Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 | // SPDX-License-Identifier: GPL-2.0 or MIT /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */ /* Copyright 2023 Collabora ltd. */ #include <drm/drm_debugfs.h> #include <drm/drm_drv.h> #include <drm/drm_exec.h> #include <drm/drm_gpuvm.h> #include <drm/drm_managed.h> #include <drm/gpu_scheduler.h> #include <drm/panthor_drm.h> #include <linux/atomic.h> #include <linux/bitfield.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/io-pgtable.h> #include <linux/iommu.h> #include <linux/kmemleak.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/rwsem.h> #include <linux/sched.h> #include <linux/shmem_fs.h> #include <linux/sizes.h> #include "panthor_device.h" #include "panthor_gem.h" #include "panthor_heap.h" #include "panthor_mmu.h" #include "panthor_regs.h" #include "panthor_sched.h" #define MAX_AS_SLOTS 32 struct panthor_vm; /** * struct panthor_as_slot - Address space slot */ struct panthor_as_slot { /** @vm: VM bound to this slot. NULL is no VM is bound. */ struct panthor_vm *vm; }; /** * struct panthor_mmu - MMU related data */ struct panthor_mmu { /** @irq: The MMU irq. */ struct panthor_irq irq; /** @as: Address space related fields. * * The GPU has a limited number of address spaces (AS) slots, forcing * us to re-assign them to re-assign slots on-demand. */ struct { /** @slots_lock: Lock protecting access to all other AS fields. */ struct mutex slots_lock; /** @alloc_mask: Bitmask encoding the allocated slots. */ unsigned long alloc_mask; /** @faulty_mask: Bitmask encoding the faulty slots. */ unsigned long faulty_mask; /** @slots: VMs currently bound to the AS slots. */ struct panthor_as_slot slots[MAX_AS_SLOTS]; /** * @lru_list: List of least recently used VMs. * * We use this list to pick a VM to evict when all slots are * used. * * There should be no more active VMs than there are AS slots, * so this LRU is just here to keep VMs bound until there's * a need to release a slot, thus avoid unnecessary TLB/cache * flushes. */ struct list_head lru_list; } as; /** @vm: VMs management fields */ struct { /** @lock: Lock protecting access to list. */ struct mutex lock; /** @list: List containing all VMs. */ struct list_head list; /** @reset_in_progress: True if a reset is in progress. */ bool reset_in_progress; /** @wq: Workqueue used for the VM_BIND queues. */ struct workqueue_struct *wq; } vm; }; /** * struct panthor_vm_pool - VM pool object */ struct panthor_vm_pool { /** @xa: Array used for VM handle tracking. */ struct xarray xa; }; /** * struct panthor_vma - GPU mapping object * * This is used to track GEM mappings in GPU space. */ struct panthor_vma { /** @base: Inherits from drm_gpuva. */ struct drm_gpuva base; /** @node: Used to implement deferred release of VMAs. */ struct list_head node; /** * @flags: Combination of drm_panthor_vm_bind_op_flags. * * Only map related flags are accepted. */ u32 flags; }; /** * struct panthor_vm_op_ctx - VM operation context * * With VM operations potentially taking place in a dma-signaling path, we * need to make sure everything that might require resource allocation is * pre-allocated upfront. This is what this operation context is far. * * We also collect resources that have been freed, so we can release them * asynchronously, and let the VM_BIND scheduler process the next VM_BIND * request. */ struct panthor_vm_op_ctx { /** @rsvd_page_tables: Pages reserved for the MMU page table update. */ struct { /** @count: Number of pages reserved. */ u32 count; /** @ptr: Point to the first unused page in the @pages table. */ u32 ptr; /** * @page: Array of pages that can be used for an MMU page table update. * * After an VM operation, there might be free pages left in this array. * They should be returned to the pt_cache as part of the op_ctx cleanup. */ void **pages; } rsvd_page_tables; /** * @preallocated_vmas: Pre-allocated VMAs to handle the remap case. * * Partial unmap requests or map requests overlapping existing mappings will * trigger a remap call, which need to register up to three panthor_vma objects * (one for the new mapping, and two for the previous and next mappings). */ struct panthor_vma *preallocated_vmas[3]; /** @flags: Combination of drm_panthor_vm_bind_op_flags. */ u32 flags; /** @va: Virtual range targeted by the VM operation. */ struct { /** @addr: Start address. */ u64 addr; /** @range: Range size. */ u64 range; } va; /** * @returned_vmas: List of panthor_vma objects returned after a VM operation. * * For unmap operations, this will contain all VMAs that were covered by the * specified VA range. * * For map operations, this will contain all VMAs that previously mapped to * the specified VA range. * * Those VMAs, and the resources they point to will be released as part of * the op_ctx cleanup operation. */ struct list_head returned_vmas; /** @map: Fields specific to a map operation. */ struct { /** @vm_bo: Buffer object to map. */ struct drm_gpuvm_bo *vm_bo; /** @bo_offset: Offset in the buffer object. */ u64 bo_offset; /** * @sgt: sg-table pointing to pages backing the GEM object. * * This is gathered at job creation time, such that we don't have * to allocate in ::run_job(). */ struct sg_table *sgt; /** * @new_vma: The new VMA object that will be inserted to the VA tree. */ struct panthor_vma *new_vma; } map; }; /** * struct panthor_vm - VM object * * A VM is an object representing a GPU (or MCU) virtual address space. * It embeds the MMU page table for this address space, a tree containing * all the virtual mappings of GEM objects, and other things needed to manage * the VM. * * Except for the MCU VM, which is managed by the kernel, all other VMs are * created by userspace and mostly managed by userspace, using the * %DRM_IOCTL_PANTHOR_VM_BIND ioctl. * * A portion of the virtual address space is reserved for kernel objects, * like heap chunks, and userspace gets to decide how much of the virtual * address space is left to the kernel (half of the virtual address space * by default). */ struct panthor_vm { /** * @base: Inherit from drm_gpuvm. * * We delegate all the VA management to the common drm_gpuvm framework * and only implement hooks to update the MMU page table. */ struct drm_gpuvm base; /** * @sched: Scheduler used for asynchronous VM_BIND request. * * We use a 1:1 scheduler here. */ struct drm_gpu_scheduler sched; /** * @entity: Scheduling entity representing the VM_BIND queue. * * There's currently one bind queue per VM. It doesn't make sense to * allow more given the VM operations are serialized anyway. */ struct drm_sched_entity entity; /** @ptdev: Device. */ struct panthor_device *ptdev; /** @memattr: Value to program to the AS_MEMATTR register. */ u64 memattr; /** @pgtbl_ops: Page table operations. */ struct io_pgtable_ops *pgtbl_ops; /** @root_page_table: Stores the root page table pointer. */ void *root_page_table; /** * @op_lock: Lock used to serialize operations on a VM. * * The serialization of jobs queued to the VM_BIND queue is already * taken care of by drm_sched, but we need to serialize synchronous * and asynchronous VM_BIND request. This is what this lock is for. */ struct mutex op_lock; /** * @op_ctx: The context attached to the currently executing VM operation. * * NULL when no operation is in progress. */ struct panthor_vm_op_ctx *op_ctx; /** * @mm: Memory management object representing the auto-VA/kernel-VA. * * Used to auto-allocate VA space for kernel-managed objects (tiler * heaps, ...). * * For the MCU VM, this is managing the VA range that's used to map * all shared interfaces. * * For user VMs, the range is specified by userspace, and must not * exceed half of the VA space addressable. */ struct drm_mm mm; /** @mm_lock: Lock protecting the @mm field. */ struct mutex mm_lock; /** @kernel_auto_va: Automatic VA-range for kernel BOs. */ struct { /** @start: Start of the automatic VA-range for kernel BOs. */ u64 start; /** @size: Size of the automatic VA-range for kernel BOs. */ u64 end; } kernel_auto_va; /** @as: Address space related fields. */ struct { /** * @id: ID of the address space this VM is bound to. * * A value of -1 means the VM is inactive/not bound. */ int id; /** @active_cnt: Number of active users of this VM. */ refcount_t active_cnt; /** * @lru_node: Used to instead the VM in the panthor_mmu::as::lru_list. * * Active VMs should not be inserted in the LRU list. */ struct list_head lru_node; } as; /** * @heaps: Tiler heap related fields. */ struct { /** * @pool: The heap pool attached to this VM. * * Will stay NULL until someone creates a heap context on this VM. */ struct panthor_heap_pool *pool; /** @lock: Lock used to protect access to @pool. */ struct mutex lock; } heaps; /** @node: Used