Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
// SPDX-License-Identifier: GPL-2.0-only
// Copyright (c) 2012-2017 ASPEED Technology Inc.
// Copyright (c) 2018-2021 Intel Corporation

#include <asm/unaligned.h>

#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/jiffies.h>
#include <linux/math.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/peci.h>
#include <linux/platform_device.h>
#include <linux/reset.h>

/* ASPEED PECI Registers */
/* Control Register */
#define ASPEED_PECI_CTRL			0x00
#define   ASPEED_PECI_CTRL_SAMPLING_MASK	GENMASK(19, 16)
#define   ASPEED_PECI_CTRL_RD_MODE_MASK		GENMASK(13, 12)
#define     ASPEED_PECI_CTRL_RD_MODE_DBG	BIT(13)
#define     ASPEED_PECI_CTRL_RD_MODE_COUNT	BIT(12)
#define   ASPEED_PECI_CTRL_CLK_SRC_HCLK		BIT(11)
#define   ASPEED_PECI_CTRL_CLK_DIV_MASK		GENMASK(10, 8)
#define   ASPEED_PECI_CTRL_INVERT_OUT		BIT(7)
#define   ASPEED_PECI_CTRL_INVERT_IN		BIT(6)
#define   ASPEED_PECI_CTRL_BUS_CONTENTION_EN	BIT(5)
#define   ASPEED_PECI_CTRL_PECI_EN		BIT(4)
#define   ASPEED_PECI_CTRL_PECI_CLK_EN		BIT(0)

/* Timing Negotiation Register */
#define ASPEED_PECI_TIMING_NEGOTIATION		0x04
#define   ASPEED_PECI_T_NEGO_MSG_MASK		GENMASK(15, 8)
#define   ASPEED_PECI_T_NEGO_ADDR_MASK		GENMASK(7, 0)

/* Command Register */
#define ASPEED_PECI_CMD				0x08
#define   ASPEED_PECI_CMD_PIN_MONITORING	BIT(31)
#define   ASPEED_PECI_CMD_STS_MASK		GENMASK(27, 24)
#define     ASPEED_PECI_CMD_STS_ADDR_T_NEGO	0x3
#define   ASPEED_PECI_CMD_IDLE_MASK		\
	  (ASPEED_PECI_CMD_STS_MASK | ASPEED_PECI_CMD_PIN_MONITORING)
#define   ASPEED_PECI_CMD_FIRE			BIT(0)

/* Read/Write Length Register */
#define ASPEED_PECI_RW_LENGTH			0x0c
#define   ASPEED_PECI_AW_FCS_EN			BIT(31)
#define   ASPEED_PECI_RD_LEN_MASK		GENMASK(23, 16)
#define   ASPEED_PECI_WR_LEN_MASK		GENMASK(15, 8)
#define   ASPEED_PECI_TARGET_ADDR_MASK		GENMASK(7, 0)

/* Expected FCS Data Register */
#define ASPEED_PECI_EXPECTED_FCS		0x10
#define   ASPEED_PECI_EXPECTED_RD_FCS_MASK	GENMASK(23, 16)
#define   ASPEED_PECI_EXPECTED_AW_FCS_AUTO_MASK	GENMASK(15, 8)
#define   ASPEED_PECI_EXPECTED_WR_FCS_MASK	GENMASK(7, 0)

/* Captured FCS Data Register */
#define ASPEED_PECI_CAPTURED_FCS		0x14
#define   ASPEED_PECI_CAPTURED_RD_FCS_MASK	GENMASK(23, 16)
#define   ASPEED_PECI_CAPTURED_WR_FCS_MASK	GENMASK(7, 0)

/* Interrupt Register */
#define ASPEED_PECI_INT_CTRL			0x18
#define   ASPEED_PECI_TIMING_NEGO_SEL_MASK	GENMASK(31, 30)
#define     ASPEED_PECI_1ST_BIT_OF_ADDR_NEGO	0
#define     ASPEED_PECI_2ND_BIT_OF_ADDR_NEGO	1
#define     ASPEED_PECI_MESSAGE_NEGO		2
#define   ASPEED_PECI_INT_MASK			GENMASK(4, 0)
#define     ASPEED_PECI_INT_BUS_TIMEOUT		BIT(4)
#define     ASPEED_PECI_INT_BUS_CONTENTION	BIT(3)
#define     ASPEED_PECI_INT_WR_FCS_BAD		BIT(2)
#define     ASPEED_PECI_INT_WR_FCS_ABORT	BIT(1)
#define     ASPEED_PECI_INT_CMD_DONE		BIT(0)

