// SPDX-License-Identifier: GPL-2.0
/* Author: Dan Scally <djrscally@gmail.com> */
#include <linux/acpi.h>
#include <linux/cleanup.h>
#include <linux/device.h>
#include <linux/i2c.h>
#include <linux/mei_cl_bus.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/property.h>
#include <linux/string.h>
#include <linux/workqueue.h>
#include <media/ipu-bridge.h>
#include <media/v4l2-fwnode.h>
#define ADEV_DEV(adev) ACPI_PTR(&((adev)->dev))
/*
* 92335fcf-3203-4472-af93-7b4453ac29da
*
* Used to build MEI CSI device name to lookup MEI CSI device by
* device_find_child_by_name().
*/
#define MEI_CSI_UUID \
UUID_LE(0x92335FCF, 0x3203, 0x4472, \
0xAF, 0x93, 0x7B, 0x44, 0x53, 0xAC, 0x29, 0xDA)
/*
* IVSC device name
*
* Used to match IVSC device by ipu_bridge_match_ivsc_dev()
*/
#define IVSC_DEV_NAME "intel_vsc"
/*
* Extend this array with ACPI Hardware IDs of devices known to be working
* plus the number of link-frequencies expected by their drivers, along with
* the frequency values in hertz. This is somewhat opportunistic way of adding
* support for this for now in the hopes of a better source for the information
* (possibly some encoded value in the SSDB buffer that we're unaware of)
* becoming apparent in the future.
*
* Do not add an entry for a sensor that is not actually supported.
*/
static const struct ipu_sensor_config ipu_supported_sensors[] = {
/* Omnivision OV5693 */
IPU_SENSOR_CONFIG("INT33BE", 1, 419200000),
/* Omnivision OV8865 */
IPU_SENSOR_CONFIG("INT347A", 1, 360000000),
/* Omnivision OV7251 */
IPU_SENSOR_CONFIG("INT347E", 1, 319200000),
/* Omnivision OV2680 */
IPU_SENSOR_CONFIG("OVTI2680", 1, 331200000),
/* Omnivision ov8856 */
IPU_SENSOR_CONFIG("OVTI8856", 3, 180000000, 360000000, 720000000),
/* Omnivision ov2740 */
IPU_SENSOR_CONFIG("INT3474", 1, 180000000),
/* Hynix hi556 */
IPU_SENSOR_CONFIG("INT3537", 1, 437000000),
/* Omnivision ov13b10 */
IPU_SENSOR_CONFIG("OVTIDB10", 1, 560000000),
/* GalaxyCore GC0310 */
IPU_SENSOR_CONFIG("INT0310", 0),
/* Omnivision ov01a10 */
IPU_SENSOR_CONFIG("OVTI01A0", 1, 400000000),
};
static const struct ipu_property_names prop_names = {
.clock_frequency = "clock-frequency",
.rotation = "rotation",
.orientation = "orientation",
.bus_type = "bus-type",
.data_lanes = "data-lanes",
.remote_endpoint = "remote-endpoint",
.link_frequencies = "link-frequencies",
};
static const char * const ipu_vcm_types[] = {
"ad5823",
"dw9714",
"ad5816",
"dw9719",
"dw9718",
"dw9806b",
"wv517s",
"lc898122xa",
"lc898212axb",
};
#if IS_ENABLED(CONFIG_ACPI)
/*
* Used to figure out IVSC acpi device by ipu_bridge_get_ivsc_acpi_dev()
* instead of device and driver match to probe IVSC device.