to insert the VM in the panthor_mmu::vm::list. */ struct list_head node; /** @for_mcu: True if this is the MCU VM. */ bool for_mcu; /** * @destroyed: True if the VM was destroyed. * * No further bind requests should be queued to a destroyed VM. */ bool destroyed; /** * @unusable: True if the VM has turned unusable because something * bad happened during an asynchronous request. * * We don't try to recover from such failures, because this implies * informing userspace about the specific operation that failed, and * hoping the userspace driver can replay things from there. This all * sounds very complicated for little gain. * * Instead, we should just flag the VM as unusable, and fail any * further request targeting this VM. * * We also provide a way to query a VM state, so userspace can destroy * it and create a new one. * * As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST * situation, where the logical device needs to be re-created. */ bool unusable; /** * @unhandled_fault: Unhandled fault happened. * * This should be reported to the scheduler, and the queue/group be * flagged as faulty as a result. */ bool unhandled_fault; }; /** * struct panthor_vm_bind_job - VM bind job */ struct panthor_vm_bind_job { /** @base: Inherit from drm_sched_job. */ struct drm_sched_job base; /** @refcount: Reference count. */ struct kref refcount; /** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */ struct work_struct cleanup_op_ctx_work; /** @vm: VM targeted by the VM operation. */ struct panthor_vm *vm; /** @ctx: Operation context. */ struct panthor_vm_op_ctx ctx; }; /** * @pt_cache: Cache used to allocate MMU page tables. * * The pre-allocation pattern forces us to over-allocate to plan for * the worst case scenario, and return the pages we didn't use. * * Having a kmem_cache allows us to speed allocations. */ static struct kmem_cache *pt_cache; /** * alloc_pt() - Custom page table allocator * @cookie: Cookie passed at page table allocation time. * @size: Size of the page table. This size should be fixed, * and determined at creation time based on the granule size. * @gfp: GFP flags. * * We want a custom allocator so we can use a cache for page table * allocations and amortize the cost of the over-reservation that's * done to allow asynchronous VM operations. * * Return: non-NULL on success, NULL if the allocation failed for any * reason. */ static void *alloc_pt(void *cookie, size_t size, gfp_t gfp) { struct panthor_vm *vm = cookie; void *page; /* Allocation of the root page table happening during init. */ if (unlikely(!vm->root_page_table)) { struct page *p; drm_WARN_ON(&vm->ptdev->base, vm->op_ctx); p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev), gfp | __GFP_ZERO, get_order(size)); page = p ? page_address(p) : NULL; vm->root_page_table = page; return page; } /* We're not supposed to have anything bigger than 4k here, because we picked a * 4k granule size at init time. */ if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K)) return NULL; /* We must have some op_ctx attached to the VM and it must have at least one * free page. */ if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) || drm_WARN_ON(&vm->ptdev->base, vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count)) return NULL; page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++]; memset(page, 0, SZ_4K); /* Page table entries don't use virtual addresses, which trips out * kmemleak. kmemleak_alloc_phys() might work, but physical addresses * are mixed with other fields, and I fear kmemleak won't detect that * either. * * Let's just ignore memory passed to the page-table driver for now. */ kmemleak_ignore(page); return page; } /** * @free_pt() - Custom page table free function * @cookie: Cookie passed at page table allocation time. * @data: Page table to free. * @size: Size of the page table. This size should be fixed, * and determined at creation time based on the granule size. */ static void free_pt(void *cookie, void *data, size_t size) { struct panthor_vm *vm = cookie; if (unlikely(vm->root_page_table == data)) { free_pages((unsigned long)data, get_order(size)); vm->root_page_table = NULL; return; } if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K)) return; /* Return the page to the pt_cache. */ kmem_cache_free(pt_cache, data); } static int wait_ready(struct panthor_device *ptdev, u32 as_nr) { int ret; u32 val; /* Wait for the MMU status to indicate there is no active command, in * case one is pending. */ ret = readl_relaxed_poll_timeout_atomic(ptdev->iomem + AS_STATUS(as_nr), val, !(val & AS_STATUS_AS_ACTIVE), 10, 100000); if (ret) { panthor_device_schedule_reset(ptdev); drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n"); } return ret; } static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd) { int status; /* write AS_COMMAND when MMU is ready to accept another command */ status = wait_ready(ptdev, as_nr); if (!status) gpu_write(ptdev, AS_COMMAND(as_nr), cmd); return status; } static void lock_region(struct panthor_device *ptdev, u32 as_nr, u64 region_start, u64 size) { u8 region_width; u64 region; u64 region_end = region_start + size; if (!size) return; /* * The locked region is a naturally aligned power of 2 block encoded as * log2 minus(1). * Calculate the desired start/end and look for the highest bit which * differs. The smallest naturally aligned block must include this bit * change, the desired region starts with this bit (and subsequent bits) * zeroed and ends with the bit (and subsequent bits) set to one. */ region_width = max(fls64(region_start ^ (region_end - 1)), const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1; /* * Mask off the low bits of region_start (which would be ignored by * the hardware anyway) */ region_start &= GENMASK_ULL(63, region_width); region = region_width | region_start; /* Lock the region that needs to be updated */ gpu_write(ptdev, AS_LOCKADDR_LO(as_nr), lower_32_bits(region)); gpu_write(ptdev, AS_LOCKADDR_HI(as_nr), upper_32_bits(region)); write_cmd(ptdev, as_nr, AS_COMMAND_LOCK); } static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr, u64 iova, u64 size, u32 op) { lockdep_assert_held(&ptdev->mmu->as.slots_lock); if (as_nr < 0) return 0; if (op != AS_COMMAND_UNLOCK) lock_region(ptdev, as_nr, iova, size); /* Run the MMU operation */ write_cmd(ptdev, as_nr, op); /* Wait for the flush to complete */ return wait_ready(ptdev, as_nr); } static int mmu_hw_do_operation(struct panthor_vm *vm, u64 iova, u64 size, u32 op) { struct panthor_device *ptdev = vm->ptdev; int ret; mutex_lock(&ptdev->mmu->as.slots_lock); ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op); mutex_unlock(&ptdev->mmu->as.slots_lock); return ret; } static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr, u64 transtab, u64 transcfg, u64 memattr) { int ret; ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); if (ret) return ret; gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), lower_32_bits(transtab)); gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), upper_32_bits(transtab)); gpu_write(ptdev, AS_MEMATTR_LO(as_nr), lower_32_bits(memattr)); gpu_write(ptdev, AS_MEMATTR_HI(as_nr), upper_32_bits(memattr)); gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), lower_32_bits(transcfg)); gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), upper_32_bits(transcfg)); return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE); } static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr) { int ret; ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); if (ret) return ret; gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), 0); gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), 0); gpu_write(ptdev, AS_MEMATTR_LO(as_nr), 0); gpu_write(ptdev, AS_MEMATTR_HI(as_nr), 0); gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED); gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), 0); return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE); } static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value) { /* Bits 16 to 31 mean REQ_COMPLETE. */ return value & GENMASK(15, 0); } static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as) { return BIT(as); } /** * panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults * @vm: VM to check. * * Return: true if the VM has unhandled faults, false otherwise. */ bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm) { return vm->unhandled_fault; } /** * panthor_vm_is_unusable() - Check if the VM is still usable * @vm: VM to check. * * Return: true if the VM is unusable, false otherwise. */ bool panthor_vm_is_unusable(struct panthor_vm *vm) { return vm->unusable; } static void panthor_vm_release_as_locked(struct panthor_vm *vm) { struct