/* Interrupt Status Register */
#define ASPEED_PECI_INT_STS			0x1c
#define   ASPEED_PECI_INT_TIMING_RESULT_MASK	GENMASK(29, 16)
	  /* bits[4..0]: Same bit fields in the 'Interrupt Register' */

/* Rx/Tx Data Buffer Registers */
#define ASPEED_PECI_WR_DATA0			0x20
#define ASPEED_PECI_WR_DATA1			0x24
#define ASPEED_PECI_WR_DATA2			0x28
#define ASPEED_PECI_WR_DATA3			0x2c
#define ASPEED_PECI_RD_DATA0			0x30
#define ASPEED_PECI_RD_DATA1			0x34
#define ASPEED_PECI_RD_DATA2			0x38
#define ASPEED_PECI_RD_DATA3			0x3c
#define ASPEED_PECI_WR_DATA4			0x40
#define ASPEED_PECI_WR_DATA5			0x44
#define ASPEED_PECI_WR_DATA6			0x48
#define ASPEED_PECI_WR_DATA7			0x4c
#define ASPEED_PECI_RD_DATA4			0x50
#define ASPEED_PECI_RD_DATA5			0x54
#define ASPEED_PECI_RD_DATA6			0x58
#define ASPEED_PECI_RD_DATA7			0x5c
#define   ASPEED_PECI_DATA_BUF_SIZE_MAX		32

/* Timing Negotiation */
#define ASPEED_PECI_CLK_FREQUENCY_MIN		2000
#define ASPEED_PECI_CLK_FREQUENCY_DEFAULT	1000000
#define ASPEED_PECI_CLK_FREQUENCY_MAX		2000000
#define ASPEED_PECI_RD_SAMPLING_POINT_DEFAULT	8
/* Timeout */
#define ASPEED_PECI_IDLE_CHECK_TIMEOUT_US	(50 * USEC_PER_MSEC)
#define ASPEED_PECI_IDLE_CHECK_INTERVAL_US	(10 * USEC_PER_MSEC)
#define ASPEED_PECI_CMD_TIMEOUT_MS_DEFAULT	1000
#define ASPEED_PECI_CMD_TIMEOUT_MS_MAX		1000

#define ASPEED_PECI_CLK_DIV1(msg_timing) (4 * (msg_timing) + 1)
#define ASPEED_PECI_CLK_DIV2(clk_div_exp) BIT(clk_div_exp)
#define ASPEED_PECI_CLK_DIV(msg_timing, clk_div_exp) \
	(4 * ASPEED_PECI_CLK_DIV1(msg_timing) * ASPEED_PECI_CLK_DIV2(clk_div_exp))

struct aspeed_peci {
	struct peci_controller *controller;
	struct device *dev;
	void __iomem *base;
	struct reset_control *rst;
	int irq;
	spinlock_t lock; /* to sync completion status handling */
	struct completion xfer_complete;
	struct clk *clk;
	u32 clk_frequency;
	u32 status;
	u32 cmd_timeout_ms;
};

struct clk_aspeed_peci {
	struct clk_hw hw;
	struct aspeed_peci *aspeed_peci;
};

static void aspeed_peci_controller_enable(struct aspeed_peci *priv)
{
	u32 val = readl(priv->base + ASPEED_PECI_CTRL);

	val |= ASPEED_PECI_CTRL_PECI_CLK_EN;
	val |= ASPEED_PECI_CTRL_PECI_EN;

	writel(val, priv->base + ASPEED_PECI_CTRL);
}

static void aspeed_peci_init_regs(struct aspeed_peci *priv)
{
	u32 val;

	/* Clear interrupts */
	writel(ASPEED_PECI_INT_MASK, priv->base + ASPEED_PECI_INT_STS);