*/
static const struct acpi_device_id ivsc_acpi_ids[] = {
{ "INTC1059" },
{ "INTC1095" },
{ "INTC100A" },
{ "INTC10CF" },
};
static struct acpi_device *ipu_bridge_get_ivsc_acpi_dev(struct acpi_device *adev)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ivsc_acpi_ids); i++) {
const struct acpi_device_id *acpi_id = &ivsc_acpi_ids[i];
struct acpi_device *consumer, *ivsc_adev;
acpi_handle handle = acpi_device_handle(adev);
for_each_acpi_dev_match(ivsc_adev, acpi_id->id, NULL, -1)
/* camera sensor depends on IVSC in DSDT if exist */
for_each_acpi_consumer_dev(ivsc_adev, consumer)
if (consumer->handle == handle) {
acpi_dev_put(consumer);
return ivsc_adev;
}
}
return NULL;
}
#else
static struct acpi_device *ipu_bridge_get_ivsc_acpi_dev(struct acpi_device *adev)
{
return NULL;
}
#endif
static int ipu_bridge_match_ivsc_dev(struct device *dev, const void *adev)
{
if (ACPI_COMPANION(dev) != adev)
return 0;
if (!sysfs_streq(dev_name(dev), IVSC_DEV_NAME))
return 0;
return 1;
}
static struct device *ipu_bridge_get_ivsc_csi_dev(struct acpi_device *adev)
{
struct device *dev, *csi_dev;
uuid_le uuid = MEI_CSI_UUID;
char name[64];
/* IVSC device on platform bus */
dev = bus_find_device(&platform_bus_type, NULL, adev,
ipu_bridge_match_ivsc_dev);
if (dev) {
snprintf(name, sizeof(name), "%s-%pUl", dev_name(dev), &uuid);
csi_dev = device_find_child_by_name(dev, name);
put_device(dev);
return csi_dev;
}
return NULL;
}
static int ipu_bridge_check_ivsc_dev(struct ipu_sensor *sensor,
struct acpi_device *sensor_adev)
{
struct acpi_device *adev;
struct device *csi_dev;
adev = ipu_bridge_get_ivsc_acpi_dev(sensor_adev);
if (adev) {
csi_dev = ipu_bridge_get_ivsc_csi_dev(adev);
if (!csi_dev) {
acpi_dev_put(adev);
dev_err(ADEV_DEV(adev), "Failed to find MEI CSI dev\n");
return -ENODEV;
}
sensor->csi_dev = csi_dev;
sensor->ivsc_adev = adev;
}
return 0;
}
static int ipu_bridge_read_acpi_buffer(struct acpi_device *adev, char *id,
void *data, u32 size)
{
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *obj;
acpi_status status;
int ret = 0;
status = acpi_evaluate_object(ACPI_PTR(adev->handle),
id, NULL, &buffer);
if (ACPI_FAILURE(status))
return -ENODEV;
obj = buffer.pointer;
if (!obj) {
dev_err(ADEV_DEV(adev), "Couldn't locate ACPI buffer\n");
return -ENODEV;
}
if (obj->type != ACPI_TYPE_BUFFER) {
dev_err(ADEV_DEV(adev), "Not an ACPI buffer\n");
ret = -ENODEV;
goto out_free_buff;
}
if (obj->buffer.length > size) {
dev_err(ADEV_DEV(adev), "Given buffer is too small\n");
ret = -EINVAL;
goto out_free_buff;
}
memcpy(data, obj->buffer.pointer, obj->buffer.length);
out_free_buff:
kfree(buffer.pointer);
return ret;
}
static u32 ipu_bridge_parse_rotation(struct acpi_device *adev,
struct ipu_sensor_ssdb *ssdb)
{
switch (ssdb->degree) {
case IPU_SENSOR_ROTATION_NORMAL:
return 0;
case IPU_SENSOR_ROTATION_INVERTED:
return 180;
default:
dev_warn(ADEV_DEV(adev),
"Unknown rotation %d. Assume 0 degree rotation\n",
ssdb->degree);
return 0;
}
}
static enum v4l2_fwnode_orientation ipu_bridge_parse_orientation(struct acpi_device *adev)
{
enum v4l2_fwnode_orientation orientation;
struct acpi_pld_info *pld = NULL;
acpi_status status = AE_ERROR;
#if IS_ENABLED(CONFIG_ACPI)
status = acpi_get_physical_device_location(adev->handle, &pld);
#endif
if (ACPI_FAILURE(status)) {
dev_warn(ADEV_DEV(adev), "_PLD call failed, using default orientation\n");
return V4L2_FWNODE_ORIENTATION_EXTERNAL;
}
switch (pld->panel) {
case ACPI_PLD_PANEL_FRONT:
orientation = V4L2_FWNODE_ORIENTATION_FRONT;
break;
case ACPI_PLD_PANEL_BACK:
orientation = V4L2_FWNODE_ORIENTATION_BACK;
break;
case ACPI_PLD_PANEL_TOP:
case ACPI_PLD_PANEL_LEFT:
case ACPI_PLD_PANEL_RIGHT:
case ACPI_PLD_PANEL_UNKNOWN:
orientation = V4L2_FWNODE_ORIENTATION_EXTERNAL;
break;
default:
dev_warn(ADEV_DEV(adev), "Unknown _PLD panel val %d\n",
pld->panel);
orientation = V4L2_FWNODE_ORIENTATION_EXTERNAL;
break;
}
ACPI_FREE(pld);
return orientation;
}
int ipu_bridge_parse_ssdb(struct acpi_device *adev, struct ipu_sensor *sensor)
{
struct ipu_sensor_ssdb ssdb = {};
int ret;
ret = ipu_bridge_read_acpi_buffer(adev, "SSDB", &ssdb, sizeof(ssdb));
if (ret)
return ret;
if (ssdb.vcmtype > ARRAY_SIZE(ipu_vcm_types)) {
dev_warn(ADEV_DEV(adev), "Unknown VCM type %d\n", ssdb.vcmtype);
ssdb.vcmtype = 0;
}
if (ssdb.lanes > IPU_MAX_LANES) {
dev_err(ADEV_DEV(adev), "Number of lanes in SSDB is invalid\n");
return -EINVAL;
}
sensor->link = ssdb.link;
sensor->lanes = ssdb.lanes;
sensor->mclkspeed = ssdb.mclkspeed;
sensor->rotation = ipu_bridge_parse_rotation(adev, &ssdb);
sensor->orientation = ipu_bridge_parse_orientation(adev);
if (ssdb.vcmtype)
sensor->vcm_type = ipu_vcm_types[ssdb.vcmtype - 1];
return 0;
}
EXPORT_SYMBOL_NS_GPL(ipu_bridge_parse_ssdb, INTEL_IPU_BRIDGE);
static void ipu_bridge_create_fwnode_properties(
struct ipu_sensor *sensor,
struct ipu_bridge *bridge,
const struct ipu_sensor_config *cfg)
{
struct ipu_property_names *names = &sensor->prop_names;
struct software_node *nodes = sensor->swnodes;
sensor->prop_names = prop_names;
if (sensor->csi_dev) {
sensor->local_ref[0] =
SOFTWARE_NODE_REFERENCE(&nodes[SWNODE_IVSC_SENSOR_ENDPOINT]);
sensor->remote_ref[0] =
SOFTWARE_NODE_REFERENCE(&nodes[SWNODE_IVSC_IPU_ENDPOINT]);
sensor->ivsc_sensor_ref[0] =
SOFTWARE_NODE_REFERENCE(&nodes[SWNODE_SENSOR_ENDPOINT]);
sensor->ivsc_ipu_ref[0] =
SOFTWARE_NODE_REFERENCE(&nodes[SWNODE_IPU_ENDPOINT]);
sensor->ivsc_sensor_ep_properties[0] =
PROPERTY_ENTRY_U32(names->bus_type,
V4L2_FWNODE_BUS_TYPE_CSI2_DPHY);
sensor->ivsc_sensor_ep_properties[1] =
PROPERTY_ENTRY_U32_ARRAY_LEN(names->data_lanes,
