// SPDX-License-Identifier: GPL-2.0-only
// SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
/*
* Crypto driver to handle block cipher algorithms using NVIDIA Security Engine.
*/
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <crypto/aead.h>
#include <crypto/aes.h>
#include <crypto/engine.h>
#include <crypto/gcm.h>
#include <crypto/scatterwalk.h>
#include <crypto/xts.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>
#include "tegra-se.h"
struct tegra_aes_ctx {
struct tegra_se *se;
u32 alg;
u32 ivsize;
u32 key1_id;
u32 key2_id;
};
struct tegra_aes_reqctx {
struct tegra_se_datbuf datbuf;
bool encrypt;
u32 config;
u32 crypto_config;
u32 len;
u32 *iv;
};
struct tegra_aead_ctx {
struct tegra_se *se;
unsigned int authsize;
u32 alg;
u32 keylen;
u32 key_id;
};
struct tegra_aead_reqctx {
struct tegra_se_datbuf inbuf;
struct tegra_se_datbuf outbuf;
struct scatterlist *src_sg;
struct scatterlist *dst_sg;
unsigned int assoclen;
unsigned int cryptlen;
unsigned int authsize;
bool encrypt;
u32 config;
u32 crypto_config;
u32 key_id;
u32 iv[4];
u8 authdata[16];
};
struct tegra_cmac_ctx {
struct tegra_se *se;
unsigned int alg;
u32 key_id;
struct crypto_shash *fallback_tfm;
};
struct tegra_cmac_reqctx {
struct scatterlist *src_sg;
struct tegra_se_datbuf datbuf;
struct tegra_se_datbuf residue;
unsigned int total_len;
unsigned int blk_size;
unsigned int task;
u32 crypto_config;
u32 config;
u32 key_id;
u32 *iv;
u32 result[CMAC_RESULT_REG_COUNT];
};
/* increment counter (128-bit int) */
static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
{
do {
--bits;
nums += counter[bits];
counter[bits] = nums & 0xff;
nums >>= 8;
} while (bits && nums);
}
static void tegra_cbc_iv_copyback(struct skcipher_request *req, struct tegra_aes_ctx *ctx)
{
struct tegra_aes_reqctx *rctx = skcipher_request_ctx(req);
unsigned int offset;
offset = req->cryptlen - ctx->ivsize;
if (rctx->encrypt)
memcpy(req->iv, rctx->datbuf.buf + offset, ctx->ivsize);
else
scatterwalk_map_and_copy(req->iv, req->src, offset, ctx->ivsize, 0);
}
static void tegra_aes_update_iv(struct skcipher_request *req, struct tegra_aes_ctx *ctx)
{
int num;
if (ctx->alg == SE_ALG_CBC) {
tegra_cbc_iv_copyback(req, ctx);
} else if (ctx->alg == SE_ALG_CTR) {
num = req->cryptlen / ctx->ivsize;
if (req->cryptlen % ctx->ivsize)
num++;
ctr_iv_inc(req->iv, ctx->ivsize, num);
}
}
static int tegra234_aes_crypto_cfg(u32 alg, bool encrypt)
{
switch (alg) {
case SE_ALG_CMAC:
case SE_ALG_GMAC:
case SE_ALG_GCM:
case SE_ALG_GCM_FINAL:
return 0;
case SE_ALG_CBC:
if (encrypt)
return SE_CRYPTO_CFG_CBC_ENCRYPT;
else
return SE_CRYPTO_CFG_CBC_DECRYPT;
case SE_ALG_ECB:
if (encrypt)
return SE_CRYPTO_CFG_ECB_ENCRYPT;
else
return SE_CRYPTO_CFG_ECB_DECRYPT;
case SE_ALG_XTS:
if (encrypt)
return SE_CRYPTO_CFG_XTS_ENCRYPT;
else
return SE_CRYPTO_CFG_XTS_DECRYPT;
case SE_ALG_CTR:
return SE_CRYPTO_CFG_CTR;
case SE_ALG_CBC_MAC:
return SE_CRYPTO_CFG_CBC_MAC;
default:
break;
}
return -EINVAL;
}
static int tegra234_aes_cfg(u32 alg, bool encrypt)
{
switch (alg) {
case SE_ALG_CBC:
case SE_ALG_ECB:
case SE_ALG_XTS:
case SE_ALG_CTR:
if (encrypt)
return SE_CFG_AES_ENCRYPT;
else
return SE_CFG_AES_DECRYPT;
case SE_ALG_GMAC:
if (encrypt)
return SE_CFG_GMAC_ENCRYPT;
else
return SE_CFG_GMAC_DECRYPT;
case SE_ALG_GCM:
if (encrypt)
