Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 | // SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */ #include <linux/etherdevice.h> #include <net/ip6_checksum.h> #include <net/page_pool/helpers.h> #include <net/inet_ecn.h> #include <linux/iopoll.h> #include <linux/sctp.h> #include <linux/pci.h> #include <net/tcp.h> #include <net/ip.h> #include "wx_type.h" #include "wx_lib.h" #include "wx_hw.h" /* Lookup table mapping the HW PTYPE to the bit field for decoding */ static struct wx_dec_ptype wx_ptype_lookup[256] = { /* L2: mac */ [0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), [0x12] = WX_PTT(L2, NONE, NONE, NONE, TS, PAY2), [0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), [0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), [0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), [0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), [0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), /* L2: ethertype filter */ [0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), /* L3: ip non-tunnel */ [0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3), [0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3), [0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP, PAY4), [0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP, PAY4), [0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4), [0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3), [0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3), [0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP, PAY3), [0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP, PAY4), [0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4), /* L2: fcoe */ [0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3), [0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3), /* IPv4 --> IPv4/IPv6 */ [0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3), [0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3), [0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP, PAY4), [0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP, PAY4), [0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4), [0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3), [0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3), [0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP, PAY4), [0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP, PAY4), [0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4), /* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */ [0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3), [0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3), [0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3), [0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP, PAY4), [0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP, PAY4), [0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4), [0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3), [0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3), [0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP, PAY4), [0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP, PAY4), [0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4), /* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */ [0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3), [0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3), [0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3), [0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP, PAY4), [0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP, PAY4), [0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4), [0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3), [0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3), [0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP, PAY4), [0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP, PAY4), [0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4), /* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */ [0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3), [0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3), [0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3), [0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP, PAY4), [0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP, PAY4), [0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4), [0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3), [0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3), [0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP, PAY4), [0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP, PAY4), [0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4), /* IPv6 --> IPv4/IPv6 */ [0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3), [0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3), [0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP, PAY4), [0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP, PAY4), [0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4), [0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3), [0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3), [0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP, PAY4), [0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP, PAY4), [0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4), /* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */ [0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3), [0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3), [0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3), [0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP, PAY4), [0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP, PAY4), [0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4), [0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3), [0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3), [0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP, PAY4), [0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP, PAY4), [0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4), /* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */ [0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3), [0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3), [0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3), [0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP, PAY4), [0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP, PAY4), [0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4), [0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3), [0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3), [0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP, PAY4), [0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP, PAY4), [0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4), /* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */ [0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3), [0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3), [0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3), [0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP, PAY4), [0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP, PAY4), [0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4), [0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3), [0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3), [0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP, PAY4), [0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP, PAY4), [0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4), }; static struct wx_dec_ptype wx_decode_ptype(const u8 ptype) { return wx_ptype_lookup[ptype]; } /* wx_test_staterr - tests bits in Rx descriptor status and error fields */ static __le32 wx_test_staterr(union wx_rx_desc *rx_desc, const u32 stat_err_bits) { return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits); } static void wx_dma_sync_frag(struct wx_ring *rx_ring, struct wx_rx_buffer *rx_buffer) { struct sk_buff *skb = rx_buffer->skb; skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; dma_sync_single_range_for_cpu(rx_ring->dev, WX_CB(skb)->dma, skb_frag_off(frag), skb_frag_size(frag), DMA_FROM_DEVICE); /* If the page was released, just unmap it. */ if (unlikely(WX_CB(skb)->page_released)) page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); } static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring, union wx_rx_desc *rx_desc, struct sk_buff **skb, int *rx_buffer_pgcnt) { struct wx_rx_buffer *rx_buffer; unsigned int size; rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; size = le16_to_cpu(rx_desc->wb.upper.length); #if (PAGE_SIZE < 8192) *rx_buffer_pgcnt = page_count(rx_buffer->page); #else *rx_buffer_pgcnt = 0; #endif prefetchw(rx_buffer->page); *skb = rx_buffer->skb; /* Delay unmapping of the first packet. It carries the header * information, HW may still access the header after the writeback. * Only unmap it when EOP is reached */ if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) { if (!