bridge->data_lanes,
sensor->lanes);
sensor->ivsc_sensor_ep_properties[2] =
PROPERTY_ENTRY_REF_ARRAY(names->remote_endpoint,
sensor->ivsc_sensor_ref);
sensor->ivsc_ipu_ep_properties[0] =
PROPERTY_ENTRY_U32(names->bus_type,
V4L2_FWNODE_BUS_TYPE_CSI2_DPHY);
sensor->ivsc_ipu_ep_properties[1] =
PROPERTY_ENTRY_U32_ARRAY_LEN(names->data_lanes,
bridge->data_lanes,
sensor->lanes);
sensor->ivsc_ipu_ep_properties[2] =
PROPERTY_ENTRY_REF_ARRAY(names->remote_endpoint,
sensor->ivsc_ipu_ref);
} else {
sensor->local_ref[0] =
SOFTWARE_NODE_REFERENCE(&nodes[SWNODE_IPU_ENDPOINT]);
sensor->remote_ref[0] =
SOFTWARE_NODE_REFERENCE(&nodes[SWNODE_SENSOR_ENDPOINT]);
}
sensor->dev_properties[0] = PROPERTY_ENTRY_U32(
sensor->prop_names.clock_frequency,
sensor->mclkspeed);
sensor->dev_properties[1] = PROPERTY_ENTRY_U32(
sensor->prop_names.rotation,
sensor->rotation);
sensor->dev_properties[2] = PROPERTY_ENTRY_U32(
sensor->prop_names.orientation,
sensor->orientation);
if (sensor->vcm_type) {
sensor->vcm_ref[0] =
SOFTWARE_NODE_REFERENCE(&sensor->swnodes[SWNODE_VCM]);
sensor->dev_properties[3] =
PROPERTY_ENTRY_REF_ARRAY("lens-focus", sensor->vcm_ref);
}
sensor->ep_properties[0] = PROPERTY_ENTRY_U32(
sensor->prop_names.bus_type,
V4L2_FWNODE_BUS_TYPE_CSI2_DPHY);
sensor->ep_properties[1] = PROPERTY_ENTRY_U32_ARRAY_LEN(
sensor->prop_names.data_lanes,
bridge->data_lanes, sensor->lanes);
sensor->ep_properties[2] = PROPERTY_ENTRY_REF_ARRAY(
sensor->prop_names.remote_endpoint,
sensor->local_ref);
if (cfg->nr_link_freqs > 0)
sensor->ep_properties[3] = PROPERTY_ENTRY_U64_ARRAY_LEN(
sensor->prop_names.link_frequencies,
cfg->link_freqs,
cfg->nr_link_freqs);
sensor->ipu_properties[0] = PROPERTY_ENTRY_U32_ARRAY_LEN(
sensor->prop_names.data_lanes,
bridge->data_lanes, sensor->lanes);
sensor->ipu_properties[1] = PROPERTY_ENTRY_REF_ARRAY(
sensor->prop_names.remote_endpoint,
sensor->remote_ref);
}
static void ipu_bridge_init_swnode_names(struct ipu_sensor *sensor)
{
snprintf(sensor->node_names.remote_port,
sizeof(sensor->node_names.remote_port),
SWNODE_GRAPH_PORT_NAME_FMT, sensor->link);
snprintf(sensor->node_names.port,
sizeof(sensor->node_names.port),
SWNODE_GRAPH_PORT_NAME_FMT, 0); /* Always port 0 */
snprintf(sensor->node_names.endpoint,
sizeof(sensor->node_names.endpoint),
SWNODE_GRAPH_ENDPOINT_NAME_FMT, 0); /* And endpoint 0 */
if (sensor->vcm_type) {
/* append link to distinguish nodes with same model VCM */
snprintf(sensor->node_names.vcm, sizeof(sensor->node_names.vcm),
"%s-%u", sensor->vcm_type, sensor->link);
}
if (sensor->csi_dev) {
snprintf(sensor->node_names.ivsc_sensor_port,
sizeof(sensor->node_names.ivsc_sensor_port),
SWNODE_GRAPH_PORT_NAME_FMT, 0);
snprintf(sensor->node_names.ivsc_ipu_port,
sizeof(sensor->node_names.ivsc_ipu_port),
SWNODE_GRAPH_PORT_NAME_FMT, 1);
}
