Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2020 Invensense, Inc. */ #include <linux/errno.h> #include <linux/kernel.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/iio/common/inv_sensors_timestamp.h> /* compute jitter, min and max following jitter in per mille */ #define INV_SENSORS_TIMESTAMP_JITTER(_val, _jitter) \ (div_s64((_val) * (_jitter), 1000)) #define INV_SENSORS_TIMESTAMP_MIN(_val, _jitter) \ (((_val) * (1000 - (_jitter))) / 1000) #define INV_SENSORS_TIMESTAMP_MAX(_val, _jitter) \ (((_val) * (1000 + (_jitter))) / 1000) /* Add a new value inside an accumulator and update the estimate value */ static void inv_update_acc(struct inv_sensors_timestamp_acc *acc, uint32_t val) { uint64_t sum = 0; size_t i; acc->values[acc->idx++] = val; if (acc->idx >= ARRAY_SIZE(acc->values)) acc->idx = 0; /* compute the mean of all stored values, use 0 as empty slot */ for (i = 0; i < ARRAY_SIZE(acc->values); ++i) { if (acc->values[i] == 0) break; sum += acc->values[i]; } acc->val = div_u64(sum, i); } void inv_sensors_timestamp_init(struct inv_sensors_timestamp *ts, const struct inv_sensors_timestamp_chip *chip) { memset(ts, 0, sizeof(*ts)); /* save chip parameters and compute min and max clock period */ ts->chip = *chip; ts->min_period = INV_SENSORS_TIMESTAMP_MIN(chip->clock_period, chip->jitter); ts->max_period = INV_SENSORS_TIMESTAMP_MAX(chip->clock_period, chip->jitter); /* current multiplier and period values after reset */ ts->mult = chip->init_period / chip->clock_period; ts->period = chip->init_period; /* use theoretical value for chip period */ inv_update_acc(&ts->chip_period, chip->clock_period); } EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_init, IIO_INV_SENSORS_TIMESTAMP); int inv_sensors_timestamp_update_odr(struct inv_sensors_timestamp *ts, uint32_t period, bool fifo) { uint32_t mult; /* when FIFO is on, prevent odr change if one is already pending */ if (fifo && ts->new_mult != 0) return -EAGAIN; mult = period / ts->chip.clock_period; if (mult != ts->mult) ts->new_mult = mult; return 0; } EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_update_odr, IIO_INV_SENSORS_TIMESTAMP); static bool inv_validate_period(struct inv_sensors_timestamp *ts, uint32_t period) { uint32_t period_min, period_max; /* check that period is acceptable */ period_min = ts->min_period * ts->mult; period_max = ts->max_period * ts->mult; if (period > period_min && period < period_max) return true; else return false; } static bool inv_update_chip_period(struct inv_sensors_timestamp *ts, uint32_t period) { uint32_t new_chip_period; if (!inv_validate_period(ts, period)) return false; /* update chip internal period estimation */ new_chip_period = period / ts->mult; inv_update_acc(&ts->chip_period, new_chip_period); ts->period = ts->mult * ts->chip_period.val; return true; } static void inv_align_timestamp_it(struct inv_sensors_timestamp *ts) { const int64_t period_min = ts->min_period * ts->mult; const int64_t period_max = ts->max_period * ts->mult; int64_t add_max, sub_max; int64_t delta, jitter; int64_t adjust; /* delta time between last sample and last interrupt */ delta = ts->it.lo - ts->timestamp; /* adjust timestamp while respecting jitter */ add_max = period_max - (int64_t)ts->period; sub_max = period_min - (int64_t)ts->period; jitter = INV_SENSORS_TIMESTAMP_JITTER((int64_t)ts->period, ts->chip.jitter); if (delta > jitter) adjust = add_max; else if (delta < -jitter) adjust = sub_max; else adjust = 0; ts->timestamp += adjust; } void inv_sensors_timestamp_interrupt(struct inv_sensors_timestamp *ts, size_t sample_nb, int64_t timestamp) { struct inv_sensors_timestamp_interval *it; int64_t delta, interval; uint32_t period; bool valid = false; if (sample_nb == 0) return; /* update interrupt timestamp and compute chip and sensor periods */ it = &ts->it; it->lo = it->up; it->up = timestamp; delta = it->up - it->lo; if (it->lo != 0) { /* compute period: delta time divided by number of samples */ period = div_s64(delta, sample_nb); valid = inv_update_chip_period(ts, period); } /* no previous data, compute theoritical value from interrupt */ if (ts->timestamp == 0) { /* elapsed time: sensor period * sensor samples number */ interval = (int64_t)ts->period * (int64_t)sample_nb; ts->timestamp = it->up - interval; return; } /* if interrupt interval is valid, sync with interrupt timestamp */ if (valid) inv_align_timestamp_it(ts); } EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_interrupt, IIO_INV_SENSORS_TIMESTAMP); void inv_sensors_timestamp_apply_odr(struct inv_sensors_timestamp *ts, uint32_t fifo_period, size_t fifo_nb, unsigned int fifo_no) { int64_t interval; uint32_t fifo_mult; if (ts->new_mult == 0) return; /* update to new multiplier and update period */ ts->mult = ts->new_mult; ts->new_mult = 0; ts->period = ts->mult * ts->chip_period.val; /* * After ODR change the time interval with the previous sample is * undertermined (depends when the change occures). So we compute the * timestamp from the current interrupt using the new FIFO period, the * total number of samples and the current sample numero. */ if (ts->timestamp != 0) { /* compute measured fifo period */ fifo_mult = fifo_period / ts->chip.clock_period; fifo_period = fifo_mult * ts->chip_period.val; /* computes time interval between interrupt and this sample */ interval = (int64_t)(fifo_nb - fifo_no) * (int64_t)fifo_period; ts->timestamp = ts->it.up - interval; } } EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_apply_odr, IIO_INV_SENSORS_TIMESTAMP); MODULE_AUTHOR("InvenSense, Inc."); MODULE_DESCRIPTION("InvenSense sensors timestamp module"); MODULE_LICENSE("GPL"); |