clock;
}
can_rx_offload_enable(&priv->offload);
err = request_irq(ndev->irq, bxcan_rx_isr, IRQF_SHARED, ndev->name,
ndev);
if (err) {
netdev_err(ndev, "failed to register rx irq(%d), error %pe\n",
ndev->irq, ERR_PTR(err));
goto out_close_candev;
}
err = request_irq(priv->tx_irq, bxcan_tx_isr, IRQF_SHARED, ndev->name,
ndev);
if (err) {
netdev_err(ndev, "failed to register tx irq(%d), error %pe\n",
priv->tx_irq, ERR_PTR(err));
goto out_free_rx_irq;
}
err = request_irq(priv->sce_irq, bxcan_state_change_isr, IRQF_SHARED,
ndev->name, ndev);
if (err) {
netdev_err(ndev, "failed to register sce irq(%d), error %pe\n",
priv->sce_irq, ERR_PTR(err));
goto out_free_tx_irq;
}
err = bxcan_chip_start(ndev);
if (err)
goto out_free_sce_irq;
netif_start_queue(ndev);
return 0;
out_free_sce_irq:
free_irq(priv->sce_irq, ndev);
out_free_tx_irq:
free_irq(priv->tx_irq, ndev);
out_free_rx_irq:
free_irq(ndev->irq, ndev);
out_close_candev:
can_rx_offload_disable(&priv->offload);
close_candev(ndev);
out_disable_clock:
clk_disable_unprepare(priv->clk);
return err;
}
static void bxcan_chip_stop(struct net_device *ndev)
{
struct bxcan_priv *priv = netdev_priv(ndev);
struct bxcan_regs __iomem *regs = priv->regs;
/* disable all interrupts */
bxcan_rmw(priv, ®s->ier, BXCAN_IER_SLKIE | BXCAN_IER_WKUIE |
BXCAN_IER_ERRIE | BXCAN_IER_LECIE | BXCAN_IER_BOFIE |
BXCAN_IER_EPVIE | BXCAN_IER_EWGIE | BXCAN_IER_FOVIE1 |
BXCAN_IER_FFIE1 | BXCAN_IER_FMPIE1 | BXCAN_IER_FOVIE0 |
BXCAN_IER_FFIE0 | BXCAN_IER_FMPIE0 | BXCAN_IER_TMEIE, 0);
bxcan_disable_filters(priv, priv->cfg);
bxcan_enter_sleep_mode(priv);
priv->can.state = CAN_STATE_STOPPED;
}
static int bxcan_stop(struct net_device *ndev)
{
struct bxcan_priv *priv = netdev_priv(ndev);
netif_stop_queue(ndev);
bxcan_chip_stop(ndev);
free_irq(ndev->irq, ndev);
free_irq(priv->tx_irq, ndev);
free_irq(priv->sce_irq, ndev);
can_rx_offload_disable(&priv->offload);
close_candev(ndev);
clk_disable_unprepare(priv->clk);
return 0;
}
static netdev_tx_t bxcan_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct bxcan_priv *priv = netdev_priv(ndev);
struct can_frame *cf = (struct can_frame *)skb->data;
struct bxcan_regs __iomem *regs = priv->regs;
struct bxcan_mb __iomem *mb_regs;
unsigned int idx;
u32 id;
int i, j;
if (can_dropped_invalid_skb(ndev, skb))
return NETDEV_TX_OK;
if (bxcan_tx_busy(priv))
return NETDEV_TX_BUSY;
idx = bxcan_get_tx_head(priv);
priv->tx_head++;
if (bxcan_get_tx_free(priv) == 0)
netif_stop_queue(ndev);
mb_regs = ®s->tx_mb[idx];
if (cf->can_id & CAN_EFF_FLAG)
id = FIELD_PREP(BXCAN_TIxR_EXID_MASK, cf->can_id) |
BXCAN_TIxR_IDE;
else
id = FIELD_PREP(BXCAN_TIxR_STID_MASK, cf->can_id);
if (cf->can_id & CAN_RTR_FLAG) { /* Remote transmission request */
id |= BXCAN_TIxR_RTR;
} else {
for (i = 0, j = 0; i < cf->len; i += 4, j++)
writel(*(u32 *)(cf->data + i), &mb_regs->data[j]);
}
writel(FIELD_PREP(BXCAN_TDTxR_DLC_MASK, cf->len), &mb_regs->dlc);
can_put_echo_skb(skb, ndev, idx, 0);
/* Start transmission */
writel(id | BXCAN_TIxR_TXRQ, &mb_regs->id);
return NETDEV_TX_OK;
}
static const struct net_device_ops bxcan_netdev_ops = {
.ndo_open = bxcan_open,
.ndo_stop = bxcan_stop,
.ndo_start_xmit = bxcan_start_xmit,
.ndo_change_mtu = can_change_mtu,
};
static const struct ethtool_ops bxcan_ethtool_ops = {
.get_ts_info = ethtool_op_get_ts_info,
};
static int bxcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
{
int err;
switch (mode) {
case CAN_MODE_START:
err = bxcan_chip_start(ndev);
if (err)
return err;
netif_wake_queue(ndev);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int bxcan_get_berr_counter(const struct net_device *ndev,
struct can_berr_counter *bec)
{
struct bxcan_priv *priv = netdev_priv(ndev);
struct bxcan_regs __iomem *regs = priv->regs;
u32 esr;
int err;
err = clk_prepare_enable(priv->clk);
if (err)
return err;
esr = readl(®s->esr);
bec->txerr = FIELD_GET(BXCAN_ESR_TEC_MASK, esr);
bec->rxerr = FIELD_GET(BXCAN_ESR_REC_MASK, esr);
clk_disable_unprepare(priv->clk);
return 0;
}