}
static void ipu_bridge_init_swnode_group(struct ipu_sensor *sensor)
{
struct software_node *nodes = sensor->swnodes;
sensor->group[SWNODE_SENSOR_HID] = &nodes[SWNODE_SENSOR_HID];
sensor->group[SWNODE_SENSOR_PORT] = &nodes[SWNODE_SENSOR_PORT];
sensor->group[SWNODE_SENSOR_ENDPOINT] = &nodes[SWNODE_SENSOR_ENDPOINT];
sensor->group[SWNODE_IPU_PORT] = &nodes[SWNODE_IPU_PORT];
sensor->group[SWNODE_IPU_ENDPOINT] = &nodes[SWNODE_IPU_ENDPOINT];
if (sensor->vcm_type)
sensor->group[SWNODE_VCM] = &nodes[SWNODE_VCM];
if (sensor->csi_dev) {
sensor->group[SWNODE_IVSC_HID] =
&nodes[SWNODE_IVSC_HID];
sensor->group[SWNODE_IVSC_SENSOR_PORT] =
&nodes[SWNODE_IVSC_SENSOR_PORT];
sensor->group[SWNODE_IVSC_SENSOR_ENDPOINT] =
&nodes[SWNODE_IVSC_SENSOR_ENDPOINT];
sensor->group[SWNODE_IVSC_IPU_PORT] =
&nodes[SWNODE_IVSC_IPU_PORT];
sensor->group[SWNODE_IVSC_IPU_ENDPOINT] =
&nodes[SWNODE_IVSC_IPU_ENDPOINT];
if (sensor->vcm_type)
sensor->group[SWNODE_VCM] = &nodes[SWNODE_VCM];
} else {
if (sensor->vcm_type)
sensor->group[SWNODE_IVSC_HID] = &nodes[SWNODE_VCM];
}
}
static void ipu_bridge_create_connection_swnodes(struct ipu_bridge *bridge,
struct ipu_sensor *sensor)
{
struct ipu_node_names *names = &sensor->node_names;
struct software_node *nodes = sensor->swnodes;
ipu_bridge_init_swnode_names(sensor);
nodes[SWNODE_SENSOR_HID] = NODE_SENSOR(sensor->name,
sensor->dev_properties);
nodes[SWNODE_SENSOR_PORT] = NODE_PORT(sensor->node_names.port,
&nodes[SWNODE_SENSOR_HID]);
nodes[SWNODE_SENSOR_ENDPOINT] = NODE_ENDPOINT(
sensor->node_names.endpoint,
&nodes[SWNODE_SENSOR_PORT],
sensor->ep_properties);
nodes[SWNODE_IPU_PORT] = NODE_PORT(sensor->node_names.remote_port,
&bridge->ipu_hid_node);
nodes[SWNODE_IPU_ENDPOINT] = NODE_ENDPOINT(
sensor->node_names.endpoint,
&nodes[SWNODE_IPU_PORT],
sensor->ipu_properties);
if (sensor->csi_dev) {
const char *device_hid = "";
#if IS_ENABLED(CONFIG_ACPI)
device_hid = acpi_device_hid(sensor->ivsc_adev);
#endif
snprintf(sensor->ivsc_name, sizeof(sensor->ivsc_name), "%s-%u",
device_hid, sensor->link);
nodes[SWNODE_IVSC_HID] = NODE_SENSOR(sensor->ivsc_name,
sensor->ivsc_properties);
nodes[SWNODE_IVSC_SENSOR_PORT] =
NODE_PORT(names->ivsc_sensor_port,
&nodes[SWNODE_IVSC_HID]);
nodes[SWNODE_IVSC_SENSOR_ENDPOINT] =
NODE_ENDPOINT(names->endpoint,
&nodes[SWNODE_IVSC_SENSOR_PORT],
sensor->ivsc_sensor_ep_properties);
nodes[SWNODE_IVSC_IPU_PORT] =
NODE_PORT(names->ivsc_ipu_port,
&nodes[SWNODE_IVSC_HID]);
nodes[SWNODE_IVSC_IPU_ENDPOINT] =
NODE_ENDPOINT(names->endpoint,
&nodes[SWNODE_IVSC_IPU_PORT],
sensor->ivsc_ipu_ep_properties);
}
nodes[SWNODE_VCM] = NODE_VCM(sensor->node_names.vcm);
ipu_bridge_init_swnode_group(sensor);
}
/*
* The actual instantiation must be done from a workqueue to avoid
* a deadlock on taking list_lock from v4l2-async twice.
