Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 | // SPDX-License-Identifier: GPL-2.0-or-later /* Disassemble SPU instructions Copyright 2006 Free Software Foundation, Inc. This file is part of GDB, GAS, and the GNU binutils. */ #include <linux/string.h> #include "nonstdio.h" #include "ansidecl.h" #include "spu.h" #include "dis-asm.h" /* This file provides a disassembler function which uses the disassembler interface defined in dis-asm.h. */ extern const struct spu_opcode spu_opcodes[]; extern const int spu_num_opcodes; #define SPU_DISASM_TBL_SIZE (1 << 11) static const struct spu_opcode *spu_disassemble_table[SPU_DISASM_TBL_SIZE]; static void init_spu_disassemble (void) { int i; /* If two instructions have the same opcode then we prefer the first * one. In most cases it is just an alternate mnemonic. */ for (i = 0; i < spu_num_opcodes; i++) { int o = spu_opcodes[i].opcode; if (o >= SPU_DISASM_TBL_SIZE) continue; /* abort (); */ if (spu_disassemble_table[o] == 0) spu_disassemble_table[o] = &spu_opcodes[i]; } } /* Determine the instruction from the 10 least significant bits. */ static const struct spu_opcode * get_index_for_opcode (unsigned int insn) { const struct spu_opcode *index; unsigned int opcode = insn >> (32-11); /* Init the table. This assumes that element 0/opcode 0 (currently * NOP) is always used */ if (spu_disassemble_table[0] == 0) init_spu_disassemble (); if ((index = spu_disassemble_table[opcode & 0x780]) != 0 && index->insn_type == RRR) return index; if ((index = spu_disassemble_table[opcode & 0x7f0]) != 0 && (index->insn_type == RI18 || index->insn_type == LBT)) return index; if ((index = spu_disassemble_table[opcode & 0x7f8]) != 0 && index->insn_type == RI10) return index; if ((index = spu_disassemble_table[opcode & 0x7fc]) != 0 && (index->insn_type == RI16)) return index; if ((index = spu_disassemble_table[opcode & 0x7fe]) != 0 && (index->insn_type == RI8)) return index; if ((index = spu_disassemble_table[opcode & 0x7ff]) != 0) return index; return NULL; } /* Print a Spu instruction. */ int print_insn_spu (unsigned long insn, unsigned long memaddr) { int value; int hex_value; const struct spu_opcode *index; enum spu_insns tag; index = get_index_for_opcode (insn); if (index == 0) { printf(".long 0x%lx", insn); } else { int i; int paren = 0; tag = (enum spu_insns)(index - spu_opcodes); printf("%s", index->mnemonic); if (tag == M_BI || tag == M_BISL || tag == M_IRET || tag == M_BISLED || tag == M_BIHNZ || tag == M_BIHZ || tag == M_BINZ || tag == M_BIZ || tag == M_SYNC || tag == M_HBR) { int fb = (insn >> (32-18)) & 0x7f; if (fb & 0x40) printf(tag == M_SYNC ? "c" : "p"); if (fb & 0x20) printf("d"); if (fb & 0x10) printf("e"); } if (index->arg[0] != 0) printf("\t"); hex_value = 0; for (i = 1; i <= index->arg[0]; i++) { int arg = index->arg[i]; if (arg != A_P && !paren && i > 1) printf(","); switch (arg) { case A_T: printf("$%lu", DECODE_INSN_RT (insn)); break; case A_A: printf("$%lu", DECODE_INSN_RA (insn)); break; case A_B: printf("$%lu", DECODE_INSN_RB (insn)); break; case A_C: printf("$%lu", DECODE_INSN_RC (insn)); break; case A_S: printf("$sp%lu", DECODE_INSN_RA (insn)); break; case A_H: printf("$ch%lu", DECODE_INSN_RA (insn)); break; case A_P: paren++; printf("("); break; case A_U7A: printf("%lu", 173 - DECODE_INSN_U8 (insn)); break; case A_U7B: printf("%lu", 155 - DECODE_INSN_U8 (insn)); break; case A_S3: case A_S6: case A_S7: case A_S7N: case A_U3: case A_U5: case A_U6: case A_U7: hex_value = DECODE_INSN_I7 (insn); printf("%d", hex_value); break; case A_S11: print_address(memaddr + DECODE_INSN_I9a (insn) * 4); break; case A_S11I: print_address(memaddr + DECODE_INSN_I9b (insn) * 4); break; case A_S10: case A_S10B: hex_value = DECODE_INSN_I10 (insn); printf("%d", hex_value); break; case A_S14: hex_value = DECODE_INSN_I10 (insn) * 16; printf("%d", hex_value); break; case A_S16: hex_value = DECODE_INSN_I16 (insn); printf("%d", hex_value); break; case A_X16: hex_value = DECODE_INSN_U16 (insn); printf("%u", hex_value); break; case A_R18: value = DECODE_INSN_I16 (insn) * 4; if (value == 0) printf("%d", value); else { hex_value = memaddr + value; print_address(hex_value & 0x3ffff); } break; case A_S18: value = DECODE_INSN_U16 (insn) * 4; if (value == 0) printf("%d", value); else print_address(value); break; case A_U18: value = DECODE_INSN_U18 (insn); if (value == 0 || 1) { hex_value = value; printf("%u", value); } else print_address(value); break; case A_U14: hex_value = DECODE_INSN_U14 (insn); printf("%u", hex_value); break; } if (arg != A_P && paren) { printf(")"); paren--; } } if (hex_value > 16) printf("\t# %x", hex_value); } return 4; } |