*skb) goto skip_sync; } else { if (*skb) wx_dma_sync_frag(rx_ring, rx_buffer); } /* we are reusing so sync this buffer for CPU use */ dma_sync_single_range_for_cpu(rx_ring->dev, rx_buffer->dma, rx_buffer->page_offset, size, DMA_FROM_DEVICE); skip_sync: return rx_buffer; } static void wx_put_rx_buffer(struct wx_ring *rx_ring, struct wx_rx_buffer *rx_buffer, struct sk_buff *skb, int rx_buffer_pgcnt) { if (!IS_ERR(skb) && WX_CB(skb)->dma == rx_buffer->dma) /* the page has been released from the ring */ WX_CB(skb)->page_released = true; /* clear contents of rx_buffer */ rx_buffer->page = NULL; rx_buffer->skb = NULL; } static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring, struct wx_rx_buffer *rx_buffer, union wx_rx_desc *rx_desc) { unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); #if (PAGE_SIZE < 8192) unsigned int truesize = WX_RX_BUFSZ; #else unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); #endif struct sk_buff *skb = rx_buffer->skb; if (!skb) { void *page_addr = page_address(rx_buffer->page) + rx_buffer->page_offset; /* prefetch first cache line of first page */ prefetch(page_addr); #if L1_CACHE_BYTES < 128 prefetch(page_addr + L1_CACHE_BYTES); #endif /* allocate a skb to store the frags */ skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256); if (unlikely(!skb)) return NULL; /* we will be copying header into skb->data in * pskb_may_pull so it is in our interest to prefetch * it now to avoid a possible cache miss */ prefetchw(skb->data); if (size <= WX_RXBUFFER_256) { memcpy(__skb_put(skb, size), page_addr, ALIGN(size, sizeof(long))); page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, true); return skb; } skb_mark_for_recycle(skb); if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) WX_CB(skb)->dma = rx_buffer->dma; skb_add_rx_frag(skb, 0, rx_buffer->page, rx_buffer->page_offset, size, truesize); goto out; } else { skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, rx_buffer->page_offset, size, truesize); } out: #if (PAGE_SIZE < 8192) /* flip page offset to other buffer */ rx_buffer->page_offset ^= truesize; #else /* move offset up to the next cache line */ rx_buffer->page_offset += truesize; #endif return skb; } static bool wx_alloc_mapped_page(struct wx_ring *rx_ring, struct wx_rx_buffer *bi) { struct page *page = bi->page; dma_addr_t dma; /* since we are recycling buffers we should seldom need to alloc */ if (likely(page)) return true; page = page_pool_dev_alloc_pages(rx_ring->page_pool); WARN_ON(!page); dma = page_pool_get_dma_addr(page); bi->page_dma = dma; bi->page = page; bi->page_offset = 0; return true; } /** * wx_alloc_rx_buffers - Replace used receive buffers * @rx_ring: ring to place buffers on * @cleaned_count: number of buffers to replace **/ void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count) { u16 i = rx_ring->next_to_use; union wx_rx_desc *rx_desc; struct wx_rx_buffer *bi; /* nothing to do */ if (!cleaned_count) return; rx_desc = WX_RX_DESC(rx_ring, i); bi = &rx_ring->rx_buffer_info[i]; i -= rx_ring->count; do { if (!wx_alloc_mapped_page(rx_ring, bi)) break; /* sync the buffer for use by the device */ dma_sync_single_range_for_device(rx_ring->dev, bi->dma, bi->page_offset, WX_RX_BUFSZ, DMA_FROM_DEVICE); rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma + bi->page_offset); rx_desc++; bi++; i++; if (unlikely(!i)) { rx_desc = WX_RX_DESC(rx_ring, 0); bi = rx_ring->rx_buffer_info; i -= rx_ring->count; } /* clear the status bits for the next_to_use descriptor */ rx_desc->wb.upper.status_error = 0; cleaned_count--; } while (cleaned_count); i += rx_ring->count; if (rx_ring->next_to_use != i) { rx_ring->next_to_use = i; /* update next to alloc since we have filled the ring */ rx_ring->next_to_alloc = i; /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); writel(i, rx_ring->tail); } } u16 wx_desc_unused(struct wx_ring *ring) { u16 ntc = ring->next_to_clean; u16 ntu = ring->next_to_use; return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1; } /** * wx_is_non_eop - process handling of non-EOP buffers * @rx_ring: Rx ring being processed * @rx_desc: Rx descriptor for current buffer * @skb: Current socket buffer containing buffer in progress * * This function updates next to clean. If the buffer is an EOP buffer * this function exits returning false, otherwise it will place the * sk_buff in the next buffer to be chained and return true indicating * that this is in fact a non-EOP buffer. **/ static bool wx_is_non_eop(struct wx_ring *rx_ring, union wx_rx_desc *rx_desc, struct sk_buff *skb) { u32 ntc = rx_ring->next_to_clean + 1; /* fetch, update, and store next to clean */ ntc = (ntc < rx_ring->count) ? ntc : 0; rx_ring->next_to_clean = ntc; prefetch(WX_RX_DESC(rx_ring, ntc)); /* if we are the last buffer then there is nothing else to do */ if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))) return false; rx_ring->rx_buffer_info[ntc].skb = skb; rx_ring->rx_stats.non_eop_descs++; return true; } static void wx_pull_tail(struct sk_buff *skb) { skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; unsigned int pull_len; unsigned char *va; /* it is valid to use page_address instead of kmap since we are * working with pages allocated out of the lomem pool per * alloc_page(GFP_ATOMIC) */ va = skb_frag_address(frag); /* we need the header to contain the greater of either ETH_HLEN or * 60 bytes if the skb->len is less than 60 for skb_pad. */ pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256); /* align pull length to size of long to optimize memcpy performance */ skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); /* update all of the pointers */ skb_frag_size_sub(frag, pull_len); skb_frag_off_add(frag, pull_len); skb->data_len -= pull_len; skb->tail += pull_len; } /** * wx_cleanup_headers - Correct corrupted or empty headers * @rx_ring: rx descriptor ring packet is being transacted on * @rx_desc: pointer to the EOP Rx descriptor * @skb: pointer to current skb being fixed * * Check for corrupted packet headers caused by senders on the local L2 * embedded NIC switch not setting up their Tx Descriptors right. These * should be very rare. * * Also address the case where we are pulling data in on pages only * and as such no data is present in the skb header. * * In addition if skb is not at least 60 bytes we need to pad it so that * it is large enough to qualify as a valid Ethernet frame. * * Returns true if an error was encountered and skb was freed. **/ static bool wx_cleanup_headers(struct wx_ring *rx_ring, union wx_rx_desc *rx_desc, struct sk_buff *skb) { struct net_device *netdev = rx_ring->netdev; /* verify that the packet does not have any known errors */ if (!netdev || unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) && !(netdev->features & NETIF_F_RXALL))) { dev_kfree_skb_any(skb); return true; } /* place header in linear portion of buffer */ if (!skb_headlen(skb)) wx_pull_tail(skb); /* if eth_skb_pad returns an error the skb was freed */ if (eth_skb_pad(skb)) return true; return false; } static void wx_rx_hash(struct wx_ring *ring, union wx_rx_desc *rx_desc, struct sk_buff *skb) { u16 rss_type; if (!(ring->netdev->features & NETIF_F_RXHASH)) return; rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & WX_RXD_RSSTYPE_MASK; if (!rss_type) return; skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), (WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); } /** * wx_rx_checksum - indicate in skb if hw indicated a good cksum * @ring: structure containing ring specific data * @rx_desc: current Rx descriptor being processed * @skb: skb currently being received and modified **/ static void wx_rx_checksum(struct wx_ring *ring, union wx_rx_desc *rx_desc, struct sk_buff *skb) { struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc)); skb_checksum_none_assert(skb); /* Rx csum disabled */ if (!