*/
struct ipu_bridge_instantiate_vcm_work_data {
struct work_struct work;
struct device *sensor;
char name[16];
struct i2c_board_info board_info;
};
static void ipu_bridge_instantiate_vcm_work(struct work_struct *work)
{
struct ipu_bridge_instantiate_vcm_work_data *data =
container_of(work, struct ipu_bridge_instantiate_vcm_work_data,
work);
struct acpi_device *adev = ACPI_COMPANION(data->sensor);
struct i2c_client *vcm_client;
bool put_fwnode = true;
int ret;
/*
* The client may get probed before the device_link gets added below
* make sure the sensor is powered-up during probe.
*/
ret = pm_runtime_get_sync(data->sensor);
if (ret < 0) {
dev_err(data->sensor, "Error %d runtime-resuming sensor, cannot instantiate VCM\n",
ret);
goto out_pm_put;
}
/*
* Note the client is created only once and then kept around
* even after a rmmod, just like the software-nodes.
*/
vcm_client = i2c_acpi_new_device_by_fwnode(acpi_fwnode_handle(adev),
1, &data->board_info);
if (IS_ERR(vcm_client)) {
dev_err(data->sensor, "Error instantiating VCM client: %ld\n",
PTR_ERR(vcm_client));
goto out_pm_put;
}
device_link_add(&vcm_client->dev, data->sensor, DL_FLAG_PM_RUNTIME);
dev_info(data->sensor, "Instantiated %s VCM\n", data->board_info.type);
put_fwnode = false; /* Ownership has passed to the i2c-client */
out_pm_put:
pm_runtime_put(data->sensor);
put_device(data->sensor);
if (put_fwnode)
fwnode_handle_put(data->board_info.fwnode);
kfree(data);
}
int ipu_bridge_instantiate_vcm(struct device *sensor)
{
struct ipu_bridge_instantiate_vcm_work_data *data;
struct fwnode_handle *vcm_fwnode;
struct i2c_client *vcm_client;
struct acpi_device *adev;
char *sep;
adev = ACPI_COMPANION(sensor);
if (!adev)
return 0;
vcm_fwnode = fwnode_find_reference(dev_fwnode(sensor), "lens-focus", 0);
if (IS_ERR(vcm_fwnode))
return 0;
/* When reloading modules the client will already exist */
vcm_client = i2c_find_device_by_fwnode(vcm_fwnode);
if (vcm_client) {
fwnode_handle_put(vcm_fwnode);
put_device(&vcm_client->dev);
return 0;
}
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data) {
fwnode_handle_put(vcm_fwnode);
return -ENOMEM;
}
INIT_WORK(&data->work, ipu_bridge_instantiate_vcm_work);
data->sensor = get_device(sensor);
snprintf(data->name, sizeof(data->name), "%s-VCM",
acpi_dev_name(adev));
data->board_info.dev_name = data->name;
data->board_info.fwnode = vcm_fwnode;
snprintf(data->board_info.type, sizeof(data->board_info.type),
"%pfwP", vcm_fwnode);
/* Strip "-<link>" postfix */
sep = strchrnul(data->board_info.type, '-');
*sep = 0;
queue_work(system_long_wq, &data->work);
return 0;
}
EXPORT_SYMBOL_NS_GPL(ipu_bridge_instantiate_vcm, INTEL_IPU_BRIDGE);
static int ipu_bridge_instantiate_ivsc(struct ipu_sensor *sensor)
