Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 | // SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2007 - 2018 Intel Corporation. */ #include <linux/bitfield.h> #include <linux/delay.h> #include <linux/if_ether.h> #include "e1000_mac.h" #include "e1000_nvm.h" /** * igb_raise_eec_clk - Raise EEPROM clock * @hw: pointer to the HW structure * @eecd: pointer to the EEPROM * * Enable/Raise the EEPROM clock bit. **/ static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) { *eecd = *eecd | E1000_EECD_SK; wr32(E1000_EECD, *eecd); wrfl(); udelay(hw->nvm.delay_usec); } /** * igb_lower_eec_clk - Lower EEPROM clock * @hw: pointer to the HW structure * @eecd: pointer to the EEPROM * * Clear/Lower the EEPROM clock bit. **/ static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) { *eecd = *eecd & ~E1000_EECD_SK; wr32(E1000_EECD, *eecd); wrfl(); udelay(hw->nvm.delay_usec); } /** * igb_shift_out_eec_bits - Shift data bits our to the EEPROM * @hw: pointer to the HW structure * @data: data to send to the EEPROM * @count: number of bits to shift out * * We need to shift 'count' bits out to the EEPROM. So, the value in the * "data" parameter will be shifted out to the EEPROM one bit at a time. * In order to do this, "data" must be broken down into bits. **/ static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) { struct e1000_nvm_info *nvm = &hw->nvm; u32 eecd = rd32(E1000_EECD); u32 mask; mask = 1u << (count - 1); if (nvm->type == e1000_nvm_eeprom_spi) eecd |= E1000_EECD_DO; do { eecd &= ~E1000_EECD_DI; if (data & mask) eecd |= E1000_EECD_DI; wr32(E1000_EECD, eecd); wrfl(); udelay(nvm->delay_usec); igb_raise_eec_clk(hw, &eecd); igb_lower_eec_clk(hw, &eecd); mask >>= 1; } while (mask); eecd &= ~E1000_EECD_DI; wr32(E1000_EECD, eecd); } /** * igb_shift_in_eec_bits - Shift data bits in from the EEPROM * @hw: pointer to the HW structure * @count: number of bits to shift in * * In order to read a register from the EEPROM, we need to shift 'count' bits * in from the EEPROM. Bits are "shifted in" by raising the clock input to * the EEPROM (setting the SK bit), and then reading the value of the data out * "DO" bit. During this "shifting in" process the data in "DI" bit should * always be clear. **/ static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count) { u32 eecd; u32 i; u16 data; eecd = rd32(E1000_EECD); eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); data = 0; for (i = 0; i < count; i++) { data <<= 1; igb_raise_eec_clk(hw, &eecd); eecd = rd32(E1000_EECD); eecd &= ~E1000_EECD_DI; if (eecd & E1000_EECD_DO) data |= 1; igb_lower_eec_clk(hw, &eecd); } return data; } /** * igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion * @hw: pointer to the HW structure * @ee_reg: EEPROM flag for polling * * Polls the EEPROM status bit for either read or write completion based * upon the value of 'ee_reg'. **/ static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) { u32 attempts = 100000; u32 i, reg = 0; s32 ret_val = -E1000_ERR_NVM; for (i = 0; i < attempts; i++) { if (ee_reg == E1000_NVM_POLL_READ) reg = rd32(E1000_EERD); else reg = rd32(E1000_EEWR); if (reg & E1000_NVM_RW_REG_DONE) { ret_val = 0; break; } udelay(5); } return ret_val; } /** * igb_acquire_nvm - Generic request for access to EEPROM * @hw: pointer to the HW structure * * Set the EEPROM access request bit and wait for EEPROM access grant bit. * Return successful if access grant bit set, else clear the request for * EEPROM access and return -E1000_ERR_NVM (-1). **/ s32 igb_acquire_nvm(struct e1000_hw *hw) { u32 eecd = rd32(E1000_EECD); s32 timeout = E1000_NVM_GRANT_ATTEMPTS; s32 ret_val = 0; wr32(E1000_EECD, eecd | E1000_EECD_REQ); eecd = rd32(E1000_EECD); while (timeout) { if (eecd & E1000_EECD_GNT) break; udelay(5); eecd = rd32(E1000_EECD); timeout--; } if (!timeout) { eecd &= ~E1000_EECD_REQ; wr32(E1000_EECD, eecd); hw_dbg("Could not acquire NVM grant\n"); ret_val = -E1000_ERR_NVM; } return ret_val; } /** * igb_standby_nvm - Return EEPROM to standby state * @hw: pointer to the HW structure * * Return the EEPROM to a standby state. **/ static void igb_standby_nvm(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; u32 eecd = rd32(E1000_EECD); if (nvm->type == e1000_nvm_eeprom_spi) { /* Toggle CS to flush commands */ eecd |= E1000_EECD_CS; wr32(E1000_EECD, eecd); wrfl(); udelay(nvm->delay_usec); eecd &= ~E1000_EECD_CS; wr32(E1000_EECD, eecd); wrfl(); udelay(nvm->delay_usec); } } /** * e1000_stop_nvm - Terminate EEPROM command * @hw: pointer to the HW structure * * Terminates the current command by inverting the EEPROM's chip select pin. **/ static void e1000_stop_nvm(struct e1000_hw *hw) { u32 eecd; eecd = rd32(E1000_EECD); if (hw->nvm.type == e1000_nvm_eeprom_spi) { /* Pull CS high */ eecd |= E1000_EECD_CS; igb_lower_eec_clk(hw, &eecd); } } /** * igb_release_nvm - Release exclusive access to EEPROM * @hw: pointer to the HW structure * * Stop any current commands to the EEPROM and clear the EEPROM request bit. **/ void igb_release_nvm(struct e1000_hw *hw) { u32 eecd; e1000_stop_nvm(hw); eecd = rd32(E1000_EECD); eecd &= ~E1000_EECD_REQ; wr32(E1000_EECD, eecd); } /** * igb_ready_nvm_eeprom - Prepares EEPROM for read/write * @hw: pointer to the HW structure * * Setups the EEPROM for reading and writing. **/ static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; u32 eecd = rd32(E1000_EECD); s32 ret_val = 0; u16 timeout = 0; u8 spi_stat_reg; if (nvm->type == e1000_nvm_eeprom_spi) { /* Clear SK and CS */ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); wr32(E1000_EECD, eecd); wrfl(); udelay(1); timeout = NVM_MAX_RETRY_SPI; /* Read "Status Register" repeatedly until the LSB is cleared. * The EEPROM will signal that the command has been completed * by clearing bit 0 of the internal status register. If it's * not cleared within 'timeout', then error out. */ while (timeout) { igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, hw->nvm.opcode_bits); spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8); if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) break; udelay(5); igb_standby_nvm(hw); timeout--; } if (!timeout) { hw_dbg("SPI NVM Status error\n"); ret_val = -E1000_ERR_NVM; goto out; } } out: return ret_val; } /** * igb_read_nvm_spi - Read EEPROM's using SPI * @hw: pointer to the HW structure * @offset: offset of word in the EEPROM to read * @words: number of words to read * @data: word read from the EEPROM * * Reads a 16 bit word from the EEPROM. **/ s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; u32 i = 0; s32 ret_val; u16 word_in; u8 read_opcode = NVM_READ_OPCODE_SPI; /* A check for invalid values: offset too large, too many words, * and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { hw_dbg("nvm parameter(s) out of bounds\n"); ret_val = -E1000_ERR_NVM; goto out; } ret_val = nvm->ops.acquire(hw); if (ret_val) goto out; ret_val = igb_ready_nvm_eeprom(hw); if (ret_val) goto release; igb_standby_nvm(hw); if ((nvm->address_bits == 8) && (offset >= 128)) read_opcode |= NVM_A8_OPCODE_SPI; /* Send the READ command (opcode + addr) */ igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); /* Read the data. SPI NVMs increment the address with each byte * read and will roll over if reading beyond the end. This allows * us to read the whole NVM from any offset */ for (i = 0; i < words; i++) { word_in = igb_shift_in_eec_bits(hw, 16); data[i] = (word_in >> 8) | (word_in << 8); } release: nvm->ops.release(hw); out: return ret_val; } /** * igb_read_nvm_eerd - Reads EEPROM using EERD register * @hw: pointer to the HW structure * @offset: offset of word in the EEPROM to read * @words: number of words to read * @data: word read from the EEPROM * * Reads a 16 bit word from the EEPROM using the EERD register. **/ s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; u32 i, eerd = 0; s32 ret_val = 0; /* A check for invalid values: offset too large, too many words, * and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { hw_dbg("nvm parameter(s) out of bounds\n"); ret_val = -E1000_ERR_NVM; goto out; } for (i = 0; i < words; i++) { eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + E1000_NVM_RW_REG_START; wr32(E1000_EERD, eerd); ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); if (ret_val) break; data[i] = (rd32(E1000_EERD) >> E1000_NVM_RW_REG_DATA); } out: return ret_val; } /** * igb_write_nvm_spi - Write to EEPROM using SPI * @hw: pointer to the HW structure * @offset: offset within the EEPROM to be written to * @words: number of words to write * @data: 16 bit word(s) to be written to the EEPROM * * Writes data to EEPROM at offset using SPI interface. * * If e1000_update_nvm_checksum is not called after this function , the * EEPROM will most likley contain an invalid checksum. **/ s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; s32 ret_val = -E1000_ERR_NVM; u16 widx = 0; /* A check for invalid values: offset too large, too many words, * and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { hw_dbg("nvm parameter(s) out of bounds\n"); return ret_val; } while (widx < words) { u8 write_opcode = NVM_WRITE_OPCODE_SPI; ret_val = nvm->ops.acquire(hw); if (ret_val) return ret_val; ret_val = igb_ready_nvm_eeprom(hw); if (ret_val) { nvm->ops.release(hw); return ret_val; } igb_standby_nvm(hw); /* Send the WRITE ENABLE command (8 bit opcode) */ igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, nvm->opcode_bits); igb_standby_nvm(hw); /* Some SPI eeproms use the 8th address bit embedded in the * opcode */ if ((nvm->address_bits == 8) && (offset >= 128)) write_opcode |= NVM_A8_OPCODE_SPI; /* Send the Write command (8-bit opcode + addr) */ igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), nvm->address_bits); /* Loop to allow for up to whole page write of eeprom */ while (widx < words) { u16 word_out = data[widx]; word_out = (word_out >> 8) | (word_out << 8); igb_shift_out_eec_bits(hw, word_out, 16); widx++; if ((((offset + widx) * 2) % nvm->page_size) == 0) { igb_standby_nvm(hw); break; } } usleep_range(1000, 2000); nvm->ops.release(hw); } return ret_val; } /** * igb_read_part_string - Read device part number * @hw: pointer to the HW structure * @part_num: pointer to device part number * @part_num_size: size of part number buffer * * Reads the product board assembly (PBA) number from the EEPROM and stores * the value in part_num. **/ s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size) { s32 ret_val; u16 nvm_data; u16 pointer; u16 offset; u16 length; if (part_num == NULL) { hw_dbg("PBA string buffer was null\n"); ret_val = E1000_ERR_INVALID_ARGUMENT; goto out; } ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); if (ret_val) { hw_dbg("NVM Read Error\n"); goto out; } ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer); if (ret_val) { hw_dbg("NVM Read Error\n"); goto out; } /* if nvm_data is not ptr guard the PBA must be in legacy format which * means pointer is actually our second data word for the PBA number * and we can decode it into an ascii string */ if (nvm_data != NVM_PBA_PTR_GUARD) { hw_dbg("NVM PBA number is not stored as string\n"); /* we will need 11 characters to store the PBA */ if (part_num_size < 11) { hw_dbg("PBA string buffer too small\n"); return E1000_ERR_NO_SPACE; } /* extract hex string from data and pointer */ part_num[0] = (nvm_data >> 12) & 0xF; part_num[1] = (nvm_data >> 8) & 0xF; part_num[2] = (nvm_data >> 4) & 0xF; part_num[3] = nvm_data & 0xF; part_num[4] = (pointer >> 12) & 0xF; part_num[5] = (pointer >> 8) & 0xF; part_num[6] = '-'; part_num[7] = 0; part_num[8] = (pointer >> 4) & 0xF; part_num[9] = pointer & 0xF; /* put a null character on the end of our string */ part_num[10] = '\0'; /* switch all the data but the '-' to hex char */ for (offset = 0; offset < 10; offset++) { if (part_num[offset] < 0xA) part_num[offset] += '0'; else if (part_num[offset] < 0x10) part_num[offset] += 'A' - 0xA; } goto out; } ret_val = hw->nvm.ops.read(hw, pointer, 1, &length); if (ret_val) { hw_dbg("NVM Read Error\n"); goto out; } if (length == 0xFFFF || length == 0) { hw_dbg("NVM PBA number section invalid length\n"); ret_val = E1000_ERR_NVM_PBA_SECTION; goto out; } /* check if part_num buffer is big enough */ if (part_num_size < (((u32)length * 2) - 1)) { hw_dbg("PBA string buffer too small\n"); ret_val = E1000_ERR_NO_SPACE; goto out; } /* trim pba length from start of string */ pointer++; length--; for (offset = 0; offset < length; offset++) { ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data); if (ret_val) { hw_dbg("NVM Read Error\n"); goto out; } part_num[offset * 2] = (u8)(nvm_data >> 8); part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); } part_num[offset * 2] = '\0'; out: return ret_val; } /** * igb_read_mac_addr - Read device MAC address * @hw: pointer to the HW structure * * Reads the device MAC address from the EEPROM and stores the value. * Since devices with two ports use the same EEPROM, we increment the * last bit in the MAC address for the second port. **/ s32 igb_read_mac_addr(struct e1000_hw *hw) { u32 rar_high; u32 rar_low; u16 i; rar_high = rd32(E1000_RAH(0)); rar_low = rd32(E1000_RAL(0)); for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); for (i = 0; i < ETH_ALEN; i++) hw->mac.addr[i] = hw->mac.perm_addr[i]; return 0; } /** * igb_validate_nvm_checksum - Validate EEPROM checksum * @hw: pointer to the HW structure * * Calculates the EEPROM checksum by reading/adding each word of the EEPROM * and then verifies that the sum of the EEPROM is equal to 0xBABA. **/ s32 igb_validate_nvm_checksum(struct e1000_hw *hw) { s32 ret_val = 0; u16 checksum = 0; u16 i, nvm_data; for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); if (ret_val) { hw_dbg("NVM Read Error\n"); goto out; } checksum += nvm_data; } if (checksum != (u16) NVM_SUM) { hw_dbg("NVM Checksum Invalid\n"); ret_val = -E1000_ERR_NVM; goto out; } out: return ret_val; } /** * igb_update_nvm_checksum - Update EEPROM checksum * @hw: pointer to the HW structure * * Updates the EEPROM checksum by reading/adding each word of the EEPROM * up to the checksum. Then calculates the EEPROM checksum and writes the * value to the EEPROM. **/ s32 igb_update_nvm_checksum(struct e1000_hw *hw) { s32 ret_val; u16 checksum = 0; u16 i, nvm_data; for (i = 0; i < NVM_CHECKSUM_REG; i++) { ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); if (ret_val) { hw_dbg("NVM Read Error while updating checksum.\n"); goto out; } checksum += nvm_data; } checksum = (u16) NVM_SUM - checksum; ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); if (ret_val) hw_dbg("NVM Write Error while updating checksum.\n"); out: return ret_val; } /** * igb_get_fw_version - Get firmware version information * @hw: pointer to the HW structure * @fw_vers: pointer to output structure * * unsupported MAC types will return all 0 version structure **/ void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers) { u16 eeprom_verh, eeprom_verl, etrack_test, fw_version; u8 q, hval, rem, result; u16 comb_verh, comb_verl, comb_offset; memset(fw_vers, 0, sizeof(struct e1000_fw_version)); /* basic eeprom version numbers and bits used vary by part and by tool * used to create the nvm images. Check which data format we have. */ hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); switch (hw->mac.type) { case e1000_i211: igb_read_invm_version(hw, fw_vers); return; case e1000_82575: case e1000_82576: case e1000_82580: /* Use this format, unless EETRACK ID exists, * then use alternate format */ if ((etrack_test & NVM_MAJOR_MASK) != NVM_ETRACK_VALID) { hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); fw_vers->eep_major = FIELD_GET(NVM_MAJOR_MASK, fw_version); fw_vers->eep_minor = FIELD_GET(NVM_MINOR_MASK, fw_version); fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK); goto etrack_id; } break; case e1000_i210: if (!(igb_get_flash_presence_i210(hw))) { igb_read_invm_version(hw, fw_vers); return; } fallthrough; case e1000_i350: /* find combo image version */ hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset); if ((comb_offset != 0x0) && (comb_offset != NVM_VER_INVALID)) { hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset + 1), 1, &comb_verh); hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset), 1, &comb_verl); /* get Option Rom version if it exists and is valid */ if ((comb_verh && comb_verl) && ((comb_verh != NVM_VER_INVALID) && (comb_verl != NVM_VER_INVALID))) { fw_vers->or_valid = true; fw_vers->or_major = comb_verl >> NVM_COMB_VER_SHFT; fw_vers->or_build = (comb_verl << NVM_COMB_VER_SHFT) | (comb_verh >> NVM_COMB_VER_SHFT); fw_vers->or_patch = comb_verh & NVM_COMB_VER_MASK; } } break; default: return; } hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); fw_vers->eep_major = FIELD_GET(NVM_MAJOR_MASK, fw_version); /* check for old style version format in newer images*/ if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) { eeprom_verl = (fw_version & NVM_COMB_VER_MASK); } else { eeprom_verl = FIELD_GET(NVM_MINOR_MASK, fw_version); } /* Convert minor value to hex before assigning to output struct * Val to be converted will not be higher than 99, per tool output */ q = eeprom_verl / NVM_HEX_CONV; hval = q * NVM_HEX_TENS; rem = eeprom_verl % NVM_HEX_CONV; result = hval + rem; fw_vers->eep_minor = result; etrack_id: if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) { hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl); hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh); fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) | eeprom_verl; } } |