panthor_device *ptdev = vm->ptdev; lockdep_assert_held(&ptdev->mmu->as.slots_lock); if (drm_WARN_ON(&ptdev->base, vm->as.id < 0)) return; ptdev->mmu->as.slots[vm->as.id].vm = NULL; clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask); refcount_set(&vm->as.active_cnt, 0); list_del_init(&vm->as.lru_node); vm->as.id = -1; } /** * panthor_vm_active() - Flag a VM as active * @VM: VM to flag as active. * * Assigns an address space to a VM so it can be used by the GPU/MCU. * * Return: 0 on success, a negative error code otherwise. */ int panthor_vm_active(struct panthor_vm *vm) { struct panthor_device *ptdev = vm->ptdev; u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg; int ret = 0, as, cookie; u64 transtab, transcfg; if (!drm_dev_enter(&ptdev->base, &cookie)) return -ENODEV; if (refcount_inc_not_zero(&vm->as.active_cnt)) goto out_dev_exit; mutex_lock(&ptdev->mmu->as.slots_lock); if (refcount_inc_not_zero(&vm->as.active_cnt)) goto out_unlock; as = vm->as.id; if (as >= 0) { /* Unhandled pagefault on this AS, the MMU was disabled. We need to * re-enable the MMU after clearing+unmasking the AS interrupts. */ if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) goto out_enable_as; goto out_make_active; } /* Check for a free AS */ if (vm->for_mcu) { drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0)); as = 0; } else { as = ffz(ptdev->mmu->as.alloc_mask | BIT(0)); } if (!(BIT(as) & ptdev->gpu_info.as_present)) { struct panthor_vm *lru_vm; lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list, struct panthor_vm, as.lru_node); if (drm_WARN_ON(&ptdev->base, !lru_vm)) { ret = -EBUSY; goto out_unlock; } drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt)); as = lru_vm->as.id; panthor_vm_release_as_locked(lru_vm); } /* Assign the free or reclaimed AS to the FD */ vm->as.id = as; set_bit(as, &ptdev->mmu->as.alloc_mask); ptdev->mmu->as.slots[as].vm = vm; out_enable_as: transtab = cfg->arm_lpae_s1_cfg.ttbr; transcfg = AS_TRANSCFG_PTW_MEMATTR_WB | AS_TRANSCFG_PTW_RA | AS_TRANSCFG_ADRMODE_AARCH64_4K | AS_TRANSCFG_INA_BITS(55 - va_bits); if (ptdev->coherent) transcfg |= AS_TRANSCFG_PTW_SH_OS; /* If the VM is re-activated, we clear the fault. */ vm->unhandled_fault = false; /* Unhandled pagefault on this AS, clear the fault and re-enable interrupts * before enabling the AS. */ if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) { gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as)); ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as); gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask); } ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr); out_make_active: if (!ret) { refcount_set(&vm->as.active_cnt, 1); list_del_init(&vm->as.lru_node); } out_unlock: mutex_unlock(&ptdev->mmu->as.slots_lock); out_dev_exit: drm_dev_exit(cookie); return ret; } /** * panthor_vm_idle() - Flag a VM idle * @VM: VM to flag as idle. * * When we know the GPU is done with the VM (no more jobs to process), * we can relinquish the AS slot attached to this VM, if any. * * We don't release the slot immediately, but instead place the VM in * the LRU list, so it can be evicted if another VM needs an AS slot. * This way, VMs keep attached to the AS they were given until we run * out of free slot, limiting the number of MMU operations (TLB flush * and other AS updates). */ void panthor_vm_idle(struct panthor_vm *vm) { struct panthor_device *ptdev = vm->ptdev; if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock)) return; if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node))) list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list); refcount_set(&vm->as.active_cnt, 0); mutex_unlock(&ptdev->mmu->as.slots_lock); } static void panthor_vm_stop(struct panthor_vm *vm) { drm_sched_stop(&vm->sched, NULL); } static void panthor_vm_start(struct panthor_vm *vm) { drm_sched_start(&vm->sched, true); } /** * panthor_vm_as() - Get the AS slot attached to a VM * @vm: VM to get the AS slot of. * * Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise. */ int panthor_vm_as(struct panthor_vm *vm) { return vm->as.id; } static size_t get_pgsize(u64 addr, size_t size, size_t *count) { /* * io-pgtable only operates on multiple pages within a single table * entry, so we need to split at boundaries of the table size, i.e. * the next block size up. The distance from address A to the next * boundary of block size B is logically B - A % B, but in unsigned * two's complement where B is a power of two we get the equivalence * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :) */ size_t blk_offset = -addr % SZ_2M; if (blk_offset || size < SZ_2M) { *count = min_not_zero(blk_offset, size) / SZ_4K; return SZ_4K; } blk_offset = -addr % SZ_1G ?: SZ_1G; *count = min(blk_offset, size) / SZ_2M; return SZ_2M; } static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size) { struct panthor_device *ptdev = vm->ptdev; int ret = 0, cookie; if (vm->as.id < 0) return 0; /* If the device is unplugged, we just silently skip the flush. */ if (!drm_dev_enter(&ptdev->base, &cookie)) return 0; /* Flush the PTs only if we're already awake */ if (pm_runtime_active(ptdev->base.dev)) ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT); drm_dev_exit(cookie); return ret; } static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size) { struct panthor_device *ptdev = vm->ptdev; struct io_pgtable_ops *ops = vm->pgtbl_ops; u64 offset = 0; drm_dbg(&ptdev->base, "unmap: as=%d, iova=%llx, len=%llx", vm->as.id, iova, size); while (offset < size) { size_t unmapped_sz = 0, pgcount; size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount); unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL); if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) { drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n", iova + offset + unmapped_sz, iova + offset + pgsize * pgcount, iova, iova + size); panthor_vm_flush_range(vm, iova, offset + unmapped_sz); return -EINVAL; } offset += unmapped_sz; } return panthor_vm_flush_range(vm, iova, size); } static int panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot, struct sg_table *sgt, u64 offset, u64 size) { struct panthor_device *ptdev = vm->ptdev; unsigned int count; struct scatterlist *sgl; struct io_pgtable_ops *ops = vm->pgtbl_ops; u64 start_iova = iova; int ret; if (!size) return 0; for_each_sgtable_dma_sg(sgt, sgl, count) { dma_addr_t paddr = sg_dma_address(sgl); size_t len = sg_dma_len(sgl); if (len <= offset) { offset -= len; continue; } paddr += offset; len -= offset; len = min_t(size_t, len, size); size -= len; drm_dbg(&ptdev->base, "map: as=%d, iova=%llx, paddr=%pad, len=%zx", vm->as.id, iova, &paddr, len); while (len) { size_t pgcount, mapped = 0; size_t pgsize = get_pgsize(iova | paddr, len, &pgcount); ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, GFP_KERNEL, &mapped); iova += mapped; paddr += mapped; len -= mapped; if (drm_WARN_ON(&ptdev->base, !ret && !mapped)) ret = -ENOMEM; if (ret) { /* If something failed, unmap what we've already mapped before * returning. The unmap call is not supposed to fail. */ drm_WARN_ON(&ptdev->base, panthor_vm_unmap_pages(vm, start_iova, iova - start_iova)); return ret; } } if (!size) break; } return panthor_vm_flush_range(vm, start_iova, iova - start_iova); } static int flags_to_prot(u32 flags) { int prot = 0; if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC) prot |= IOMMU_NOEXEC; if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)) prot |= IOMMU_CACHE; if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY) prot |= IOMMU_READ; else prot |= IOMMU_READ | IOMMU_WRITE; return prot; } /** * panthor_vm_alloc_va() - Allocate a region in the auto-va space * @VM: VM to allocate a region on. * @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user * wants the VA to be automatically allocated from the auto-VA range. * @size: size of the VA range. * @va_node: drm_mm_node to initialize. Must be zero-initialized. * * Some GPU objects, like heap chunks, are fully managed by the kernel and * need to be mapped to the userspace VM, in the region reserved for kernel * objects. * * This function takes care of allocating a region in the kernel auto-VA space. * * Return: 0 on success, an error code otherwise. */ int panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size, struct drm_mm_node *va_node) { int ret; if (!size || (size & ~PAGE_MASK)) return -EINVAL; if (va != PANTHOR_VM_KERNEL_AUTO_VA && (va & ~PAGE_MASK)) return -EINVAL; mutex_lock(&vm->mm_lock); if (va != PANTHOR_VM_KERNEL_AUTO_VA) { va_node->start = va; va_node->size = size; ret = drm_mm_reserve_node(&vm->mm, va_node); } else { ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size, size >= SZ_2M ? SZ_2M : SZ_4K, 0, vm->kernel_auto_va.start, vm->kernel_auto_va.end, DRM_MM_INSERT_BEST); } mutex_unlock(&vm->mm_lock); return ret; } /** * panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va() * @VM: VM to free the region on. * @va_node: Memory node representing the region to free. */ void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node) { mutex_lock(&vm->mm_lock); drm_mm_remove_node(va_node); mutex_unlock(&vm->mm_lock); } static void panthor_vm_bo_put(struct drm_gpuvm_bo *vm_bo) { struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj); struct drm_gpuvm *vm = vm_bo->vm; bool unpin; /* We must retain the GEM before calling drm_gpuvm_bo_put(), * otherwise the mutex might be destroyed while we hold it. * Same goes for the VM, since we take the VM resv lock. */ drm_gem_object_get(&bo->base.base); drm_gpuvm_get(vm); /* We take the resv lock to protect against concurrent accesses to the * gpuvm evicted/extobj lists that are modified in * drm_gpuvm_bo_destroy(), which is called if drm_gpuvm_bo_put() * releases sthe last vm_bo reference. * We take the BO GPUVA list lock to protect the vm_bo removal from the * GEM vm_bo list. */ dma_resv_lock(drm_gpuvm_resv(vm), NULL); mutex_lock(&bo->gpuva_list_lock); unpin = drm_gpuvm_bo_put(vm_bo); mutex_unlock(&bo->gpuva_list_lock); dma_resv_unlock(drm_gpuvm_resv(vm)); /* If the vm_bo object was destroyed, release the pin reference that * was hold by this object. */ if (unpin && !bo->base.base.import_attach) drm_gem_shmem_unpin(&bo->base); drm_gpuvm_put(vm); drm_gem_object_put(&bo->base.base); } static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx, struct panthor_vm *vm) { struct panthor_vma *vma, *tmp_vma; u32 remaining_pt_count = op_ctx->rsvd_page_tables.count - op_ctx->rsvd_page_tables.ptr; if (remaining_pt_count) { kmem_cache_free_bulk(pt_cache, remaining_pt_count, op_ctx->rsvd_page_tables.pages + op_ctx->rsvd_page_tables.ptr); } kfree(op_ctx->rsvd_page_tables.pages); if (op_ctx->map.vm_bo) panthor_vm_bo_put(op_ctx->map.vm_bo); for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) kfree(op_ctx->preallocated_vmas[i]); list_for_each_entry_safe(vma, tmp_vma, &op_ctx->returned_vmas, node) { list_del(&vma->node); panthor_vm_bo_put(vma->base.vm_bo); kfree(vma); } } static struct panthor_vma * panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx) { for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) { struct panthor_vma *vma = op_ctx->preallocated_vmas[i]; if (vma) { op_ctx->preallocated_vmas[i] = NULL; return vma; } } return NULL; } static int panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx) { u32 vma_count; switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) { case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: /* One VMA for the new mapping, and two more VMAs for the remap case * which might contain both a prev and next VA. */ vma_count = 3; break; case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: /* Partial unmaps might trigger a remap with either a prev or a next VA, * but not both. */ vma_count = 1; break; default: return 0; } for (u32 i = 0; i < vma_count; i++) { struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL); if (!vma) return -ENOMEM; op_ctx->preallocated_vmas[i] = vma; } return 0; } #define PANTHOR_VM_BIND_OP_MAP_FLAGS \ (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \ DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \ DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \ DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx, struct panthor_vm *vm, struct panthor_gem_object *bo, u64 offset, u64 size, u64 va, u32 flags) { struct drm_gpuvm_bo *preallocated_vm_bo; struct sg_table *sgt = NULL; u64 pt_count; int ret; if (!bo) return -EINVAL; if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) || (flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP) return -EINVAL; /* Make sure the VA and size are aligned and in-bounds. */ if (size > bo->base.base.size || offset > bo->base.base.size - size) return -EINVAL; /* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */ if (bo->exclusive_vm_root_gem && bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm)) return -EINVAL; memset(op_ctx, 0, sizeof(*op_ctx)); INIT_LIST_HEAD(&op_ctx->returned_vmas); op_ctx->flags = flags; op_ctx->va.range = size; op_ctx->va.addr = va; ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx); if (ret) goto err_cleanup; if (!bo->base.base.import_attach) { /* Pre-reserve the BO pages, so the map operation doesn't have to * allocate. */ ret = drm_gem_shmem_pin(&bo->base); if (ret) goto err_cleanup; } sgt = drm_gem_shmem_get_pages_sgt(&bo->base); if (IS_ERR(sgt)) { if (!bo->base.base.import_attach) drm_gem_shmem_unpin(&bo->base); ret = PTR_ERR(sgt); goto err_cleanup; } op_ctx->map.sgt = sgt; preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base); if (!preallocated_vm_bo) { if (!bo->base.base.import_attach) drm_gem_shmem_unpin(&bo->base); ret = -ENOMEM; goto err_cleanup; } mutex_lock(&bo->gpuva_list_lock); op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo); mutex_unlock(&bo->gpuva_list_lock); /* If the a vm_bo for this <VM,BO> combination exists, it already * retains a pin ref, and we can release the one we took earlier. * * If our pre-allocated vm_bo is picked, it now retains the pin ref, * which will be released in panthor_vm_bo_put(). */ if (preallocated_vm_bo != op_ctx->map.vm_bo && !bo->base.base.import_attach) drm_gem_shmem_unpin(&bo->base); op_ctx->map.bo_offset = offset; /* L1, L2 and L3 page tables. * We could optimize L3 allocation by iterating over the sgt and merging * 2M contiguous blocks, but it's simpler to over-provision and return * the pages if they're not used. */ pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) + ((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) + ((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21); op_ctx->rsvd_page_tables.pages = kcalloc(pt_count, sizeof(*op_ctx->rsvd_page_tables.pages), GFP_KERNEL); if (!op_ctx->rsvd_page_tables.pages) { ret = -ENOMEM; goto err_cleanup; } ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count, op_ctx->rsvd_page_tables.pages); op_ctx->rsvd_page_tables.count = ret; if (ret != pt_count) { ret = -ENOMEM; goto err_cleanup; } /* Insert BO into the extobj list last, when we know nothing can fail. */ dma_resv_lock(panthor_vm_resv(vm), NULL); drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo); dma_resv_unlock(panthor_vm_resv(vm)); return 0; err_cleanup: panthor_vm_cleanup_op_ctx(op_ctx, vm); return ret; } static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx, struct panthor_vm *vm, u64 va, u64 size) { u32 pt_count = 0; int ret; memset(op_ctx, 0, sizeof(*op_ctx)); INIT_LIST_HEAD(&op_ctx->returned_vmas); op_ctx->va.range = size; op_ctx->va.addr = va; op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP; /* Pre-allocate L3 page tables to account for the split-2M-block * situation on unmap. */ if (va != ALIGN(va, SZ_2M)) pt_count++; if (va + size != ALIGN(va + size, SZ_2M) && ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M)) pt_count++; ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx); if (ret) goto err_cleanup; if (pt_count) { op_ctx->rsvd_page_tables.pages = kcalloc(pt_count, sizeof(*op_ctx->rsvd_page_tables.pages), GFP_KERNEL); if (!op_ctx->rsvd_page_tables.pages) { ret = -ENOMEM; goto err_cleanup; } ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count, op_ctx->rsvd_page_tables.pages); if (ret != pt_count) { ret = -ENOMEM; goto err_cleanup; } op_ctx->rsvd_page_tables.count = pt_count; } return 0; err_cleanup: panthor_vm_cleanup_op_ctx(op_ctx, vm); return ret; } static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx, struct panthor_vm *vm) { memset(op_ctx, 0, sizeof(*op_ctx)); INIT_LIST_HEAD(&op_ctx->returned_vmas); op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY; } /** * panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address * @vm: VM to look into. * @va: Virtual address to search for. * @bo_offset: Offset of the GEM object mapped at this virtual address. * Only valid on success. * * The object returned by this function might no longer be mapped when the * function returns. It's the caller responsibility to ensure there's no * concurrent map/unmap operations making the returned value invalid, or * make sure it doesn't matter if the object is no longer mapped. * * Return: A valid pointer on success, an ERR_PTR() otherwise. */ struct panthor_gem_object * panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset) { struct panthor_gem_object *bo = ERR_PTR(-ENOENT); struct drm_gpuva *gpuva; struct panthor_vma *vma; /* Take the VM lock to prevent concurrent map/unmap operations. */ mutex_lock(&vm->op_lock); gpuva = drm_gpuva_find_first(&vm->base, va, 1); vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL; if (vma && vma->base.gem.obj) { drm_gem_object_get(vma->base.gem.obj); bo = to_panthor_bo(vma->base.gem.obj); *bo_offset = vma->base.gem.offset + (va - vma->base.va.addr); } mutex_unlock(&vm->op_lock); return bo; } #define PANTHOR_VM_MIN_KERNEL_VA_SIZE SZ_256M static u64 panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args, u64 full_va_range) { u64 user_va_range; /* Make sure we have a minimum amount of VA space for kernel objects. */ if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE) return 0; if (args->user_va_range) { /* Use the user provided value if != 0. */ user_va_range = args->user_va_range; } else if (TASK_SIZE_OF(current) < full_va_range) { /* If the task VM size is smaller than the GPU VA range, pick this * as our default user VA range, so userspace can CPU/GPU map buffers * at the same address. */ user_va_range = TASK_SIZE_OF(current); } else { /* If the GPU VA range is smaller than the task VM size, we * just have to live with the fact we won't be able to map * all buffers at the same GPU/CPU address. * * If the GPU VA range is bigger than 4G (more than 32-bit of * VA), we split the range in two, and assign half of it to * the user and the other half to the kernel, if it's not, we * keep the kernel VA space as small as possible. */ user_va_range = full_va_range > SZ_4G ? full_va_range / 2 : full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE; } if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range) user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE; return user_va_range; } #define PANTHOR_VM_CREATE_FLAGS 0 static int panthor_vm_create_check_args(const struct panthor_device *ptdev, const struct drm_panthor_vm_create *args, u64 *kernel_va_start, u64 *kernel_va_range) { u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); u64 full_va_range = 1ull << va_bits; u64 user_va_range; if (args->flags & ~PANTHOR_VM_CREATE_FLAGS) return -EINVAL; user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range); if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range)) return -EINVAL; /* Pick a kernel VA range that's a power of two, to have a clear split. */ *kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range); *kernel_va_start = full_va_range - *kernel_va_range; return 0; } /* * Only 32 VMs per open file. If that becomes a limiting factor, we can * increase this number. */ #define PANTHOR_MAX_VMS_PER_FILE 32 /** * panthor_vm_pool_create_vm() - Create a VM * @pool: The VM to create this VM on. * @kernel_va_start: Start of the region reserved for kernel objects. * @kernel_va_range: Size of the region reserved for kernel objects. * * Return: a positive VM ID on success, a negative error code otherwise. */ int panthor_vm_pool_create_vm(struct panthor_device *ptdev, struct panthor_vm_pool *pool, struct drm_panthor_vm_create *args) { u64 kernel_va_start, kernel_va_range; struct panthor_vm *vm; int ret; u32 id; ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range); if (ret) return ret; vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range, kernel_va_start, kernel_va_range); if (IS_ERR(vm)) return PTR_ERR(vm); ret = xa_alloc(&pool->xa, &id, vm, XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL); if (ret) { panthor_vm_put(vm); return ret; } args->user_va_range = kernel_va_start; return id; } static void panthor_vm_destroy(struct panthor_vm *vm) { if (!vm) return; vm->destroyed = true; mutex_lock(&vm->heaps.lock); panthor_heap_pool_destroy(vm->heaps.pool); vm->heaps.pool = NULL; mutex_unlock(&vm->heaps.lock); drm_WARN_ON(&vm->ptdev->base, panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range)); panthor_vm_put(vm); } /** * panthor_vm_pool_destroy_vm() - Destroy a VM. * @pool: VM pool. * @handle: VM handle. * * This function doesn't free the VM object or its resources, it just kills * all mappings, and makes sure nothing can be mapped after that point. * * If there was any active jobs at the time this function is called, these * jobs should experience page faults and be killed as a result. * * The VM resources are freed when the last reference on the VM object is * dropped. */ int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle) { struct panthor_vm *vm; vm = xa_erase(&pool->xa, handle); panthor_vm_destroy(vm); return vm ? 0 : -EINVAL; } /** * panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle * @pool: VM pool to check. * @handle: Handle of the VM to retrieve. * * Return: A valid pointer if the VM exists, NULL otherwise. */ struct panthor_vm * panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle) { struct panthor_vm *vm; vm = panthor_vm_get(xa_load(&pool->xa, handle)); return vm; } /** * panthor_vm_pool_destroy() - Destroy a VM pool. * @pfile: File. * * Destroy all VMs in the pool, and release the pool resources. * * Note that VMs can outlive the pool they were created from if other * objects hold a reference to there VMs. */ void panthor_vm_pool_destroy(struct panthor_file *pfile) { struct panthor_vm *vm; unsigned long i; if (!pfile->vms) return; xa_for_each(&pfile->vms->xa, i, vm) panthor_vm_destroy(vm); xa_destroy(&pfile->vms->xa); kfree(pfile->vms); } /** * panthor_vm_pool_create() - Create a VM pool * @pfile: File. * * Return: 0 on success, a negative error code otherwise. */ int panthor_vm_pool_create(struct panthor_file *pfile) { pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL); if (!pfile->vms) return -ENOMEM; xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1); return 0; } /* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */ static void mmu_tlb_flush_all(void *cookie) { } static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie) { } static const struct iommu_flush_ops mmu_tlb_ops = { .tlb_flush_all = mmu_tlb_flush_all, .tlb_flush_walk = mmu_tlb_flush_walk, }; static const char *access_type_name(struct panthor_device *ptdev, u32 fault_status) { switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) { case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC: return "ATOMIC"; case AS_FAULTSTATUS_ACCESS_TYPE_READ: return "READ"; case AS_FAULTSTATUS_ACCESS_TYPE_WRITE: return "WRITE"; case AS_FAULTSTATUS_ACCESS_TYPE_EX: return "EXECUTE"; default: drm_WARN_ON(&ptdev->base, 1); return NULL; } } static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status) { bool has_unhandled_faults = false; status = panthor_mmu_fault_mask(ptdev, status); while (status) { u32 as = ffs(status | (status >> 16)) - 1; u32 mask = panthor_mmu_as_fault_mask(ptdev, as); u32 new_int_mask; u64 addr; u32 fault_status; u32 exception_type; u32 access_type; u32 source_id; fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as)); addr = gpu_read(ptdev, AS_FAULTADDRESS_LO(as)); addr |= (u64)gpu_read(ptdev, AS_FAULTADDRESS_HI(as)) << 32; /* decode the fault status */ exception_type = fault_status & 0xFF; access_type = (fault_status >> 8) & 0x3; source_id = (fault_status >> 16); mutex_lock(&ptdev->mmu->as.slots_lock); ptdev->mmu->as.faulty_mask |= mask; new_int_mask = panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask); /* terminal fault, print info about the fault */ drm_err(&ptdev->base, "Unhandled Page fault in AS%d at VA 0x%016llX\n" "raw fault status: 0x%X\n" "decoded fault status: %s\n" "exception type 0x%X: %s\n" "access type 0x%X: %s\n" "source id 0x%X\n", as, addr, fault_status, (fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"), exception_type, panthor_exception_name(ptdev, exception_type), access_type, access_type_name(ptdev, fault_status), source_id); /* Ignore MMU interrupts on this AS until it's been * re-enabled. */ ptdev->mmu->irq.mask = new_int_mask; gpu_write(ptdev, MMU_INT_MASK, new_int_mask); if (ptdev->mmu->as.slots[as].vm) ptdev->mmu->as.slots[as].vm->unhandled_fault = true; /* Disable the MMU to kill jobs on this AS. */ panthor_mmu_as_disable(ptdev, as); mutex_unlock(&ptdev->mmu->as.slots_lock); status &= ~mask; has_unhandled_faults = true; } if (has_unhandled_faults) panthor_sched_report_mmu_fault(ptdev); } PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler); /** * panthor_mmu_suspend() - Suspend the MMU logic * @ptdev: Device. * * All we do here is de-assign the AS slots on all active VMs, so things * get flushed to the main memory, and no further access to these VMs are * possible. * * We also suspend the MMU IRQ. */ void panthor_mmu_suspend(struct panthor_device *ptdev) { mutex_lock(&ptdev->mmu->as.slots_lock); for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; if (vm) { drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i)); panthor_vm_release_as_locked(vm); } } mutex_unlock(&ptdev->mmu->as.slots_lock); panthor_mmu_irq_suspend(&ptdev->mmu->irq); } /** * panthor_mmu_resume() - Resume