{
struct fwnode_handle *fwnode;
if (!sensor->csi_dev)
return 0;
fwnode = software_node_fwnode(&sensor->swnodes[SWNODE_IVSC_HID]);
if (!fwnode)
return -ENODEV;
set_secondary_fwnode(sensor->csi_dev, fwnode);
return 0;
}
static void ipu_bridge_unregister_sensors(struct ipu_bridge *bridge)
{
struct ipu_sensor *sensor;
unsigned int i;
for (i = 0; i < bridge->n_sensors; i++) {
sensor = &bridge->sensors[i];
software_node_unregister_node_group(sensor->group);
acpi_dev_put(sensor->adev);
put_device(sensor->csi_dev);
acpi_dev_put(sensor->ivsc_adev);
}
}
static int ipu_bridge_connect_sensor(const struct ipu_sensor_config *cfg,
struct ipu_bridge *bridge)
{
struct fwnode_handle *fwnode, *primary;
struct ipu_sensor *sensor;
struct acpi_device *adev = NULL;
int ret;
#if IS_ENABLED(CONFIG_ACPI)
for_each_acpi_dev_match(adev, cfg->hid, NULL, -1) {
#else
while (true) {
#endif
if (!ACPI_PTR(adev->status.enabled))
continue;
if (bridge->n_sensors >= IPU_MAX_PORTS) {
acpi_dev_put(adev);
dev_err(bridge->dev, "Exceeded available IPU ports\n");
return -EINVAL;
}
sensor = &bridge->sensors[bridge->n_sensors];
ret = bridge->parse_sensor_fwnode(adev, sensor);
if (ret)
goto err_put_adev;
snprintf(sensor->name, sizeof(sensor->name), "%s-%u",
cfg->hid, sensor->link);
ret = ipu_bridge_check_ivsc_dev(sensor, adev);
if (ret)
goto err_put_adev;
ipu_bridge_create_fwnode_properties(sensor, bridge, cfg);
ipu_bridge_create_connection_swnodes(bridge, sensor);
ret = software_node_register_node_group(sensor->group);
if (ret)
goto err_put_ivsc;
fwnode = software_node_fwnode(&sensor->swnodes[
SWNODE_SENSOR_HID]);
if (!fwnode) {
ret = -ENODEV;
goto err_free_swnodes;
}
sensor->adev = ACPI_PTR(acpi_dev_get(adev));
primary = acpi_fwnode_handle(adev);
primary->secondary = fwnode;
ret = ipu_bridge_instantiate_ivsc(sensor);
if (ret)
goto err_free_swnodes;
dev_info(bridge->dev, "Found supported sensor %s\n",
acpi_dev_name(adev));
bridge->n_sensors++;
}
return 0;
err_free_swnodes:
software_node_unregister_node_group(sensor->group);
err_put_ivsc:
put_device(sensor->csi_dev);
acpi_dev_put(sensor->ivsc_adev);
err_put_adev:
acpi_dev_put(adev);
return ret;
}
static int ipu_bridge_connect_sensors(struct ipu_bridge *bridge)
{
unsigned int i;
int ret;
for (i = 0; i < ARRAY_SIZE(ipu_supported_sensors); i++) {
const struct ipu_sensor_config *cfg =
&ipu_supported_sensors[i];
ret = ipu_bridge_connect_sensor(cfg, bridge);
if (ret)
goto err_unregister_sensors;
}
return 0;
err_unregister_sensors:
ipu_bridge_unregister_sensors(bridge);
return ret;
}
static int ipu_bridge_ivsc_is_ready(void)
{
struct acpi_device *sensor_adev, *adev;
struct device *csi_dev;