(ring->netdev->features & NETIF_F_RXCSUM)) return; /* if IPv4 header checksum error */ if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) && wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) || (wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) && wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) { ring->rx_stats.csum_err++; return; } /* L4 checksum offload flag must set for the below code to work */ if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS)) return; /* Hardware can't guarantee csum if IPv6 Dest Header found */ if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP && WX_RXD_IPV6EX(rx_desc)) return; /* if L4 checksum error */ if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) { ring->rx_stats.csum_err++; return; } /* It must be a TCP or UDP or SCTP packet with a valid checksum */ skb->ip_summed = CHECKSUM_UNNECESSARY; /* If there is an outer header present that might contain a checksum * we need to bump the checksum level by 1 to reflect the fact that * we are indicating we validated the inner checksum. */ if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG) __skb_incr_checksum_unnecessary(skb); ring->rx_stats.csum_good_cnt++; } static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc, struct sk_buff *skb) { u16 ethertype; u8 idx = 0; if ((ring->netdev->features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) && wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) { idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 0x1c0) >> 6; ethertype = ring->q_vector->wx->tpid[idx]; __vlan_hwaccel_put_tag(skb, htons(ethertype), le16_to_cpu(rx_desc->wb.upper.vlan)); } } /** * wx_process_skb_fields - Populate skb header fields from Rx descriptor * @rx_ring: rx descriptor ring packet is being transacted on * @rx_desc: pointer to the EOP Rx descriptor * @skb: pointer to current skb being populated * * This function checks the ring, descriptor, and packet information in * order to populate the hash, checksum, protocol, and * other fields within the skb. **/ static void wx_process_skb_fields(struct wx_ring *rx_ring, union wx_rx_desc *rx_desc, struct sk_buff *skb) { wx_rx_hash(rx_ring, rx_desc, skb); wx_rx_checksum(rx_ring, rx_desc, skb); wx_rx_vlan(rx_ring, rx_desc, skb); skb_record_rx_queue(skb, rx_ring->queue_index); skb->protocol = eth_type_trans(skb, rx_ring->netdev); } /** * wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf * @q_vector: structure containing interrupt and ring information * @rx_ring: rx descriptor ring to transact packets on * @budget: Total limit on number of packets to process * * This function provides a "bounce buffer" approach to Rx interrupt * processing. The advantage to this is that on systems that have * expensive overhead for IOMMU access this provides a means of avoiding * it by maintaining the mapping of the page to the system. * * Returns amount of work completed. **/ static int wx_clean_rx_irq(struct wx_q_vector *q_vector, struct wx_ring *rx_ring, int budget) { unsigned int total_rx_bytes = 0, total_rx_packets = 0; u16 cleaned_count = wx_desc_unused(rx_ring); do { struct wx_rx_buffer *rx_buffer; union wx_rx_desc *rx_desc; struct sk_buff *skb; int rx_buffer_pgcnt; /* return some buffers to hardware, one at a time is too slow */ if (cleaned_count >= WX_RX_BUFFER_WRITE) { wx_alloc_rx_buffers(rx_ring, cleaned_count); cleaned_count = 0; } rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean); if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD)) break; /* This memory barrier is needed to keep us from reading * any other fields out of the rx_desc until we know the * descriptor has been written back */ dma_rmb(); rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt); /* retrieve a buffer from the ring */ skb = wx_build_skb(rx_ring, rx_buffer, rx_desc); /* exit if we failed to retrieve a buffer */ if (!skb) { rx_ring->rx_stats.alloc_rx_buff_failed++; break; } wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt); cleaned_count++; /* place incomplete frames back on ring for completion */ if (wx_is_non_eop(rx_ring, rx_desc, skb)) continue; /* verify the packet layout is correct */ if (wx_cleanup_headers(rx_ring, rx_desc, skb)) continue; /* probably a little skewed due to removing CRC */ total_rx_bytes += skb->len; /* populate checksum, timestamp, VLAN, and protocol */ wx_process_skb_fields(rx_ring, rx_desc, skb); napi_gro_receive(&q_vector->napi, skb); /* update budget accounting */ total_rx_packets++; } while (likely(total_rx_packets < budget)); u64_stats_update_begin(&rx_ring->syncp); rx_ring->stats.packets += total_rx_packets; rx_ring->stats.bytes += total_rx_bytes; u64_stats_update_end(&rx_ring->syncp); q_vector->rx.total_packets += total_rx_packets; q_vector->rx.total_bytes += total_rx_bytes; return total_rx_packets; } static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring) { return netdev_get_tx_queue(ring->netdev, ring->queue_index); } /** * wx_clean_tx_irq - Reclaim resources after transmit completes * @q_vector: structure containing interrupt and ring information * @tx_ring: tx ring to clean * @napi_budget: Used to determine if we are in netpoll **/ static bool wx_clean_tx_irq(struct wx_q_vector *q_vector, struct wx_ring *tx_ring, int napi_budget) { unsigned int budget = q_vector->wx->tx_work_limit; unsigned int total_bytes = 0, total_packets = 0; unsigned int i = tx_ring->next_to_clean; struct wx_tx_buffer *tx_buffer; union wx_tx_desc *tx_desc; if (!netif_carrier_ok(tx_ring->netdev)) return true; tx_buffer = &tx_ring->tx_buffer_info[i]; tx_desc = WX_TX_DESC(tx_ring, i); i -= tx_ring->count; do { union wx_tx_desc *eop_desc = tx_buffer->next_to_watch; /* if next_to_watch is not set then there is no work pending */ if (!eop_desc) break; /* prevent any other reads prior to eop_desc */ smp_rmb(); /* if DD is not set pending work has not been completed */ if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD))) break; /* clear next_to_watch to prevent false hangs */ tx_buffer->next_to_watch = NULL; /* update the statistics for this packet */ total_bytes += tx_buffer->bytecount; total_packets += tx_buffer->gso_segs; /* free the skb */ napi_consume_skb(tx_buffer->skb, napi_budget); /* unmap skb header data */ dma_unmap_single(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); /* clear tx_buffer data */ dma_unmap_len_set(tx_buffer, len, 0); /* unmap remaining buffers */ while (tx_desc != eop_desc) { tx_buffer++; tx_desc++; i++; if (unlikely(!i)) { i -= tx_ring->count; tx_buffer = tx_ring->tx_buffer_info; tx_desc = WX_TX_DESC(tx_ring, 0); } /* unmap any remaining paged data */ if (dma_unmap_len(tx_buffer, len)) { dma_unmap_page(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_buffer, len, 0); } } /* move us one more past the eop_desc for start of next pkt */ tx_buffer++; tx_desc++; i++; if (unlikely(!i)) { i -= tx_ring->count; tx_buffer = tx_ring->tx_buffer_info; tx_desc = WX_TX_DESC(tx_ring, 0); } /* issue prefetch for next Tx descriptor */ prefetch(tx_desc); /* update budget accounting */ budget--; } while (likely(budget)); i += tx_ring->count; tx_ring->next_to_clean = i; u64_stats_update_begin(&tx_ring->syncp); tx_ring->stats.bytes += total_bytes; tx_ring->stats.packets += total_packets; u64_stats_update_end(&tx_ring->syncp); q_vector->tx.total_bytes += total_bytes; q_vector->tx.total_packets += total_packets; netdev_tx_completed_queue(wx_txring_txq(tx_ring), total_packets, total_bytes); #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && (wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { /* Make sure that anybody stopping the queue after this * sees the new next_to_clean. */ smp_mb(); if (__netif_subqueue_stopped(tx_ring->netdev, tx_ring->queue_index) && netif_running(tx_ring->netdev)) { netif_wake_subqueue(tx_ring->netdev, tx_ring->queue_index); ++tx_ring->tx_stats.restart_queue; } } return !!budget; } /** * wx_poll - NAPI polling RX/TX cleanup routine * @napi: napi struct with our devices info in it * @budget: amount of work driver is allowed to do this pass, in packets * * This function will clean all queues associated with a q_vector. **/ static int wx_poll(struct napi_struct *napi, int budget) { struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi); int per_ring_budget, work_done = 0; struct wx *wx = q_vector->wx; bool clean_complete = true; struct wx_ring *ring; wx_for_each_ring(ring, q_vector->tx) { if (!wx_clean_tx_irq(q_vector, ring, budget)) clean_complete = false; } /* Exit if we are called by netpoll */ if (budget <= 0) return budget; /* attempt to distribute budget to each queue fairly, but don't allow * the budget to go below 1 because we'll exit polling */ if (q_vector->rx.count > 1) per_ring_budget = max(budget / q_vector->rx.count, 1); else per_ring_budget = budget; wx_for_each_ring(ring, q_vector->rx) { int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget); work_done += cleaned; if (cleaned >= per_ring_budget) clean_complete = false; } /* If all work not completed, return budget and keep polling */ if (!clean_complete) return budget; /* all work done, exit the polling mode */ if (likely(napi_complete_done(napi, work_done))) { if (netif_running(wx->netdev)) wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx)); } return min(work_done, budget - 1); } static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size) { if (likely(wx_desc_unused(tx_ring) >= size)) return 0; netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); /* For the next check */ smp_mb(); /* We need to check again in a case another CPU has just * made room available. */ if (likely(wx_desc_unused(tx_ring) < size)) return -EBUSY; /* A reprieve! - use start_queue because it doesn't call schedule */ netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); ++tx_ring->tx_stats.restart_queue; return 0; } static u32 wx_tx_cmd_type(u32 tx_flags) { /* set type for advanced descriptor with frame checksum insertion */ u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS; /* set HW vlan bit if vlan is present */ cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE); /* set segmentation