static int bxcan_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct device *dev = &pdev->dev;
struct net_device *ndev;
struct bxcan_priv *priv;
struct clk *clk = NULL;
void __iomem *regs;
struct regmap *gcan;
enum bxcan_cfg cfg;
int err, rx_irq, tx_irq, sce_irq;
regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(regs)) {
dev_err(dev, "failed to get base address\n");
return PTR_ERR(regs);
}
gcan = syscon_regmap_lookup_by_phandle(np, "st,gcan");
if (IS_ERR(gcan)) {
dev_err(dev, "failed to get shared memory base address\n");
return PTR_ERR(gcan);
}
if (of_property_read_bool(np, "st,can-primary"))
cfg = BXCAN_CFG_DUAL_PRIMARY;
else if (of_property_read_bool(np, "st,can-secondary"))
cfg = BXCAN_CFG_DUAL_SECONDARY;
else
cfg = BXCAN_CFG_SINGLE;
clk = devm_clk_get(dev, NULL);
if (IS_ERR(clk)) {
dev_err(dev, "failed to get clock\n");
return PTR_ERR(clk);
}
rx_irq = platform_get_irq_byname(pdev, "rx0");
if (rx_irq < 0)
return rx_irq;
tx_irq = platform_get_irq_byname(pdev, "tx");
if (tx_irq < 0)
return tx_irq;
sce_irq = platform_get_irq_byname(pdev, "sce");
if (sce_irq < 0)
return sce_irq;
ndev = alloc_candev(sizeof(struct bxcan_priv), BXCAN_TX_MB_NUM);
if (!ndev) {
dev_err(dev, "alloc_candev() failed\n");
return -ENOMEM;
}
priv = netdev_priv(ndev);
platform_set_drvdata(pdev, ndev);
SET_NETDEV_DEV(ndev, dev);
ndev->netdev_ops = &bxcan_netdev_ops;
ndev->ethtool_ops = &bxcan_ethtool_ops;
ndev->irq = rx_irq;
ndev->flags |= IFF_ECHO;
priv->dev = dev;
priv->ndev = ndev;
priv->regs = regs;
priv->gcan = gcan;
priv->clk = clk;
priv->tx_irq = tx_irq;
priv->sce_irq = sce_irq;
priv->cfg = cfg;
priv->can.clock.freq = clk_get_rate(clk);
spin_lock_init(&priv->rmw_lock);
priv->tx_head = 0;
priv->tx_tail = 0;
priv->can.bittiming_const = &bxcan_bittiming_const;
priv->can.do_set_mode = bxcan_do_set_mode;
priv->can.do_get_berr_counter = bxcan_get_berr_counter;
priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_BERR_REPORTING;
priv->offload.mailbox_read = bxcan_mailbox_read;
err = can_rx_offload_add_fifo(ndev, &priv->offload, BXCAN_NAPI_WEIGHT);
if (err) {
dev_err(dev, "failed to add FIFO rx_offload\n");
goto out_free_candev;
}
err = register_candev(ndev);
if (err) {
dev_err(dev, "failed to register netdev\n");
goto out_can_rx_offload_del;
}
dev_info(dev, "clk: %d Hz, IRQs: %d, %d, %d\n", priv->can.clock.freq,
tx_irq, rx_irq, sce_irq);
return 0;
out_can_rx_offload_del:
can_rx_offload_del(&priv->offload);
out_free_candev:
free_candev(ndev);
return err;
}
static void bxcan_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct bxcan_priv *priv = netdev_priv(ndev);
unregister_candev(ndev);
clk_disable_unprepare(priv->clk);
can_rx_offload_del(&priv->offload);
free_candev(ndev);
}
static int __maybe_unused bxcan_suspend(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct bxcan_priv *priv = netdev_priv(ndev);
if (!netif_running(ndev))
return 0;
netif_stop_queue(ndev);
netif_device_detach(ndev);
bxcan_enter_sleep_mode(priv);
priv->can.state = CAN_STATE_SLEEPING;
clk_disable_unprepare(priv->clk);
return 0;
}
static int __maybe_unused bxcan_resume(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct bxcan_priv *priv = netdev_priv(ndev);
if (!netif_running(ndev))
return 0;
clk_prepare_enable(priv->clk);
bxcan_leave_sleep_mode(priv);
priv->can.state = CAN_STATE_ERROR_ACTIVE;
netif_device_attach(ndev);
netif_start_queue(ndev);
return 0;
}
static SIMPLE_DEV_PM_OPS(bxcan_pm_ops, bxcan_suspend, bxcan_resume);
static const struct of_device_id bxcan_of_match[] = {
{.compatible = "st,stm32f4-bxcan"},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, bxcan_of_match);
static struct platform_driver bxcan_driver = {
.driver = {
.name = KBUILD_MODNAME,
.pm = &bxcan_pm_ops,
.of_match_table = bxcan_of_match,
},
.probe = bxcan_probe,
.remove_new = bxcan_remove,
};
module_platform_driver(bxcan_driver);
MODULE_AUTHOR("Dario Binacchi <dario.binacchi@amarulasolutions.com>");
MODULE_DESCRIPTION("STMicroelectronics Basic Extended CAN controller driver");
MODULE_LICENSE("GPL");