	/* Set timing negotiation mode and enable interrupts */
	val = FIELD_PREP(ASPEED_PECI_TIMING_NEGO_SEL_MASK, ASPEED_PECI_1ST_BIT_OF_ADDR_NEGO);
	val |= ASPEED_PECI_INT_MASK;
	writel(val, priv->base + ASPEED_PECI_INT_CTRL);

	val = FIELD_PREP(ASPEED_PECI_CTRL_SAMPLING_MASK, ASPEED_PECI_RD_SAMPLING_POINT_DEFAULT);
	writel(val, priv->base + ASPEED_PECI_CTRL);
}

static int aspeed_peci_check_idle(struct aspeed_peci *priv)
{
	u32 cmd_sts = readl(priv->base + ASPEED_PECI_CMD);
	int ret;

	/*
	 * Under normal circumstances, we expect to be idle here.
	 * In case there were any errors/timeouts that led to the situation
	 * where the hardware is not in idle state - we need to reset and
	 * reinitialize it to avoid potential controller hang.
	 */
	if (FIELD_GET(ASPEED_PECI_CMD_STS_MASK, cmd_sts)) {
		ret = reset_control_assert(priv->rst);
		if (ret) {
			dev_err(priv->dev, "cannot assert reset control\n");
			return ret;
		}

		ret = reset_control_deassert(priv->rst);
		if (ret) {
			dev_err(priv->dev, "cannot deassert reset control\n");
			return ret;
		}

		aspeed_peci_init_regs(priv);

		ret = clk_set_rate(priv->clk, priv->clk_frequency);
		if (ret < 0) {
			dev_err(priv->dev, "cannot set clock frequency\n");
			return ret;
		}

		aspeed_peci_controller_enable(priv);
	}

	return readl_poll_timeout(priv->base + ASPEED_PECI_CMD,
				  cmd_sts,
				  !(cmd_sts & ASPEED_PECI_CMD_IDLE_MASK),
				  ASPEED_PECI_IDLE_CHECK_INTERVAL_US,
				  ASPEED_PECI_IDLE_CHECK_TIMEOUT_US);
}

static int aspeed_peci_xfer(struct peci_controller *controller,
			    u8 addr, struct peci_request *req)
{
	struct aspeed_peci *priv = dev_get_drvdata(controller->dev.parent);
	unsigned long timeout = msecs_to_jiffies(priv->cmd_timeout_ms);
	u32 peci_head;
	int ret, i;

	if (req->tx.len > ASPEED_PECI_DATA_BUF_SIZE_MAX ||
	    req->rx.len > ASPEED_PECI_DATA_BUF_SIZE_MAX)
		return -EINVAL;

	/* Check command sts and bus idle state */
	ret = aspeed_peci_check_idle(priv);
	if (ret)
		return ret; /* -ETIMEDOUT */

	spin_lock_irq(&priv->lock);
	reinit_completion(&priv->xfer_complete);

	peci_head = FIELD_PREP(ASPEED_PECI_TARGET_ADDR_MASK, addr) |
		    FIELD_PREP(ASPEED_PECI_WR_LEN_MASK, req->tx.len) |
		    FIELD_PREP(ASPEED_PECI_RD_LEN_MASK, req->rx.len);

	writel(peci_head, priv->base + ASPEED_PECI_RW_LENGTH);

	for (i = 0; i < req->tx.len; i += 4) {
		u32 reg = (i < 16 ? ASPEED_PECI_WR_DATA0 : ASPEED_PECI_WR_DATA4) + i % 16;

		writel(get_unaligned_le32(&req->tx.buf[i]), priv->base + reg);
	}

#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
	dev_dbg(priv->dev, "HEAD : %#08x\n", peci_head);
	print_hex_dump_bytes("TX : ", DUMP_PREFIX_NONE, req->tx.buf, req->tx.len);
#endif

	priv->status = 0;
	writel(ASPEED_PECI_CMD_FIRE, priv->base + ASPEED_PECI_CMD);
	spin_unlock_irq(&priv->lock);

	ret = wait_for_completion_interruptible_timeout(&priv->xfer_complete, timeout);
	if (ret < 0)
		return ret;

	if (ret == 0) {
		dev_dbg(priv->dev, "timeout waiting for a response\n");
		return -ETIMEDOUT;
	}

	spin_lock_irq(&priv->lock);

	if (priv->status != ASPEED_PECI_INT_CMD_DONE) {
		spin_unlock_irq(&priv->lock);
		dev_dbg(priv->dev, "no valid response, status: %#02x\n", priv->status);
		return -EIO;
	}

	spin_unlock_irq(&priv->lock);