enable bits for TSO/FSO */ cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE); /* set timestamp bit if present */ cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP); cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC); return cmd_type; } static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc, u32 tx_flags, unsigned int paylen) { u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT; /* enable L4 checksum for TSO and TX checksum offload */ olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS); /* enable IPv4 checksum for TSO */ olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS); /* enable outer IPv4 checksum for TSO */ olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4, WX_TXD_EIPCS); /* Check Context must be set if Tx switch is enabled, which it * always is for case where virtual functions are running */ olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC); olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC, WX_TXD_IPSEC); tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); } static void wx_tx_map(struct wx_ring *tx_ring, struct wx_tx_buffer *first, const u8 hdr_len) { struct sk_buff *skb = first->skb; struct wx_tx_buffer *tx_buffer; u32 tx_flags = first->tx_flags; u16 i = tx_ring->next_to_use; unsigned int data_len, size; union wx_tx_desc *tx_desc; skb_frag_t *frag; dma_addr_t dma; u32 cmd_type; cmd_type = wx_tx_cmd_type(tx_flags); tx_desc = WX_TX_DESC(tx_ring, i); wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); size = skb_headlen(skb); data_len = skb->data_len; dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); tx_buffer = first; for (frag = &skb_shinfo(skb)->frags[0];; frag++) { if (dma_mapping_error(tx_ring->dev, dma)) goto dma_error; /* record length, and DMA address */ dma_unmap_len_set(tx_buffer, len, size); dma_unmap_addr_set(tx_buffer, dma, dma); tx_desc->read.buffer_addr = cpu_to_le64(dma); while (unlikely(size > WX_MAX_DATA_PER_TXD)) { tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD); i++; tx_desc++; if (i == tx_ring->count) { tx_desc = WX_TX_DESC(tx_ring, 0); i = 0; } tx_desc->read.olinfo_status = 0; dma += WX_MAX_DATA_PER_TXD; size -= WX_MAX_DATA_PER_TXD; tx_desc->read.buffer_addr = cpu_to_le64(dma); } if (likely(!data_len)) break; tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); i++; tx_desc++; if (i == tx_ring->count) { tx_desc = WX_TX_DESC(tx_ring, 0); i = 0; } tx_desc->read.olinfo_status = 0; size = skb_frag_size(frag); data_len -= size; dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, DMA_TO_DEVICE); tx_buffer = &tx_ring->tx_buffer_info[i]; } /* write last descriptor with RS and EOP bits */ cmd_type |= size | WX_TXD_EOP | WX_TXD_RS; tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount); skb_tx_timestamp(skb); /* Force memory writes to complete before letting h/w know there * are new descriptors to fetch. (Only applicable for weak-ordered * memory model archs, such as IA-64). * * We also need this memory barrier to make certain all of the * status bits have been updated before next_to_watch is written. */ wmb(); /* set next_to_watch value indicating a packet is present */ first->next_to_watch = tx_desc; i++; if (i == tx_ring->count) i = 0; tx_ring->next_to_use = i; wx_maybe_stop_tx(tx_ring, DESC_NEEDED); if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more()) writel(i, tx_ring->tail); return; dma_error: dev_err(tx_ring->dev, "TX DMA map failed\n"); /* clear dma mappings for failed tx_buffer_info map */ for (;;) { tx_buffer = &tx_ring->tx_buffer_info[i]; if (dma_unmap_len(tx_buffer, len)) dma_unmap_page(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_buffer, len, 0); if (tx_buffer == first) break; if (i == 0) i += tx_ring->count; i--; } dev_kfree_skb_any(first->skb); first->skb = NULL; tx_ring->next_to_use = i; } static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens, u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx) { struct wx_tx_context_desc *context_desc; u16 i = tx_ring->next_to_use; context_desc = WX_TX_CTXTDESC(tx_ring, i); i++; tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; /* set bits to identify this as an advanced context descriptor */ type_tucmd |= WX_TXD_DTYP_CTXT; context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); context_desc->seqnum_seed = cpu_to_le32(fcoe_sof_eof); context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); } static void wx_get_ipv6_proto(struct sk_buff *skb, int offset, u8 *nexthdr) { struct ipv6hdr *hdr = (struct ipv6hdr *)(skb->data + offset); *nexthdr = hdr->nexthdr; offset += sizeof(struct ipv6hdr); while (ipv6_ext_hdr(*nexthdr)) { struct ipv6_opt_hdr _hdr, *hp; if (*nexthdr == NEXTHDR_NONE) return; hp = skb_header_pointer(skb, offset, sizeof(_hdr), &_hdr); if (!hp) return; if (*nexthdr == NEXTHDR_FRAGMENT) break; *nexthdr = hp->nexthdr; } } union network_header { struct iphdr *ipv4; struct ipv6hdr *ipv6; void *raw; }; static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first) { u8 tun_prot = 0, l4_prot = 0, ptype = 0; struct sk_buff *skb = first->skb; if (skb->encapsulation) { union network_header hdr; switch (first->protocol) { case htons(ETH_P_IP): tun_prot = ip_hdr(skb)->protocol; ptype = WX_PTYPE_TUN_IPV4; break; case htons(ETH_P_IPV6): wx_get_ipv6_proto(skb, skb_network_offset(skb), &tun_prot); ptype = WX_PTYPE_TUN_IPV6; break; default: return ptype; } if (tun_prot == IPPROTO_IPIP) { hdr.raw = (void *)inner_ip_hdr(skb); ptype |= WX_PTYPE_PKT_IPIP; } else if (tun_prot == IPPROTO_UDP) { hdr.raw = (void *)inner_ip_hdr(skb); if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || skb->inner_protocol != htons(ETH_P_TEB)) { ptype |= WX_PTYPE_PKT_IG; } else { if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto == htons(ETH_P_8021Q)) ptype |= WX_PTYPE_PKT_IGMV; else ptype |= WX_PTYPE_PKT_IGM; } } else if (tun_prot == IPPROTO_GRE) { hdr.raw = (void *)inner_ip_hdr(skb); if (skb->inner_protocol == htons(ETH_P_IP) || skb->inner_protocol == htons(ETH_P_IPV6)) { ptype |= WX_PTYPE_PKT_IG; } else { if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto == htons(ETH_P_8021Q)) ptype |= WX_PTYPE_PKT_IGMV; else ptype |= WX_PTYPE_PKT_IGM; } } else { return ptype; } switch (hdr.ipv4->version) { case IPVERSION: l4_prot = hdr.ipv4->protocol; break; case 6: wx_get_ipv6_proto(skb, skb_inner_network_offset(skb), &l4_prot); ptype |= WX_PTYPE_PKT_IPV6; break; default: return ptype; } } else { switch (first->protocol) { case htons(ETH_P_IP): l4_prot = ip_hdr(skb)->protocol; ptype = WX_PTYPE_PKT_IP; break; case htons(ETH_P_IPV6): wx_get_ipv6_proto(skb, skb_network_offset(skb), &l4_prot); ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6; break; default: return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC; } } switch (l4_prot) { case IPPROTO_TCP: ptype |= WX_PTYPE_TYP_TCP; break; case IPPROTO_UDP: ptype |= WX_PTYPE_TYP_UDP; break; case IPPROTO_SCTP: ptype |= WX_PTYPE_TYP_SCTP; break; default: ptype |= WX_PTYPE_TYP_IP; break; } return ptype; } static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first, u8 *hdr_len, u8 ptype) { u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; struct net_device *netdev = tx_ring->netdev; u32 l4len, tunhdr_eiplen_tunlen = 0; struct sk_buff *skb = first->skb; bool enc = skb->encapsulation; struct ipv6hdr *ipv6h; struct tcphdr *tcph; struct iphdr *iph; u8 tun_prot = 0; int err; if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; if (!skb_is_gso(skb)) return 0; err = skb_cow_head(skb, 0); if (err < 0) return err; /* indicates the inner headers in the skbuff are valid. */ iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb); if (iph->version == 4) { tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb); iph->tot_len = 0; iph->check = 0; tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0, IPPROTO_TCP, 0); first->tx_flags |= WX_TX_FLAGS_TSO | WX_TX_FLAGS_CSUM | WX_TX_FLAGS_IPV4 | WX_TX_FLAGS_CC; } else if (iph->version == 6 && skb_is_gso_v6(skb)) { ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb); ipv6h->payload_len = 0; tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0, IPPROTO_TCP, 0); first->tx_flags |= WX_TX_FLAGS_TSO | WX_TX_FLAGS_CSUM | WX_TX_FLAGS_CC; } /* compute header lengths */ l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb); *hdr_len = enc ? skb_inner_transport_offset(skb) : skb_transport_offset(skb); *hdr_len += l4len; /* update gso size and bytecount with header size */ first->gso_segs = skb_shinfo(skb)->gso_segs; first->bytecount += (first->gso_segs - 1) * *hdr_len; /* mss_l4len_id: use 0 as index for TSO */ mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT; mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT; /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ if (enc) { switch (first->protocol) { case htons(ETH_P_IP): tun_prot = ip_hdr(skb)->protocol; first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4; break; case htons(ETH_P_IPV6): tun_prot = ipv6_hdr(skb)->nexthdr; break; default: break; } switch (tun_prot) { case IPPROTO_UDP: tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP; tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << WX_TXD_OUTER_IPLEN_SHIFT) | (((skb_inner_mac_header(skb) - skb_transport_header(skb)) >> 1) << WX_TXD_TUNNEL_LEN_SHIFT); break; case IPPROTO_GRE: tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE; tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << WX_TXD_OUTER_IPLEN_SHIFT) | (((skb_inner_mac_header(skb) - skb_transport_header(skb)) >> 1) << WX_TXD_TUNNEL_LEN_SHIFT); break; case IPPROTO_IPIP: tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) - (char *)ip_hdr(skb)) >> 2) << WX_TXD_OUTER_IPLEN_SHIFT; break; default: break; } vlan_macip_lens = skb_inner_network_header_len(skb) >> 1; } else { vlan_macip_lens = skb_network_header_len(skb) >> 1; } vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT; vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK; type_tucmd = ptype << 24; if (skb->vlan_proto == htons(ETH_P_8021AD) && netdev->features & NETIF_F_HW_VLAN_STAG_TX) type_tucmd |= WX_SET_FLAG(first->tx_flags, WX_TX_FLAGS_HW_VLAN, 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT); wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen, type_tucmd, mss_l4len_idx); return 1; } static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first, u8 ptype) { u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0; struct net_device *netdev = tx_ring->netdev; u32 mss_l4len_idx = 0, type_tucmd; struct sk_buff *skb = first->skb; u8 tun_prot = 0; if (skb->ip_summed != CHECKSUM_PARTIAL) { if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) && !(first->tx_flags & WX_TX_FLAGS_CC)) return; vlan_macip_lens = skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT; } else { u8 l4_prot = 0; union { struct iphdr *ipv4; struct ipv6hdr *ipv6; u8 *raw; } network_hdr; union { struct tcphdr *tcphdr; u8 *raw; } transport_hdr; if (skb->encapsulation) { network_hdr.raw = skb_inner_network_header(skb); transport_hdr.raw = skb_inner_transport_header(skb); vlan_macip_lens = skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT; switch (first->protocol) { case htons(ETH_P_IP): tun_prot = ip_hdr(skb)->protocol; break; case htons(ETH_P_IPV6): tun_prot = ipv6_hdr(skb)->nexthdr; break; default: return; } switch (tun_prot) { case IPPROTO_UDP: tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP; tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << WX_TXD_OUTER_IPLEN_SHIFT) | (((skb_inner_mac_header(skb) - skb_transport_header(skb)) >> 1) << WX_TXD_TUNNEL_LEN_SHIFT); break; case IPPROTO_GRE: tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE; tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << WX_TXD_OUTER_IPLEN_SHIFT) | (((skb_inner_mac_header(skb) - skb_transport_header(skb)) >> 1) << WX_TXD_TUNNEL_LEN_SHIFT); break; case IPPROTO_IPIP: tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) - (char *)ip_hdr(skb)) >> 2) << WX_TXD_OUTER_IPLEN_SHIFT; break; default: break; } } else { network_hdr.raw = skb_network_header(skb); transport_hdr.raw = skb_transport_header(skb); vlan_macip_lens = skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT; } switch (network_hdr.ipv4->version) { case IPVERSION: vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1; l4_prot = network_hdr.ipv4->protocol; break; case 6: vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1; l4_prot = network_hdr.ipv6->nexthdr; break; default: break; } switch (l4_prot) { case IPPROTO_TCP: mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) << WX_TXD_L4LEN_SHIFT; break; case IPPROTO_SCTP: mss_l4len_idx = sizeof(struct sctphdr) << WX_TXD_L4LEN_SHIFT; break; case IPPROTO_UDP: mss_l4len_idx = sizeof(struct udphdr) << WX_TXD_L4LEN_SHIFT; break; default: break; } /* update TX checksum flag */ first->tx_flags |= WX_TX_FLAGS_CSUM; } first->tx_flags |= WX_TX_FLAGS_CC; /* vlan_macip_lens: MACLEN, VLAN tag */ vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK; type_tucmd = ptype << 24; if (skb->vlan_proto == htons(ETH_P_8021AD) && netdev->features & NETIF_F_HW_VLAN_STAG_TX) type_tucmd |= WX_SET_FLAG(first->tx_flags, WX_TX_FLAGS_HW_VLAN, 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT); wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen, type_tucmd, mss_l4len_idx); } static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb, struct wx_ring *tx_ring) { u16 count = TXD_USE_COUNT(skb_headlen(skb)); struct wx_tx_buffer *first; u8 hdr_len = 0, ptype; unsigned short f; u32 tx_flags = 0; int tso; /* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD, * + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD, * + 2 desc gap to keep tail from touching head, * + 1 desc for context descriptor, * otherwise try next time */ for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)-> frags[f])); if (wx_maybe_stop_tx(tx_ring, count + 3)) { tx_ring->tx_stats.tx_busy++; return NETDEV_TX_BUSY; } /* record the location of the first descriptor for this packet */ first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; first->skb = skb; first->bytecount = skb->len; first->gso_segs = 1; /* if we have a HW VLAN tag being added default to the HW one */ if (skb_vlan_tag_present(skb)) { tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT; tx_flags |= WX_TX_FLAGS_HW_VLAN; } /* record initial flags and protocol */ first->tx_flags = tx_flags; first->protocol = vlan_get_protocol(skb); ptype = wx_encode_tx_desc_ptype(first); tso = wx_tso(tx_ring, first, &hdr_len, ptype); if (tso < 0) goto out_drop; else if (!tso) wx_tx_csum(tx_ring, first, ptype); wx_tx_map(tx_ring, first, hdr_len); return NETDEV_TX_OK; out_drop: dev_kfree_skb_any(first->skb); first->skb = NULL; return NETDEV_TX_OK; } netdev_tx_t wx_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { unsigned int r_idx = skb->queue_mapping; struct wx *wx = netdev_priv(netdev); struct wx_ring *tx_ring; if (!netif_carrier_ok(netdev)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } /* The minimum packet size for olinfo paylen is 17 so pad the skb * in order to meet this minimum size requirement. */ if (skb_put_padto(skb, 17)) return NETDEV_TX_OK; if (r_idx >= wx->num_tx_queues) r_idx = r_idx % wx->num_tx_queues; tx_ring = wx->tx_ring[r_idx]; return wx_xmit_frame_ring(skb, tx_ring); } EXPORT_SYMBOL(wx_xmit_frame); void wx_napi_enable_all(struct wx *wx) { struct wx_q_vector *q_vector; int q_idx; for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) { q_vector = wx->q_vector[q_idx]; napi_enable(&q_vector->napi); } } EXPORT_SYMBOL(wx_napi_enable_all); void wx_napi_disable_all(struct wx *wx) { struct wx_q_vector *q_vector; int q_idx; for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) { q_vector = wx->q_vector[q_idx]; napi_disable(&q_vector->napi); } } EXPORT_SYMBOL(wx_napi_disable_all); /** * wx_set_rss_queues: Allocate queues for RSS * @wx: board private structure to initialize * * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. * **/ static void wx_set_rss_queues(struct wx *wx) { struct wx_ring_feature *f; /* set mask for 16 queue limit of RSS */ f = &wx->ring_feature[RING_F_RSS]; f->indices = f->limit; wx->num_rx_queues = f->limit; wx->num_tx_queues = f->limit; } static void wx_set_num_queues(struct wx *wx) { /* Start with base case */ wx->num_rx_queues = 1; wx->num_tx_queues = 1; wx->queues_per_pool = 1; wx_set_rss_queues(wx); } /** * wx_acquire_msix_vectors - acquire MSI-X vectors * @wx: board private structure * * Attempts to acquire a suitable range of MSI-X vector interrupts. Will * return a negative error code if unable to acquire MSI-X vectors for any * reason. */ static int wx_acquire_msix_vectors(struct wx *wx) { struct irq_affinity affd = { .pre_vectors = 1 }; int nvecs, i; /* We start by asking for one vector per queue pair */ nvecs = max(wx->num_rx_queues, wx->num_tx_queues); nvecs = min_t(int, nvecs, num_online_cpus()); nvecs = min_t(int, nvecs, wx->mac.max_msix_vectors); wx->msix_q_entries = kcalloc(nvecs, sizeof(struct msix_entry), GFP_KERNEL); if (!wx->msix_q_entries) return -ENOMEM; /* One for non-queue interrupts */ nvecs += 1; wx->msix_entry = kcalloc(1, sizeof(struct msix_entry), GFP_KERNEL); if (!wx->msix_entry) { kfree(wx->msix_q_entries); wx->msix_q_entries = NULL; return -ENOMEM; } nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs, nvecs, PCI_IRQ_MSIX | PCI_IRQ_AFFINITY, &affd); if (nvecs < 0) { wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs); kfree(wx->msix_q_entries); wx->msix_q_entries = NULL; kfree(wx->msix_entry); wx->msix_entry = NULL; return nvecs; } wx->msix_entry->entry = 0; wx->msix_entry->vector = pci_irq_vector(wx->pdev, 0); nvecs -= 1; for (i = 0; i < nvecs; i++) { wx->msix_q_entries[i].entry = i; wx->msix_q_entries[i].vector = pci_irq_vector(wx->pdev, i + 1); } wx->num_q_vectors = nvecs; return 0; } /** * wx_set_interrupt_capability - set MSI-X or MSI if supported * @wx: board private structure to initialize * * Attempt to configure the interrupts using the best available * capabilities of the hardware and the kernel. **/ static int wx_set_interrupt_capability(struct wx *wx) { struct pci_dev *pdev = wx->pdev; int nvecs, ret; /* We will try to get MSI-X interrupts first */ ret = wx_acquire_msix_vectors(wx); if (ret == 0 || (ret == -ENOMEM)) return ret; /* Disable RSS */ dev_warn(&wx->pdev->dev, "Disabling RSS support\n"); wx->ring_feature[RING_F_RSS].limit = 1; wx_set_num_queues(wx); /* minmum one for queue, one for misc*/ nvecs = 1; nvecs = pci_alloc_irq_vectors(pdev, nvecs, nvecs, PCI_IRQ_MSI | PCI_IRQ_INTX); if (nvecs == 1) { if (pdev->msi_enabled) wx_err(wx, "Fallback to MSI.