the MMU logic * @ptdev: Device. * * Resume the IRQ. * * We don't re-enable previously active VMs. We assume other parts of the * driver will call panthor_vm_active() on the VMs they intend to use. */ void panthor_mmu_resume(struct panthor_device *ptdev) { mutex_lock(&ptdev->mmu->as.slots_lock); ptdev->mmu->as.alloc_mask = 0; ptdev->mmu->as.faulty_mask = 0; mutex_unlock(&ptdev->mmu->as.slots_lock); panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0)); } /** * panthor_mmu_pre_reset() - Prepare for a reset * @ptdev: Device. * * Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we * don't get asked to do a VM operation while the GPU is down. * * We don't cleanly shutdown the AS slots here, because the reset might * come from an AS_ACTIVE_BIT stuck situation. */ void panthor_mmu_pre_reset(struct panthor_device *ptdev) { struct panthor_vm *vm; panthor_mmu_irq_suspend(&ptdev->mmu->irq); mutex_lock(&ptdev->mmu->vm.lock); ptdev->mmu->vm.reset_in_progress = true; list_for_each_entry(vm, &ptdev->mmu->vm.list, node) panthor_vm_stop(vm); mutex_unlock(&ptdev->mmu->vm.lock); } /** * panthor_mmu_post_reset() - Restore things after a reset * @ptdev: Device. * * Put the MMU logic back in action after a reset. That implies resuming the * IRQ and re-enabling the VM_BIND queues. */ void panthor_mmu_post_reset(struct panthor_device *ptdev) { struct panthor_vm *vm; mutex_lock(&ptdev->mmu->as.slots_lock); /* Now that the reset is effective, we can assume that none of the * AS slots are setup, and clear the faulty flags too. */ ptdev->mmu->as.alloc_mask = 0; ptdev->mmu->as.faulty_mask = 0; for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; if (vm) panthor_vm_release_as_locked(vm); } mutex_unlock(&ptdev->mmu->as.slots_lock); panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0)); /* Restart the VM_BIND queues. */ mutex_lock(&ptdev->mmu->vm.lock); list_for_each_entry(vm, &ptdev->mmu->vm.list, node) { panthor_vm_start(vm); } ptdev->mmu->vm.reset_in_progress = false; mutex_unlock(&ptdev->mmu->vm.lock); } static void panthor_vm_free(struct drm_gpuvm *gpuvm) { struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base); struct panthor_device *ptdev = vm->ptdev; mutex_lock(&vm->heaps.lock); if (drm_WARN_ON(&ptdev->base, vm->heaps.pool)) panthor_heap_pool_destroy(vm->heaps.pool); mutex_unlock(&vm->heaps.lock); mutex_destroy(&vm->heaps.lock); mutex_lock(&ptdev->mmu->vm.lock); list_del(&vm->node); /* Restore the scheduler state so we can call drm_sched_entity_destroy() * and drm_sched_fini(). If get there, that means we have no job left * and no new jobs can be queued, so we can start the scheduler without * risking interfering with the reset. */ if (ptdev->mmu->vm.reset_in_progress) panthor_vm_start(vm); mutex_unlock(&ptdev->mmu->vm.lock); drm_sched_entity_destroy(&vm->entity); drm_sched_fini(&vm->sched); mutex_lock(&ptdev->mmu->as.slots_lock); if (vm->as.id >= 0) { int cookie; if (drm_dev_enter(&ptdev->base, &cookie)) { panthor_mmu_as_disable(ptdev, vm->as.id); drm_dev_exit(cookie); } ptdev->mmu->as.slots[vm->as.id].vm = NULL; clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask); list_del(&vm->as.lru_node); } mutex_unlock(&ptdev->mmu->as.slots_lock); free_io_pgtable_ops(vm->pgtbl_ops); drm_mm_takedown(&vm->mm); kfree(vm); } /** * panthor_vm_put() - Release a reference on a VM * @vm: VM to release the reference on. Can be NULL. */ void panthor_vm_put(struct panthor_vm *vm) { drm_gpuvm_put(vm ? &vm->base : NULL); } /** * panthor_vm_get() - Get a VM reference * @vm: VM to get the reference on. Can be NULL. * * Return: @vm value. */ struct panthor_vm *panthor_vm_get(struct panthor_vm *vm) { if (vm) drm_gpuvm_get(&vm->base); return vm; } /** * panthor_vm_get_heap_pool() - Get the heap pool attached to a VM * @vm: VM to query the heap pool on. * @create: True if the heap pool should be created when it doesn't exist. * * Heap pools are per-VM. This function allows one to retrieve the heap pool * attached to a VM. * * If no heap pool exists yet, and @create is true, we create one. * * The returned panthor_heap_pool should be released with panthor_heap_pool_put(). * * Return: A valid pointer on success, an ERR_PTR() otherwise. */ struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create) { struct panthor_heap_pool *pool; mutex_lock(&vm->heaps.lock); if (!vm->heaps.pool && create) { if (vm->destroyed) pool = ERR_PTR(-EINVAL); else pool = panthor_heap_pool_create(vm->ptdev, vm); if (!IS_ERR(pool)) vm->heaps.pool = panthor_heap_pool_get(pool); } else { pool = panthor_heap_pool_get(vm->heaps.pool); if (!pool) pool = ERR_PTR(-ENOENT); } mutex_unlock(&vm->heaps.lock); return pool; } static u64 mair_to_memattr(u64 mair) { u64 memattr = 0; u32 i; for (i = 0; i < 8; i++) { u8 in_attr = mair >> (8 * i), out_attr; u8 outer = in_attr >> 4, inner = in_attr & 0xf; /* For caching to be enabled, inner and outer caching policy * have to be both write-back, if one of them is write-through * or non-cacheable, we just choose non-cacheable. Device * memory is also translated to non-cacheable. */ if (!(outer & 3) || !(outer & 4) || !(inner & 4)) { out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC | AS_MEMATTR_AARCH64_SH_MIDGARD_INNER | AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false); } else { /* Use SH_CPU_INNER mode so SH_IS, which is used when * IOMMU_CACHE is set, actually maps to the standard * definition of inner-shareable and not Mali's * internal-shareable mode. */ out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB | AS_MEMATTR_AARCH64_SH_CPU_INNER | AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2); } memattr |= (u64)out_attr << (8 * i); } return memattr; } static void panthor_vma_link(struct panthor_vm *vm, struct panthor_vma *vma, struct drm_gpuvm_bo *vm_bo) { struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj); mutex_lock(&bo->gpuva_list_lock); drm_gpuva_link(&vma->base, vm_bo); drm_WARN_ON(&vm->ptdev->base, drm_gpuvm_bo_put(vm_bo)); mutex_unlock(&bo->gpuva_list_lock); } static void panthor_vma_unlink(struct panthor_vm *vm, struct panthor_vma *vma) { struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj); struct drm_gpuvm_bo *vm_bo = drm_gpuvm_bo_get(vma->base.vm_bo); mutex_lock(&bo->gpuva_list_lock); drm_gpuva_unlink(&vma->base); mutex_unlock(&bo->gpuva_list_lock); /* drm_gpuva_unlink() release the vm_bo, but we manually retained it * when entering this function, so we can implement deferred VMA * destruction. Re-assign it here. */ vma->base.vm_bo = vm_bo; list_add_tail(&vma->node, &vm->op_ctx->returned_vmas); } static void panthor_vma_init(struct panthor_vma *vma, u32 flags) { INIT_LIST_HEAD(&vma->node); vma->flags = flags; } #define PANTHOR_VM_MAP_FLAGS \ (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \ DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \ DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED) static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv) { struct panthor_vm *vm = priv; struct panthor_vm_op_ctx *op_ctx = vm->op_ctx; struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx); int ret; if (!vma) return -EINVAL; panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS); ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags), op_ctx->map.sgt, op->map.gem.offset, op->map.va.range); if (ret) return ret; /* Ref owned by the mapping now, clear the obj field so we don't release the * pinning/obj ref behind GPUVA's back. */ drm_gpuva_map(&vm->base, &vma->base, &op->map); panthor_vma_link(vm, vma, op_ctx->map.vm_bo); op_ctx->map.vm_bo = NULL; return 0; } static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op, void *priv) { struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base); struct panthor_vm *vm = priv; struct panthor_vm_op_ctx *op_ctx = vm->op_ctx; struct panthor_vma *prev_vma = NULL, *next_vma = NULL; u64 unmap_start, unmap_range; int ret; drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range); ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range); if (ret) return ret; if (op->remap.prev) { prev_vma = panthor_vm_op_ctx_get_vma(op_ctx); panthor_vma_init(prev_vma, unmap_vma->flags); } if (op->remap.next) { next_vma = panthor_vm_op_ctx_get_vma(op_ctx); panthor_vma_init(next_vma, unmap_vma->flags); } drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL, next_vma ? &next_vma->base : NULL, &op->remap); if (prev_vma) { /* panthor_vma_link() transfers the vm_bo ownership to * the VMA object. Since the vm_bo we're passing is still * owned by the old mapping which will be released when this * mapping is destroyed, we need to grab a ref here. */ panthor_vma_link(vm, prev_vma, drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo)); } if (next_vma) { panthor_vma_link(vm, next_vma, drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo)); } panthor_vma_unlink(vm, unmap_vma); return 0; } static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op, void *priv) { struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base); struct panthor_vm *vm = priv; int ret; ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr, unmap_vma->base.va.range); if (drm_WARN_ON(&vm->ptdev->base, ret)) return ret; drm_gpuva_unmap(&op->unmap); panthor_vma_unlink(vm, unmap_vma); return 0; } static const struct drm_gpuvm_ops panthor_gpuvm_ops = { .vm_free = panthor_vm_free, .sm_step_map = panthor_gpuva_sm_step_map, .sm_step_remap = panthor_gpuva_sm_step_remap, .sm_step_unmap = panthor_gpuva_sm_step_unmap, }; /** * panthor_vm_resv() - Get the dma_resv object attached to a VM. * @vm: VM to get the dma_resv of. * * Return: A dma_resv object. */ struct dma_resv *panthor_vm_resv(struct panthor_vm *vm) { return drm_gpuvm_resv(&vm->base); } struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm) { if (!vm) return NULL; return vm->base.r_obj; } static int panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op, bool flag_vm_unusable_on_failure) { u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK; int ret; if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY) return 0; mutex_lock(&vm->op_lock); vm->op_ctx = op; switch (op_type) { case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: if (vm->unusable) { ret = -EINVAL; break; } ret = drm_gpuvm_sm_map(&vm->base, vm, op->va.addr, op->va.range, op->map.vm_bo->obj, op->map.bo_offset); break; case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range); break; default: ret = -EINVAL; break; } if (ret && flag_vm_unusable_on_failure) vm->unusable = true; vm->op_ctx = NULL; mutex_unlock(&vm->op_lock); return ret; } static struct dma_fence * panthor_vm_bind_run_job(struct drm_sched_job *sched_job) { struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); bool cookie; int ret; /* Not only we report an error whose result is propagated to the * drm_sched finished fence, but we also flag the VM as unusable, because * a failure in the async VM_BIND results in an inconsistent state. VM needs * to be destroyed and recreated. */ cookie = dma_fence_begin_signalling(); ret = panthor_vm_exec_op(job->vm, &job->ctx, true); dma_fence_end_signalling(cookie); return ret ? ERR_PTR(ret) : NULL; } static void panthor_vm_bind_job_release(struct kref *kref) { struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount); if (job->base.s_fence) drm_sched_job_cleanup(&job->base); panthor_vm_cleanup_op_ctx(&job->ctx, job->vm); panthor_vm_put(job->vm); kfree(job); } /** * panthor_vm_bind_job_put() - Release a VM_BIND job reference * @sched_job: Job to release the reference on. */ void panthor_vm_bind_job_put(struct drm_sched_job *sched_job) { struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); if (sched_job) kref_put(&job->refcount, panthor_vm_bind_job_release); } static void panthor_vm_bind_free_job(struct drm_sched_job *sched_job) { struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); drm_sched_job_cleanup(sched_job); /* Do the heavy cleanups asynchronously, so we're out of the * dma-signaling path and can acquire dma-resv locks safely. */ queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work); } static enum drm_gpu_sched_stat panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job) { WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!"); return DRM_GPU_SCHED_STAT_NOMINAL; } static const struct drm_sched_backend_ops panthor_vm_bind_ops = { .run_job = panthor_vm_bind_run_job, .free_job = panthor_vm_bind_free_job, .timedout_job = panthor_vm_bind_timedout_job, }; /** * panthor_vm_create() - Create a VM * @ptdev: Device. * @for_mcu: True if this is the FW MCU VM. * @kernel_va_start: Start of the range reserved for kernel BO mapping. * @kernel_va_size: Size of the range reserved for kernel BO mapping. * @auto_kernel_va_start: Start of the auto-VA kernel range. * @auto_kernel_va_size: Size of the auto-VA kernel range. * * Return: A valid pointer on success, an ERR_PTR() otherwise. */ struct panthor_vm * panthor_vm_create(struct panthor_device *ptdev, bool for_mcu, u64 kernel_va_start, u64 kernel_va_size, u64 auto_kernel_va_start, u64 auto_kernel_va_size) { u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features); u64 full_va_range = 1ull << va_bits; struct drm_gem_object *dummy_gem; struct drm_gpu_scheduler *sched; struct io_pgtable_cfg pgtbl_cfg; u64 mair, min_va, va_range; struct panthor_vm *vm; int ret; vm = kzalloc(sizeof(*vm), GFP_KERNEL); if (!vm) return ERR_PTR(-ENOMEM); /* We allocate a dummy GEM for the VM. */ dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base); if (!dummy_gem) { ret = -ENOMEM; goto err_free_vm; } mutex_init(&vm->heaps.lock); vm->for_mcu = for_mcu; vm->ptdev = ptdev; mutex_init(&vm->op_lock); if (for_mcu) { /* CSF MCU is a cortex M7, and can only address 4G */ min_va = 0; va_range = SZ_4G; } else { min_va = 0; va_range = full_va_range; } mutex_init(&vm->mm_lock); drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size); vm->kernel_auto_va.start = auto_kernel_va_start; vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1; INIT_LIST_HEAD(&vm->node); INIT_LIST_HEAD(&vm->as.lru_node); vm->as.id = -1; refcount_set(&vm->as.active_cnt, 0); pgtbl_cfg = (struct io_pgtable_cfg) { .pgsize_bitmap = SZ_4K | SZ_2M, .ias = va_bits, .oas = pa_bits, .coherent_walk = ptdev->coherent, .tlb = &mmu_tlb_ops, .iommu_dev = ptdev->base.dev, .alloc = alloc_pt, .free = free_pt, }; vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm); if (!vm->pgtbl_ops) { ret = -EINVAL; goto err_mm_takedown; } /* Bind operations are synchronous for now, no timeout needed. */ ret = drm_sched_init(&vm->sched, &panthor_vm_bind_ops, ptdev->mmu->vm.wq, 1, 1, 0, MAX_SCHEDULE_TIMEOUT, NULL, NULL, "panthor-vm-bind", ptdev->base.dev); if (ret) goto err_free_io_pgtable; sched = &vm->sched; ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL); if (ret) goto err_sched_fini; mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair; vm->memattr = mair_to_memattr(mair); mutex_lock(&ptdev->mmu->vm.lock); list_add_tail(&vm->node, &ptdev->mmu->vm.list); /* If a reset is in progress, stop the scheduler. */ if (ptdev->mmu->vm.reset_in_progress) panthor_vm_stop(vm); mutex_unlock(&ptdev->mmu->vm.lock); /* We intentionally leave the reserved range to zero, because we want kernel VMAs * to be handled the same way user VMAs are. */ drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM", DRM_GPUVM_RESV_PROTECTED, &ptdev->base, dummy_gem, min_va, va_range, 0, 0, &panthor_gpuvm_ops); drm_gem_object_put(dummy_gem); return vm; err_sched_fini: drm_sched_fini(&vm->sched); err_free_io_pgtable: free_io_pgtable_ops(vm->pgtbl_ops); err_mm_takedown: drm_mm_takedown(&vm->mm); drm_gem_object_put(dummy_gem); err_free_vm: kfree(vm); return ERR_PTR(ret); } static int panthor_vm_bind_prepare_op_ctx(struct drm_file *file, struct panthor_vm *vm, const struct drm_panthor_vm_bind_op *op, struct panthor_vm_op_ctx *op_ctx) { struct drm_gem_object *gem; int ret; /* Aligned on page size. */ if ((op->va | op->size) & ~PAGE_MASK) return -EINVAL; switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) { case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: gem = drm_gem_object_lookup(file, op->bo_handle); ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm, gem ? to_panthor_bo(gem) : NULL, op->bo_offset, op->size, op->va, op->flags); drm_gem_object_put(gem); return ret; case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP: if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) return -EINVAL; if (op->bo_handle || op->bo_offset) return -EINVAL; return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size); case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY: if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) return -EINVAL; if (op->bo_handle || op->bo_offset) return -EINVAL; if (op->va || op->size) return -EINVAL; if (!op->syncs.count) return -EINVAL; panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm); return 0; default: return -EINVAL; } } static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work) { struct panthor_vm_bind_job *job = container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work); panthor_vm_bind_job_put(&job->base); } /** * panthor_vm_bind_job_create() - Create a VM_BIND job * @file: File. * @vm: VM targeted by the VM_BIND job. * @op: VM operation data. * * Return: A valid pointer on success, an ERR_PTR() otherwise. */ struct