	/*
	 * We need to use dword reads for register access, make sure that the
	 * buffer size is multiple of 4-bytes.
	 */
	BUILD_BUG_ON(PECI_REQUEST_MAX_BUF_SIZE % 4);

	for (i = 0; i < req->rx.len; i += 4) {
		u32 reg = (i < 16 ? ASPEED_PECI_RD_DATA0 : ASPEED_PECI_RD_DATA4) + i % 16;
		u32 rx_data = readl(priv->base + reg);

		put_unaligned_le32(rx_data, &req->rx.buf[i]);
	}

#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
	print_hex_dump_bytes("RX : ", DUMP_PREFIX_NONE, req->rx.buf, req->rx.len);
#endif
	return 0;
}

static irqreturn_t aspeed_peci_irq_handler(int irq, void *arg)
{
	struct aspeed_peci *priv = arg;
	u32 status;

	spin_lock(&priv->lock);
	status = readl(priv->base + ASPEED_PECI_INT_STS);
	writel(status, priv->base + ASPEED_PECI_INT_STS);
	priv->status |= (status & ASPEED_PECI_INT_MASK);

	/*
	 * All commands should be ended up with a ASPEED_PECI_INT_CMD_DONE bit
	 * set even in an error case.
	 */
	if (status & ASPEED_PECI_INT_CMD_DONE)
		complete(&priv->xfer_complete);

	writel(0, priv->base + ASPEED_PECI_CMD);

	spin_unlock(&priv->lock);

	return IRQ_HANDLED;
}

static void clk_aspeed_peci_find_div_values(unsigned long rate, int *msg_timing, int *clk_div_exp)
{
	unsigned long best_diff = ~0ul, diff;
	int msg_timing_temp, clk_div_exp_temp, i, j;

	for (i = 1; i <= 255; i++)
		for (j = 0; j < 8; j++) {
			diff = abs(rate - ASPEED_PECI_CLK_DIV1(i) * ASPEED_PECI_CLK_DIV2(j));
			if (diff < best_diff) {
				msg_timing_temp = i;
				clk_div_exp_temp = j;
				best_diff = diff;
			}
		}

	*msg_timing = msg_timing_temp;
	*clk_div_exp = clk_div_exp_temp;
}

static int clk_aspeed_peci_get_div(unsigned long rate, const unsigned long *prate)
{
	unsigned long this_rate = *prate / (4 * rate);
	int msg_timing, clk_div_exp;

	clk_aspeed_peci_find_div_values(this_rate, &msg_timing, &clk_div_exp);

	return ASPEED_PECI_CLK_DIV(msg_timing, clk_div_exp);
}

static int clk_aspeed_peci_set_rate(struct clk_hw *hw, unsigned long rate,
				    unsigned long prate)
{
	struct clk_aspeed_peci *peci_clk = container_of(hw, struct clk_aspeed_peci, hw);
	struct aspeed_peci *aspeed_peci = peci_clk->aspeed_peci;
	unsigned long this_rate = prate / (4 * rate);
	int clk_div_exp, msg_timing;
	u32 val;

	clk_aspeed_peci_find_div_values(this_rate, &msg_timing, &clk_div_exp);

	val = readl(aspeed_peci->base + ASPEED_PECI_CTRL);
	val |= FIELD_PREP(ASPEED_PECI_CTRL_CLK_DIV_MASK, clk_div_exp);
	writel(val, aspeed_peci->base + ASPEED_PECI_CTRL);

	val = FIELD_PREP(ASPEED_PECI_T_NEGO_MSG_MASK, msg_timing);
	val |= FIELD_PREP(ASPEED_PECI_T_NEGO_ADDR_MASK, msg_timing);
	writel(val, aspeed_peci->base + ASPEED_PECI_TIMING_NEGOTIATION);