\n"); else wx_err(wx, "Fallback to INTx.\n"); } else { wx_err(wx, "Failed to allocate MSI/INTx interrupts. Error: %d\n", nvecs); return nvecs; } pdev->irq = pci_irq_vector(pdev, 0); wx->num_q_vectors = 1; return 0; } /** * wx_cache_ring_rss - Descriptor ring to register mapping for RSS * @wx: board private structure to initialize * * Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV. * **/ static void wx_cache_ring_rss(struct wx *wx) { u16 i; for (i = 0; i < wx->num_rx_queues; i++) wx->rx_ring[i]->reg_idx = i; for (i = 0; i < wx->num_tx_queues; i++) wx->tx_ring[i]->reg_idx = i; } static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head) { ring->next = head->ring; head->ring = ring; head->count++; } /** * wx_alloc_q_vector - Allocate memory for a single interrupt vector * @wx: board private structure to initialize * @v_count: q_vectors allocated on wx, used for ring interleaving * @v_idx: index of vector in wx struct * @txr_count: total number of Tx rings to allocate * @txr_idx: index of first Tx ring to allocate * @rxr_count: total number of Rx rings to allocate * @rxr_idx: index of first Rx ring to allocate * * We allocate one q_vector. If allocation fails we return -ENOMEM. **/ static int wx_alloc_q_vector(struct wx *wx, unsigned int v_count, unsigned int v_idx, unsigned int txr_count, unsigned int txr_idx, unsigned int rxr_count, unsigned int rxr_idx) { struct wx_q_vector *q_vector; int ring_count, default_itr; struct wx_ring *ring; /* note this will allocate space for the ring structure as well! */ ring_count = txr_count + rxr_count; q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL); if (!q_vector) return -ENOMEM; /* initialize NAPI */ netif_napi_add(wx->netdev, &q_vector->napi, wx_poll); /* tie q_vector and wx together */ wx->q_vector[v_idx] = q_vector; q_vector->wx = wx; q_vector->v_idx = v_idx; if (cpu_online(v_idx)) q_vector->numa_node = cpu_to_node(v_idx); /* initialize pointer to rings */ ring = q_vector->ring; if (wx->mac.type == wx_mac_sp) default_itr = WX_12K_ITR; else default_itr = WX_7K_ITR; /* initialize ITR */ if (txr_count && !rxr_count) /* tx only vector */ q_vector->itr = wx->tx_itr_setting ? default_itr : wx->tx_itr_setting; else /* rx or rx/tx vector */ q_vector->itr = wx->rx_itr_setting ? default_itr : wx->rx_itr_setting; while (txr_count) { /* assign generic ring traits */ ring->dev = &wx->pdev->dev; ring->netdev = wx->netdev; /* configure backlink on ring */ ring->q_vector = q_vector; /* update q_vector Tx values */ wx_add_ring(ring, &q_vector->tx); /* apply Tx specific ring traits */ ring->count = wx->tx_ring_count; ring->queue_index = txr_idx; /* assign ring to wx */ wx->tx_ring[txr_idx] = ring; /* update count and index */ txr_count--; txr_idx += v_count; /* push pointer to next ring */ ring++; } while (rxr_count) { /* assign generic ring traits */ ring->dev = &wx->pdev->dev; ring->netdev = wx->netdev; /* configure backlink on ring */ ring->q_vector = q_vector; /* update q_vector Rx values */ wx_add_ring(ring, &q_vector->rx); /* apply Rx specific ring traits */ ring->count = wx->rx_ring_count; ring->queue_index = rxr_idx; /* assign ring to wx */ wx->rx_ring[rxr_idx] = ring; /* update count and index */ rxr_count--; rxr_idx += v_count; /* push pointer to next ring */ ring++; } return 0; } /** * wx_free_q_vector - Free memory allocated for specific interrupt vector * @wx: board private structure to initialize * @v_idx: Index of vector to be freed * * This function frees the memory allocated to the q_vector. In addition if * NAPI is enabled it will delete any references to the NAPI struct prior * to freeing the q_vector. **/ static void wx_free_q_vector(struct wx *wx, int v_idx) { struct wx_q_vector *q_vector = wx->q_vector[v_idx]; struct wx_ring *ring; wx_for_each_ring(ring, q_vector->tx) wx->tx_ring[ring->queue_index] = NULL; wx_for_each_ring(ring, q_vector->rx) wx->rx_ring[ring->queue_index] = NULL; wx->q_vector[v_idx] = NULL; netif_napi_del(&q_vector->napi); kfree_rcu(q_vector, rcu); } /** * wx_alloc_q_vectors - Allocate memory for interrupt vectors * @wx: board private structure to initialize * * We allocate one q_vector per queue interrupt. If allocation fails we * return -ENOMEM. **/ static int wx_alloc_q_vectors(struct wx *wx) { unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; unsigned int rxr_remaining = wx->num_rx_queues; unsigned int txr_remaining = wx->num_tx_queues; unsigned int q_vectors = wx->num_q_vectors; int rqpv, tqpv; int err; for (; v_idx < q_vectors; v_idx++) { rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); err = wx_alloc_q_vector(wx, q_vectors, v_idx, tqpv, txr_idx, rqpv, rxr_idx); if (err) goto err_out; /* update counts and index */ rxr_remaining -= rqpv; txr_remaining -= tqpv; rxr_idx++; txr_idx++; } return 0; err_out: wx->num_tx_queues = 0; wx->num_rx_queues = 0; wx->num_q_vectors = 0; while (v_idx--) wx_free_q_vector(wx, v_idx); return -ENOMEM; } /** * wx_free_q_vectors - Free memory allocated for interrupt vectors * @wx: board private structure to initialize * * This function frees the memory allocated to the q_vectors. In addition if * NAPI is enabled it will delete any references to the NAPI struct prior * to freeing the q_vector. **/ static void wx_free_q_vectors(struct wx *wx) { int v_idx = wx->num_q_vectors; wx->num_tx_queues = 0; wx->num_rx_queues = 0; wx->num_q_vectors = 0; while (v_idx--) wx_free_q_vector(wx, v_idx); } void wx_reset_interrupt_capability(struct wx *wx) { struct pci_dev *pdev = wx->pdev; if (!pdev->msi_enabled && !pdev->msix_enabled) return; if (pdev->msix_enabled) { kfree(wx->msix_q_entries); wx->msix_q_entries = NULL; kfree(wx->msix_entry); wx->msix_entry = NULL; } pci_free_irq_vectors(wx->pdev); } EXPORT_SYMBOL(wx_reset_interrupt_capability); /** * wx_clear_interrupt_scheme - Clear the current interrupt scheme settings * @wx: board private structure to clear interrupt scheme on * * We go through and clear interrupt specific resources and reset the structure * to pre-load conditions **/ void wx_clear_interrupt_scheme(struct wx *wx) { wx_free_q_vectors(wx); wx_reset_interrupt_capability(wx); } EXPORT_SYMBOL(wx_clear_interrupt_scheme); int wx_init_interrupt_scheme(struct wx *wx) { int ret; /* Number of supported queues */ wx_set_num_queues(wx); /* Set interrupt mode */ ret = wx_set_interrupt_capability(wx); if (ret) { wx_err(wx, "Allocate irq vectors for failed.\n"); return ret; } /* Allocate memory for queues */ ret = wx_alloc_q_vectors(wx); if (ret) { wx_err(wx, "Unable to allocate memory for queue vectors.\n"); wx_reset_interrupt_capability(wx); return ret; } wx_cache_ring_rss(wx); return 0; } EXPORT_SYMBOL(wx_init_interrupt_scheme); irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data) { struct wx_q_vector *q_vector = data; /* EIAM disabled interrupts (on this vector) for us */ if (q_vector->rx.ring || q_vector->tx.ring) napi_schedule_irqoff(&q_vector->napi); return IRQ_HANDLED; } EXPORT_SYMBOL(wx_msix_clean_rings); void wx_free_irq(struct wx *wx) { struct pci_dev *pdev = wx->pdev; int vector; if (!