bool ready = true;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ipu_supported_sensors); i++) {
#if IS_ENABLED(CONFIG_ACPI)
const struct ipu_sensor_config *cfg =
&ipu_supported_sensors[i];
for_each_acpi_dev_match(sensor_adev, cfg->hid, NULL, -1) {
#else
while (true) {
sensor_adev = NULL;
#endif
if (!ACPI_PTR(sensor_adev->status.enabled))
continue;
adev = ipu_bridge_get_ivsc_acpi_dev(sensor_adev);
if (!adev)
continue;
csi_dev = ipu_bridge_get_ivsc_csi_dev(adev);
if (!csi_dev)
ready = false;
put_device(csi_dev);
acpi_dev_put(adev);
}
}
return ready;
}
static int ipu_bridge_check_fwnode_graph(struct fwnode_handle *fwnode)
{
struct fwnode_handle *endpoint;
if (IS_ERR_OR_NULL(fwnode))
return -EINVAL;
endpoint = fwnode_graph_get_next_endpoint(fwnode, NULL);
if (endpoint) {
fwnode_handle_put(endpoint);
return 0;
}
return ipu_bridge_check_fwnode_graph(fwnode->secondary);
}
static DEFINE_MUTEX(ipu_bridge_mutex);
int ipu_bridge_init(struct device *dev,
ipu_parse_sensor_fwnode_t parse_sensor_fwnode)
{
struct fwnode_handle *fwnode;
struct ipu_bridge *bridge;
unsigned int i;
int ret;
guard(mutex)(&ipu_bridge_mutex);
if (!ipu_bridge_check_fwnode_graph(dev_fwnode(dev)))
return 0;
if (!ipu_bridge_ivsc_is_ready())
return -EPROBE_DEFER;
bridge = kzalloc(sizeof(*bridge), GFP_KERNEL);
if (!bridge)
return -ENOMEM;
strscpy(bridge->ipu_node_name, IPU_HID,
sizeof(bridge->ipu_node_name));
bridge->ipu_hid_node.name = bridge->ipu_node_name;
bridge->dev = dev;
bridge->parse_sensor_fwnode = parse_sensor_fwnode;
ret = software_node_register(&bridge->ipu_hid_node);
if (ret < 0) {
dev_err(dev, "Failed to register the IPU HID node\n");
goto err_free_bridge;
}
/*
* Map the lane arrangement, which is fixed for the IPU3 (meaning we
* only need one, rather than one per sensor). We include it as a
* member of the struct ipu_bridge rather than a global variable so
* that it survives if the module is unloaded along with the rest of
* the struct.
*/
for (i = 0; i < IPU_MAX_LANES; i++)
bridge->data_lanes[i] = i + 1;
ret = ipu_bridge_connect_sensors(bridge);
if (ret || bridge->n_sensors == 0)
goto err_unregister_ipu;
dev_info(dev, "Connected %d cameras\n", bridge->n_sensors);
fwnode = software_node_fwnode(&bridge->ipu_hid_node);
if (!fwnode) {
dev_err(dev, "Error getting fwnode from ipu software_node\n");
ret = -ENODEV;
goto err_unregister_sensors;
}
set_secondary_fwnode(dev, fwnode);
return 0;
err_unregister_sensors:
ipu_bridge_unregister_sensors(bridge);
err_unregister_ipu:
software_node_unregister(&bridge->ipu_hid_node);
err_free_bridge:
kfree(bridge);
return ret;
}
EXPORT_SYMBOL_NS_GPL(ipu_bridge_init, INTEL_IPU_BRIDGE);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Intel IPU Sensors Bridge driver");