	return 0;
}

static long clk_aspeed_peci_round_rate(struct clk_hw *hw, unsigned long rate,
				       unsigned long *prate)
{
	int div = clk_aspeed_peci_get_div(rate, prate);

	return DIV_ROUND_UP_ULL(*prate, div);
}

static unsigned long clk_aspeed_peci_recalc_rate(struct clk_hw *hw, unsigned long prate)
{
	struct clk_aspeed_peci *peci_clk = container_of(hw, struct clk_aspeed_peci, hw);
	struct aspeed_peci *aspeed_peci = peci_clk->aspeed_peci;
	int div, msg_timing, addr_timing, clk_div_exp;
	u32 reg;

	reg = readl(aspeed_peci->base + ASPEED_PECI_TIMING_NEGOTIATION);
	msg_timing = FIELD_GET(ASPEED_PECI_T_NEGO_MSG_MASK, reg);
	addr_timing = FIELD_GET(ASPEED_PECI_T_NEGO_ADDR_MASK, reg);

	if (msg_timing != addr_timing)
		return 0;

	reg = readl(aspeed_peci->base + ASPEED_PECI_CTRL);
	clk_div_exp = FIELD_GET(ASPEED_PECI_CTRL_CLK_DIV_MASK, reg);

	div = ASPEED_PECI_CLK_DIV(msg_timing, clk_div_exp);

	return DIV_ROUND_UP_ULL(prate, div);
}

static const struct clk_ops clk_aspeed_peci_ops = {
	.set_rate = clk_aspeed_peci_set_rate,
	.round_rate = clk_aspeed_peci_round_rate,
	.recalc_rate = clk_aspeed_peci_recalc_rate,
};

/*
 * PECI HW contains a clock divider which is a combination of:
 *  div0: 4 (fixed divider)
 *  div1: x + 1
 *  div2: 1 << y
 * In other words, out_clk = in_clk / (div0 * div1 * div2)
 * The resulting frequency is used by PECI Controller to drive the PECI bus to
 * negotiate optimal transfer rate.
 */
static struct clk *devm_aspeed_peci_register_clk_div(struct device *dev, struct clk *parent,
						     struct aspeed_peci *priv)
{
	struct clk_aspeed_peci *peci_clk;
	struct clk_init_data init;
	const char *parent_name;
	char name[32];
	int ret;

	snprintf(name, sizeof(name), "%s_div", dev_name(dev));

	parent_name = __clk_get_name(parent);

	init.ops = &clk_aspeed_peci_ops;
	init.name = name;
	init.parent_names = (const char* []) { parent_name };
	init.num_parents = 1;
	init.flags = 0;

	peci_clk = devm_kzalloc(dev, sizeof(struct clk_aspeed_peci), GFP_KERNEL);
	if (!peci_clk)
		return ERR_PTR(-ENOMEM);

	peci_clk->hw.init = &init;
	peci_clk->aspeed_peci = priv;

	ret = devm_clk_hw_register(dev, &peci_clk->hw);
	if (ret)
		return ERR_PTR(ret);

	return peci_clk->hw.clk;
}

static void aspeed_peci_property_sanitize(struct device *dev, const char *propname,
					  u32 min, u32 max, u32 default_val, u32 *propval)
{
	u32 val;
	int ret;

	ret = device_property_read_u32(dev, propname, &val);
	if (ret) {
		val = default_val;
	} else if (val > max || val < min) {
		dev_warn(dev, "invalid %s: %u, falling back to: %u\n",
			 propname, val, default_val);

		val = default_val;
	}

	*propval = val;
}

static void aspeed_peci_property_setup(struct aspeed_peci *priv)
{
	aspeed_peci_property_sanitize(priv->dev, "clock-frequency",
				      ASPEED_PECI_CLK_FREQUENCY_MIN, ASPEED_PECI_CLK_FREQUENCY_MAX,
				      ASPEED_PECI_CLK_FREQUENCY_DEFAULT, &priv->clk_frequency);
	aspeed_peci_property_sanitize(priv->dev, "cmd-timeout-ms",
				      1, ASPEED_PECI_CMD_TIMEOUT_MS_MAX,
				      ASPEED_PECI_CMD_TIMEOUT_MS_DEFAULT, &priv->cmd_timeout_ms);
}