(pdev->msix_enabled)) { if (!wx->misc_irq_domain) free_irq(pdev->irq, wx); return; } for (vector = 0; vector < wx->num_q_vectors; vector++) { struct wx_q_vector *q_vector = wx->q_vector[vector]; struct msix_entry *entry = &wx->msix_q_entries[vector]; /* free only the irqs that were actually requested */ if (!q_vector->rx.ring && !q_vector->tx.ring) continue; free_irq(entry->vector, q_vector); } if (!wx->misc_irq_domain) free_irq(wx->msix_entry->vector, wx); } EXPORT_SYMBOL(wx_free_irq); /** * wx_setup_isb_resources - allocate interrupt status resources * @wx: board private structure * * Return 0 on success, negative on failure **/ int wx_setup_isb_resources(struct wx *wx) { struct pci_dev *pdev = wx->pdev; if (wx->isb_mem) return 0; wx->isb_mem = dma_alloc_coherent(&pdev->dev, sizeof(u32) * 4, &wx->isb_dma, GFP_KERNEL); if (!wx->isb_mem) { wx_err(wx, "Alloc isb_mem failed\n"); return -ENOMEM; } return 0; } EXPORT_SYMBOL(wx_setup_isb_resources); /** * wx_free_isb_resources - allocate all queues Rx resources * @wx: board private structure * * Return 0 on success, negative on failure **/ void wx_free_isb_resources(struct wx *wx) { struct pci_dev *pdev = wx->pdev; dma_free_coherent(&pdev->dev, sizeof(u32) * 4, wx->isb_mem, wx->isb_dma); wx->isb_mem = NULL; } EXPORT_SYMBOL(wx_free_isb_resources); u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx) { u32 cur_tag = 0; cur_tag = wx->isb_mem[WX_ISB_HEADER]; wx->isb_tag[idx] = cur_tag; return (__force u32)cpu_to_le32(wx->isb_mem[idx]); } EXPORT_SYMBOL(wx_misc_isb); /** * wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors * @wx: pointer to wx struct * @direction: 0 for Rx, 1 for Tx, -1 for other causes * @queue: queue to map the corresponding interrupt to * @msix_vector: the vector to map to the corresponding queue * **/ static void wx_set_ivar(struct wx *wx, s8 direction, u16 queue, u16 msix_vector) { u32 ivar, index; if (direction == -1) { /* other causes */ msix_vector |= WX_PX_IVAR_ALLOC_VAL; index = 0; ivar = rd32(wx, WX_PX_MISC_IVAR); ivar &= ~(0xFF << index); ivar |= (msix_vector << index); wr32(wx, WX_PX_MISC_IVAR, ivar); } else { /* tx or rx causes */ msix_vector += 1; /* offset for queue vectors */ msix_vector |= WX_PX_IVAR_ALLOC_VAL; index = ((16 * (queue & 1)) + (8 * direction)); ivar = rd32(wx, WX_PX_IVAR(queue >> 1)); ivar &= ~(0xFF << index); ivar |= (msix_vector << index); wr32(wx, WX_PX_IVAR(queue >> 1), ivar); } } /** * wx_write_eitr - write EITR register in hardware specific way * @q_vector: structure containing interrupt and ring information * * This function is made to be called by ethtool and by the driver * when it needs to update EITR registers at runtime. Hardware * specific quirks/differences are taken care of here. */ void wx_write_eitr(struct wx_q_vector *q_vector) { struct wx *wx = q_vector->wx; int v_idx = q_vector->v_idx; u32 itr_reg; if (wx->mac.type == wx_mac_sp) itr_reg = q_vector->itr & WX_SP_MAX_EITR; else itr_reg = q_vector->itr & WX_EM_MAX_EITR; itr_reg |= WX_PX_ITR_CNT_WDIS; wr32(wx, WX_PX_ITR(v_idx + 1), itr_reg); } /** * wx_configure_vectors - Configure vectors for hardware * @wx: board private structure * * wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/INTx * interrupts. **/ void wx_configure_vectors(struct wx *wx) { struct pci_dev *pdev = wx->pdev; u32 eitrsel = 0; u16 v_idx; if (pdev->msix_enabled) { /* Populate MSIX to EITR Select */ wr32(wx, WX_PX_ITRSEL, eitrsel); /* use EIAM to auto-mask when MSI-X interrupt is asserted * this saves a register write for every interrupt */ wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL); } else { /* legacy interrupts, use EIAM to auto-mask when reading EICR, * specifically only auto mask tx and rx interrupts. */ wr32(wx, WX_PX_GPIE, 0); } /* Populate the IVAR table and set the ITR values to the * corresponding register. */ for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) { struct wx_q_vector *q_vector = wx->q_vector[v_idx]; struct wx_ring *ring; wx_for_each_ring(ring, q_vector->rx) wx_set_ivar(wx, 0, ring->reg_idx, v_idx); wx_for_each_ring(ring, q_vector->tx) wx_set_ivar(wx, 1, ring->reg_idx, v_idx); wx_write_eitr(q_vector); } wx_set_ivar(wx, -1, 0, 0); if (pdev->msix_enabled) wr32(wx, WX_PX_ITR(0), 1950); } EXPORT_SYMBOL(wx_configure_vectors); /** * wx_clean_rx_ring - Free Rx Buffers per Queue * @rx_ring: ring to free buffers from **/ static void wx_clean_rx_ring(struct wx_ring *rx_ring) { struct wx_rx_buffer *rx_buffer; u16 i = rx_ring->next_to_clean; rx_buffer = &rx_ring->rx_buffer_info[i]; /* Free all the Rx ring sk_buffs */ while (i != rx_ring->next_to_alloc) { if (rx_buffer->skb) { struct sk_buff *skb = rx_buffer->skb; if (WX_CB(skb)->page_released) page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); dev_kfree_skb(skb); } /* Invalidate cache lines that may have been written to by * device so that we avoid corrupting memory. */ dma_sync_single_range_for_cpu(rx_ring->dev, rx_buffer->dma, rx_buffer->page_offset, WX_RX_BUFSZ, DMA_FROM_DEVICE); /* free resources associated with mapping */ page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); i++; rx_buffer++; if (i == rx_ring->count) { i = 0; rx_buffer = rx_ring->rx_buffer_info; } } rx_ring->next_to_alloc = 0; rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; } /** * wx_clean_all_rx_rings - Free Rx Buffers for all queues * @wx: board private structure **/ void wx_clean_all_rx_rings(struct wx *wx) { int i; for (i = 0; i < wx->num_rx_queues; i++) wx_clean_rx_ring(wx->rx_ring[i]); } EXPORT_SYMBOL(wx_clean_all_rx_rings); /** * wx_free_rx_resources - Free Rx Resources * @rx_ring: ring to clean the resources from * * Free all receive software resources **/ static void wx_free_rx_resources(struct wx_ring *rx_ring) { wx_clean_rx_ring(rx_ring); kvfree(rx_ring->rx_buffer_info); rx_ring->rx_buffer_info = NULL; /* if not set, then don't free */ if (!rx_ring->desc) return; dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, rx_ring->dma); rx_ring->desc = NULL; if (rx_ring->page_pool) { page_pool_destroy(rx_ring->page_pool); rx_ring->page_pool = NULL; } } /** * wx_free_all_rx_resources - Free Rx Resources for All Queues * @wx: pointer to hardware structure * * Free all receive software resources **/ static void wx_free_all_rx_resources(struct wx *wx) { int i; for (i = 0; i < wx->num_rx_queues; i++) wx_free_rx_resources(wx->rx_ring[i]); } /** * wx_clean_tx_ring - Free Tx Buffers * @tx_ring: ring to be cleaned **/ static void wx_clean_tx_ring(struct wx_ring *tx_ring) { struct wx_tx_buffer *tx_buffer; u16 i = tx_ring->next_to_clean; tx_buffer = &tx_ring->tx_buffer_info[i]; while (i != tx_ring->next_to_use) { union wx_tx_desc *eop_desc, *tx_desc; /* Free all the Tx ring sk_buffs */ dev_kfree_skb_any(tx_buffer->skb); /* unmap skb header data */ dma_unmap_single(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); /* check for eop_desc to determine the end of the packet */ eop_desc = tx_buffer->next_to_watch; tx_desc = WX_TX_DESC(tx_ring, i); /* unmap remaining buffers */ while (tx_desc != eop_desc) { tx_buffer++; tx_desc++; i++; if (unlikely(i == tx_ring->count)) { i = 0; tx_buffer = tx_ring->tx_buffer_info; tx_desc = WX_TX_DESC(tx_ring, 0); } /* unmap any remaining paged data */ if (dma_unmap_len(tx_buffer, len)) dma_unmap_page(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); } /* move us one more past the eop_desc for start of next pkt */ tx_buffer++; i++; if (unlikely(i == tx_ring->count)) { i = 0; tx_buffer = tx_ring->tx_buffer_info; } } netdev_tx_reset_queue(wx_txring_txq(tx_ring)); /* reset next_to_use and next_to_clean */ tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; } /** * wx_clean_all_tx_rings - Free Tx Buffers for all queues * @wx: board private structure **/ void wx_clean_all_tx_rings(struct wx *wx) { int i; for (i = 0; i < wx->num_tx_queues; i++) wx_clean_tx_ring(wx->tx_ring[i]); } EXPORT_SYMBOL(wx_clean_all_tx_rings); /** * wx_free_tx_resources - Free Tx Resources per Queue * @tx_ring: Tx descriptor ring for a specific queue * * Free all transmit software resources **/ static void wx_free_tx_resources(struct wx_ring *tx_ring) { wx_clean_tx_ring(tx_ring); kvfree(tx_ring->tx_buffer_info); tx_ring->tx_buffer_info = NULL; /* if not set, then don't free */ if (!tx_ring->desc) return; dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, tx_ring->dma); tx_ring->desc = NULL; } /** * wx_free_all_tx_resources - Free Tx Resources for All Queues * @wx: pointer to hardware structure * * Free all transmit software resources **/ static void wx_free_all_tx_resources(struct wx *wx) { int i; for (i = 0; i < wx->num_tx_queues; i++) wx_free_tx_resources(wx->tx_ring[i]); } void wx_free_resources(struct wx *wx) { wx_free_all_rx_resources(wx); wx_free_all_tx_resources(wx); } EXPORT_SYMBOL(wx_free_resources); static int wx_alloc_page_pool(struct wx_ring *rx_ring) { int ret = 0; struct page_pool_params pp_params = { .