drm_sched_job * panthor_vm_bind_job_create(struct drm_file *file, struct panthor_vm *vm, const struct drm_panthor_vm_bind_op *op) { struct panthor_vm_bind_job *job; int ret; if (!vm) return ERR_PTR(-EINVAL); if (vm->destroyed || vm->unusable) return ERR_PTR(-EINVAL); job = kzalloc(sizeof(*job), GFP_KERNEL); if (!job) return ERR_PTR(-ENOMEM); ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx); if (ret) { kfree(job); return ERR_PTR(ret); } INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work); kref_init(&job->refcount); job->vm = panthor_vm_get(vm); ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm); if (ret) goto err_put_job; return &job->base; err_put_job: panthor_vm_bind_job_put(&job->base); return ERR_PTR(ret); } /** * panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs * @exec: The locking/preparation context. * @sched_job: The job to prepare resvs on. * * Locks and prepare the VM resv. * * If this is a map operation, locks and prepares the GEM resv. * * Return: 0 on success, a negative error code otherwise. */ int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job) { struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); int ret; /* Acquire the VM lock an reserve a slot for this VM bind job. */ ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1); if (ret) return ret; if (job->ctx.map.vm_bo) { /* Lock/prepare the GEM being mapped. */ ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1); if (ret) return ret; } return 0; } /** * panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job * @exec: drm_exec context. * @sched_job: Job to update the resvs on. */ void panthor_vm_bind_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job) { struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base); /* Explicit sync => we just register our job finished fence as bookkeep. */ drm_gpuvm_resv_add_fence(&job->vm->base, exec, &sched_job->s_fence->finished, DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP); } void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec, struct dma_fence *fence, enum dma_resv_usage private_usage, enum dma_resv_usage extobj_usage) { drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage); } /** * panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously. * @file: File. * @vm: VM targeted by the VM operation. * @op: Data describing the VM operation. * * Return: 0 on success, a negative error code otherwise. */ int panthor_vm_bind_exec_sync_op(struct drm_file *file, struct panthor_vm *vm, struct drm_panthor_vm_bind_op *op) { struct panthor_vm_op_ctx op_ctx; int ret; /* No sync objects allowed on synchronous operations. */ if (op->syncs.count) return -EINVAL; if (!op->size) return 0; ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx); if (ret) return ret; ret = panthor_vm_exec_op(vm, &op_ctx, false); panthor_vm_cleanup_op_ctx(&op_ctx, vm); return ret; } /** * panthor_vm_map_bo_range() - Map a GEM object range to a VM * @vm: VM to map the GEM to. * @bo: GEM object to map. * @offset: Offset in the GEM object. * @size: Size to map. * @va: Virtual address to map the object to. * @flags: Combination of drm_panthor_vm_bind_op_flags flags. * Only map-related flags are valid. * * Internal use only. For userspace requests, use * panthor_vm_bind_exec_sync_op() instead. * * Return: 0 on success, a negative error code otherwise. */ int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo, u64 offset, u64 size, u64 va, u32 flags) { struct panthor_vm_op_ctx op_ctx; int ret; ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags); if (ret) return ret; ret = panthor_vm_exec_op(vm, &op_ctx, false); panthor_vm_cleanup_op_ctx(&op_ctx, vm); return ret; } /** * panthor_vm_unmap_range() - Unmap a portion of the VA space * @vm: VM to unmap the region from. * @va: Virtual address to unmap. Must be 4k aligned. * @size: Size of the region to unmap. Must be 4k aligned. * * Internal use only. For userspace requests, use * panthor_vm_bind_exec_sync_op() instead. * * Return: 0 on success, a negative error code otherwise. */ int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size) { struct panthor_vm_op_ctx op_ctx; int ret; ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size); if (ret) return ret; ret = panthor_vm_exec_op(vm, &op_ctx, false); panthor_vm_cleanup_op_ctx(&op_ctx, vm); return ret; } /** * panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs. * @exec: Locking/preparation context. * @vm: VM targeted by the GPU job. * @slot_count: Number of slots to reserve. * * GPU jobs assume all BOs bound to the VM at the time the job is submitted * are available when the job is executed. In order to guarantee that, we * need to reserve a slot on all BOs mapped to a VM and update this slot with * the job fence after its submission. * * Return: 0 on success, a negative error code otherwise. */ int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm, u32 slot_count) { int ret; /* Acquire the VM lock and reserve a slot for this GPU job. */ ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count); if (ret) return ret; return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count); } /** * panthor_mmu_unplug() - Unplug the MMU logic * @ptdev: Device. * * No access to the MMU regs should be done after this function is called. * We suspend the IRQ and disable all VMs to guarantee that. */ void panthor_mmu_unplug(struct panthor_device *ptdev) { panthor_mmu_irq_suspend(&ptdev->mmu->irq); mutex_lock(&ptdev->mmu->as.slots_lock); for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) { struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm; if (vm) { drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i)); panthor_vm_release_as_locked(vm); } } mutex_unlock(&ptdev->mmu->as.slots_lock); } static void panthor_mmu_release_wq(struct drm_device *ddev, void *res) { destroy_workqueue(res); } /** * panthor_mmu_init() - Initialize the MMU logic. * @ptdev: Device. * * Return: 0 on success, a negative error code otherwise. */ int panthor_mmu_init(struct panthor_device *ptdev) { u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features); struct panthor_mmu *mmu; int ret, irq; mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL); if (!mmu) return -ENOMEM; INIT_LIST_HEAD(&mmu->as.lru_list); ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock); if (ret) return ret; INIT_LIST_HEAD(&mmu->vm.list); ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock); if (ret) return ret; ptdev->mmu = mmu; irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu"); if (irq <= 0) return -ENODEV; ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq, panthor_mmu_fault_mask(ptdev, ~0)); if (ret) return ret; mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0); if (!mmu->vm.wq) return -ENOMEM; /* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction, * which passes iova as an unsigned long. Patch the mmu_features to reflect this * limitation. */ if (sizeof(unsigned long) * 8 < va_bits) { ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0); ptdev->gpu_info.mmu_features |= sizeof(unsigned long) * 8; } return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq); } #ifdef CONFIG_DEBUG_FS static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m) { int ret; mutex_lock(&vm->op_lock); ret = drm_debugfs_gpuva_info(m, &vm->base); mutex_unlock(&vm->op_lock); return ret; } static int show_each_vm(struct seq_file *m, void *arg) { struct drm_info_node *node = (struct drm_info_node *)m->private; struct drm_device *ddev = node->minor->dev; struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base); int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data; struct panthor_vm *vm; int ret = 0; mutex_lock(&ptdev->mmu->vm.lock); list_for_each_entry(vm, &ptdev->mmu->vm.list, node) { ret = show(vm, m); if (ret < 0) break; seq_puts(m, "\n"); } mutex_unlock(&ptdev->mmu->vm.lock); return ret; } static struct drm_info_list panthor_mmu_debugfs_list[] = { DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas), }; /** * panthor_mmu_debugfs_init() - Initialize MMU debugfs entries * @minor: Minor. */ void panthor_mmu_debugfs_init(struct drm_minor *minor) { drm_debugfs_create_files(panthor_mmu_debugfs_list, ARRAY_SIZE(panthor_mmu_debugfs_list), minor->debugfs_root, minor); } #endif /* CONFIG_DEBUG_FS */ /** * panthor_mmu_pt_cache_init() - Initialize the page table cache. * * Return: 0 on success, a negative error code otherwise. */ int panthor_mmu_pt_cache_init(void) { pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL); if (!pt_cache) return -ENOMEM; return 0; } /** * panthor_mmu_pt_cache_fini() - Destroy the page table cache. */ void panthor_mmu_pt_cache_fini(void) { kmem_cache_destroy(pt_cache); } |