static const struct peci_controller_ops aspeed_ops = {
	.xfer = aspeed_peci_xfer,
};

static void aspeed_peci_reset_control_release(void *data)
{
	reset_control_assert(data);
}

static int devm_aspeed_peci_reset_control_deassert(struct device *dev, struct reset_control *rst)
{
	int ret;

	ret = reset_control_deassert(rst);
	if (ret)
		return ret;

	return devm_add_action_or_reset(dev, aspeed_peci_reset_control_release, rst);
}

static void aspeed_peci_clk_release(void *data)
{
	clk_disable_unprepare(data);
}

static int devm_aspeed_peci_clk_enable(struct device *dev, struct clk *clk)
{
	int ret;

	ret = clk_prepare_enable(clk);
	if (ret)
		return ret;

	return devm_add_action_or_reset(dev, aspeed_peci_clk_release, clk);
}

static int aspeed_peci_probe(struct platform_device *pdev)
{
	struct peci_controller *controller;
	struct aspeed_peci *priv;
	struct clk *ref_clk;
	int ret;

	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	priv->dev = &pdev->dev;
	dev_set_drvdata(priv->dev, priv);

	priv->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(priv->base))
		return PTR_ERR(priv->base);

	priv->irq = platform_get_irq(pdev, 0);
	if (priv->irq < 0)
		return priv->irq;

	ret = devm_request_irq(&pdev->dev, priv->irq, aspeed_peci_irq_handler,
			       0, "peci-aspeed", priv);
	if (ret)
		return ret;

	init_completion(&priv->xfer_complete);
	spin_lock_init(&priv->lock);

	priv->rst = devm_reset_control_get(&pdev->dev, NULL);
	if (IS_ERR(priv->rst))
		return dev_err_probe(priv->dev, PTR_ERR(priv->rst),
				     "failed to get reset control\n");

	ret = devm_aspeed_peci_reset_control_deassert(priv->dev, priv->rst);
	if (ret)
		return dev_err_probe(priv->dev, ret, "cannot deassert reset control\n");

	aspeed_peci_property_setup(priv);

	aspeed_peci_init_regs(priv);

	ref_clk = devm_clk_get(priv->dev, NULL);
	if (IS_ERR(ref_clk))
		return dev_err_probe(priv->dev, PTR_ERR(ref_clk), "failed to get ref clock\n");

	priv->clk = devm_aspeed_peci_register_clk_div(priv->dev, ref_clk, priv);
	if (IS_ERR(priv->clk))
		return dev_err_probe(priv->dev, PTR_ERR(priv->clk), "cannot register clock\n");

	ret = clk_set_rate(priv->clk, priv->clk_frequency);
	if (ret < 0)
		return dev_err_probe(priv->dev, ret, "cannot set clock frequency\n");

	ret = devm_aspeed_peci_clk_enable(priv->dev, priv->clk);
	if (ret)
		return dev_err_probe(priv->dev, ret, "failed to enable clock\n");

	aspeed_peci_controller_enable(priv);

	controller = devm_peci_controller_add(priv->dev, &aspeed_ops);
	if (IS_ERR(controller))
		return dev_err_probe(priv->dev, PTR_ERR(controller),
				     "failed to add aspeed peci controller\n");

	priv->controller = controller;

	return 0;
}

static const struct of_device_id aspeed_peci_of_table[] = {
	{ .compatible = "aspeed,ast2400-peci", },
	{ .compatible = "aspeed,ast2500-peci", },
	{ .compatible = "aspeed,ast2600-peci", },
	{ }
};
MODULE_DEVICE_TABLE(of, aspeed_peci_of_table);

static struct platform_driver aspeed_peci_driver = {
	.probe  = aspeed_peci_probe,
	.driver = {
		.name           = "peci-aspeed",
		.of_match_table = aspeed_peci_of_table,
	},
};
module_platform_driver(aspeed_peci_driver);

MODULE_AUTHOR("Ryan Chen <ryan_chen@aspeedtech.com>");
MODULE_AUTHOR("Jae Hyun Yoo <jae.hyun.yoo@linux.intel.com>");
MODULE_DESCRIPTION("ASPEED PECI driver");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(PECI);