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, .order = 0, .pool_size = rx_ring->size, .nid = dev_to_node(rx_ring->dev), .dev = rx_ring->dev, .dma_dir = DMA_FROM_DEVICE, .offset = 0, .max_len = PAGE_SIZE, }; rx_ring->page_pool = page_pool_create(&pp_params); if (IS_ERR(rx_ring->page_pool)) { ret = PTR_ERR(rx_ring->page_pool); rx_ring->page_pool = NULL; } return ret; } /** * wx_setup_rx_resources - allocate Rx resources (Descriptors) * @rx_ring: rx descriptor ring (for a specific queue) to setup * * Returns 0 on success, negative on failure **/ static int wx_setup_rx_resources(struct wx_ring *rx_ring) { struct device *dev = rx_ring->dev; int orig_node = dev_to_node(dev); int numa_node = NUMA_NO_NODE; int size, ret; size = sizeof(struct wx_rx_buffer) * rx_ring->count; if (rx_ring->q_vector) numa_node = rx_ring->q_vector->numa_node; rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node); if (!rx_ring->rx_buffer_info) rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL); if (!rx_ring->rx_buffer_info) goto err; /* Round up to nearest 4K */ rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc); rx_ring->size = ALIGN(rx_ring->size, 4096); set_dev_node(dev, numa_node); rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, GFP_KERNEL); if (!rx_ring->desc) { set_dev_node(dev, orig_node); rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, GFP_KERNEL); } if (!rx_ring->desc) goto err; rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; ret = wx_alloc_page_pool(rx_ring); if (ret < 0) { dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret); goto err_desc; } return 0; err_desc: dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma); err: kvfree(rx_ring->rx_buffer_info); rx_ring->rx_buffer_info = NULL; dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); return -ENOMEM; } /** * wx_setup_all_rx_resources - allocate all queues Rx resources * @wx: pointer to hardware structure * * If this function returns with an error, then it's possible one or * more of the rings is populated (while the rest are not). It is the * callers duty to clean those orphaned rings. * * Return 0 on success, negative on failure **/ static int wx_setup_all_rx_resources(struct wx *wx) { int i, err = 0; for (i = 0; i < wx->num_rx_queues; i++) { err = wx_setup_rx_resources(wx->rx_ring[i]); if (!err) continue; wx_err(wx, "Allocation for Rx Queue %u failed\n", i); goto err_setup_rx; } return 0; err_setup_rx: /* rewind the index freeing the rings as we go */ while (i--) wx_free_rx_resources(wx->rx_ring[i]); return err; } /** * wx_setup_tx_resources - allocate Tx resources (Descriptors) * @tx_ring: tx descriptor ring (for a specific queue) to setup * * Return 0 on success, negative on failure **/ static int wx_setup_tx_resources(struct wx_ring *tx_ring) { struct device *dev = tx_ring->dev; int orig_node = dev_to_node(dev); int numa_node = NUMA_NO_NODE; int size; size = sizeof(struct wx_tx_buffer) * tx_ring->count; if (tx_ring->q_vector) numa_node = tx_ring->q_vector->numa_node; tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node); if (!tx_ring->tx_buffer_info) tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL); if (!tx_ring->tx_buffer_info) goto err; /* round up to nearest 4K */ tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc); tx_ring->size = ALIGN(tx_ring->size, 4096); set_dev_node(dev, numa_node); tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, GFP_KERNEL); if (!tx_ring->desc) { set_dev_node(dev, orig_node); tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, GFP_KERNEL); } if (!tx_ring->desc) goto err; tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; return 0; err: kvfree(tx_ring->tx_buffer_info); tx_ring->tx_buffer_info = NULL; dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); return -ENOMEM; } /** * wx_setup_all_tx_resources - allocate all queues Tx resources * @wx: pointer to private structure * * If this function returns with an error, then it's possible one or * more of the rings is populated (while the rest are not). It is the * callers duty to clean those orphaned rings. * * Return 0 on success, negative on failure **/ static int wx_setup_all_tx_resources(struct wx *wx) { int i, err = 0; for (i = 0; i < wx->num_tx_queues; i++) { err = wx_setup_tx_resources(wx->tx_ring[i]); if (!err) continue; wx_err(wx, "Allocation for Tx Queue %u failed\n", i); goto err_setup_tx; } return 0; err_setup_tx: /* rewind the index freeing the rings as we go */ while (i--) wx_free_tx_resources(wx->tx_ring[i]); return err; } int wx_setup_resources(struct wx *wx) { int err; /* allocate transmit descriptors */ err = wx_setup_all_tx_resources(wx); if (err) return err; /* allocate receive descriptors */ err = wx_setup_all_rx_resources(wx); if (err) goto err_free_tx; err = wx_setup_isb_resources(wx); if (err) goto err_free_rx; return 0; err_free_rx: wx_free_all_rx_resources(wx); err_free_tx: wx_free_all_tx_resources(wx); return err; } EXPORT_SYMBOL(wx_setup_resources); /** * wx_get_stats64 - Get System Network Statistics * @netdev: network interface device structure * @stats: storage space for 64bit statistics */ void wx_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct wx *wx = netdev_priv(netdev); struct wx_hw_stats *hwstats; int i; wx_update_stats(wx); rcu_read_lock(); for (i = 0; i < wx->num_rx_queues; i++) { struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]); u64 bytes, packets; unsigned int start; if (ring) { do { start = u64_stats_fetch_begin(&ring->syncp); packets = ring->stats.packets; bytes = ring->stats.bytes; } while (u64_stats_fetch_retry(&ring->syncp, start)); stats->rx_packets += packets; stats->rx_bytes += bytes; } } for (i = 0; i < wx->num_tx_queues; i++) { struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]); u64 bytes, packets; unsigned int start; if (ring) { do { start = u64_stats_fetch_begin(&ring->syncp); packets = ring->stats.packets; bytes = ring->stats.bytes; } while (u64_stats_fetch_retry(&ring->syncp, start)); stats->tx_packets += packets; stats->tx_bytes += bytes; } } rcu_read_unlock(); hwstats = &wx->stats; stats->rx_errors = hwstats->crcerrs + hwstats->rlec; stats->multicast = hwstats->qmprc; stats->rx_length_errors = hwstats->rlec; stats->rx_crc_errors = hwstats->crcerrs; } EXPORT_SYMBOL(wx_get_stats64); int wx_set_features(struct net_device *netdev, netdev_features_t features) { netdev_features_t changed = netdev->features ^ features; struct wx *wx = netdev_priv(netdev); if (features & NETIF_F_RXHASH) { wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, WX_RDB_RA_CTL_RSS_EN); wx->rss_enabled = true; } else { wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 0); wx->rss_enabled = false; } netdev->features = features; if (wx->mac.type == wx_mac_sp && changed & NETIF_F_HW_VLAN_CTAG_RX) wx->do_reset(netdev); else if (changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER)) wx_set_rx_mode(netdev); return 0; } EXPORT_SYMBOL(wx_set_features); #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ NETIF_F_HW_VLAN_STAG_RX) #define NETIF_VLAN_INSERTION_FEATURES (NETIF_F_HW_VLAN_CTAG_TX | \ NETIF_F_HW_VLAN_STAG_TX) #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ NETIF_F_HW_VLAN_STAG_FILTER) netdev_features_t wx_fix_features(struct net_device *netdev, netdev_features_t features) { netdev_features_t changed = netdev->features ^ features; struct wx *wx = netdev_priv(netdev); if (changed & NETIF_VLAN_STRIPPING_FEATURES) { if ((features & NETIF_VLAN_STRIPPING_FEATURES) != NETIF_VLAN_STRIPPING_FEATURES && (features & NETIF_VLAN_STRIPPING_FEATURES) != 0) { features &= ~NETIF_VLAN_STRIPPING_FEATURES; features |= netdev->features & NETIF_VLAN_STRIPPING_FEATURES; wx_err(wx, "802.1Q and 802.1ad VLAN stripping must be either both on or both off."); } } if (changed & NETIF_VLAN_INSERTION_FEATURES) { if ((features & NETIF_VLAN_INSERTION_FEATURES) != NETIF_VLAN_INSERTION_FEATURES && (features & NETIF_VLAN_INSERTION_FEATURES) != 0) { features &= ~NETIF_VLAN_INSERTION_FEATURES; features |= netdev->features & NETIF_VLAN_INSERTION_FEATURES; wx_err(wx, "802.1Q and 802.1ad VLAN insertion must be either both on or both off."); } } if (changed & NETIF_VLAN_FILTERING_FEATURES) { if ((features & NETIF_VLAN_FILTERING_FEATURES) != NETIF_VLAN_FILTERING_FEATURES && (features & NETIF_VLAN_FILTERING_FEATURES) != 0) { features &= ~NETIF_VLAN_FILTERING_FEATURES; features |= netdev->features & NETIF_VLAN_FILTERING_FEATURES; wx_err(wx, "802.1Q and 802.1ad VLAN filtering must be either both on or both off."); } } return features; } EXPORT_SYMBOL(wx_fix_features); void wx_set_ring(struct wx *wx, u32 new_tx_count, u32 new_rx_count, struct wx_ring *temp_ring) { int i, err = 0; /* Setup new Tx resources and free the old Tx resources in that order. * We can then assign the new resources to the rings via a memcpy. * The advantage to this approach is that we are guaranteed to still * have resources even in the case of an allocation failure. */ if (new_tx_count != wx->tx_ring_count) { for (i = 0; i < wx->num_tx_queues; i++) { memcpy(&temp_ring[i], wx->tx_ring[i], sizeof(struct wx_ring)); temp_ring[i].count = new_tx_count; err = wx_setup_tx_resources(&temp_ring[i]); if (err) { wx_err(wx, "setup new tx resources failed, keep using the old config\n"); while (i) { i--; wx_free_tx_resources(&temp_ring[i]); } return; } } for (i = 0; i < wx->num_tx_queues; i++) { wx_free_tx_resources(wx->tx_ring[i]); memcpy(wx->tx_ring[i], &temp_ring[i], sizeof(struct wx_ring)); } wx->tx_ring_count = new_tx_count; } /* Repeat the process for the Rx rings if needed */ if (new_rx_count != wx->rx_ring_count) { for (i = 0; i < wx->num_rx_queues; i++) { memcpy(&temp_ring[i], wx->rx_ring[i], sizeof(struct wx_ring)); temp_ring[i].count = new_rx_count; err = wx_setup_rx_resources(&temp_ring[i]); if (err) { wx_err(wx, "setup new rx resources failed, keep using the old config\n"); while (i) { i--; wx_free_rx_resources(&temp_ring[i]); } return; } } for (i = 0; i < wx->num_rx_queues; i++) { wx_free_rx_resources(wx->rx_ring[i]); memcpy(wx->rx_ring[i], &temp_ring[i], sizeof(struct wx_ring)); } wx->rx_ring_count = new_rx_count; } } EXPORT_SYMBOL(wx_set_ring); MODULE_DESCRIPTION("Common library for Wangxun(R) Ethernet drivers."); MODULE_LICENSE("GPL"); |