return SE_CFG_GCM_ENCRYPT;
else
return SE_CFG_GCM_DECRYPT;
case SE_ALG_GCM_FINAL:
if (encrypt)
return SE_CFG_GCM_FINAL_ENCRYPT;
else
return SE_CFG_GCM_FINAL_DECRYPT;
case SE_ALG_CMAC:
return SE_CFG_CMAC;
case SE_ALG_CBC_MAC:
return SE_AES_ENC_ALG_AES_ENC |
SE_AES_DST_HASH_REG;
}
return -EINVAL;
}
static unsigned int tegra_aes_prep_cmd(struct tegra_aes_ctx *ctx,
struct tegra_aes_reqctx *rctx)
{
unsigned int data_count, res_bits, i = 0, j;
struct tegra_se *se = ctx->se;
u32 *cpuvaddr = se->cmdbuf->addr;
dma_addr_t addr = rctx->datbuf.addr;
data_count = rctx->len / AES_BLOCK_SIZE;
res_bits = (rctx->len % AES_BLOCK_SIZE) * 8;
/*
* Hardware processes data_count + 1 blocks.
* Reduce 1 block if there is no residue
*/
if (!res_bits)
data_count--;
if (rctx->iv) {
cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
cpuvaddr[i++] = rctx->iv[j];
}
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) |
SE_LAST_BLOCK_RES_BITS(res_bits);
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
cpuvaddr[i++] = rctx->config;
cpuvaddr[i++] = rctx->crypto_config;
/* Source address setting */
cpuvaddr[i++] = lower_32_bits(addr);
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(addr)) | SE_ADDR_HI_SZ(rctx->len);
/* Destination address setting */
cpuvaddr[i++] = lower_32_bits(addr);
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(addr)) |
SE_ADDR_HI_SZ(rctx->len);
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
cpuvaddr[i++] = SE_AES_OP_WRSTALL | SE_AES_OP_LASTBUF |
SE_AES_OP_START;
cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n", rctx->config, rctx->crypto_config);
return i;
}
static int tegra_aes_do_one_req(struct crypto_engine *engine, void *areq)
{
struct skcipher_request *req = container_of(areq, struct skcipher_request, base);
struct tegra_aes_ctx *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
struct tegra_aes_reqctx *rctx = skcipher_request_ctx(req);
struct tegra_se *se = ctx->se;
unsigned int cmdlen;
int ret;
rctx->datbuf.buf = dma_alloc_coherent(se->dev, SE_AES_BUFLEN,
&rctx->datbuf.addr, GFP_KERNEL);
if (!rctx->datbuf.buf)
return -ENOMEM;
rctx->datbuf.size = SE_AES_BUFLEN;
rctx->iv = (u32 *)req->iv;
rctx->len = req->cryptlen;
/* Pad input to AES Block size */
if (ctx->alg != SE_ALG_XTS) {
if (rctx->len % AES_BLOCK_SIZE)
rctx->len += AES_BLOCK_SIZE - (rctx->len % AES_BLOCK_SIZE);
}
scatterwalk_map_and_copy(rctx->datbuf.buf, req->src, 0, req->cryptlen, 0);
/* Prepare the command and submit for execution */
cmdlen = tegra_aes_prep_cmd(ctx, rctx);
ret = tegra_se_host1x_submit(se, cmdlen);
/* Copy the result */
tegra_aes_update_iv(req, ctx);
scatterwalk_map_and_copy(rctx->datbuf.buf, req->dst, 0, req->cryptlen, 1);
/* Free the buffer */
dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN,
rctx->datbuf.buf, rctx->datbuf.addr);
crypto_finalize_skcipher_request(se->engine, req, ret);
return 0;
}
static int tegra_aes_cra_init(struct crypto_skcipher *tfm)
{
struct tegra_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct tegra_se_alg *se_alg;
const char *algname;
int ret;
se_alg = container_of(alg, struct tegra_se_alg, alg.skcipher.base);
crypto_skcipher_set_reqsize(tfm, sizeof(struct tegra_aes_reqctx));
ctx->ivsize = crypto_skcipher_ivsize(tfm);
ctx->se = se_alg->se_dev;
ctx->key1_id = 0;
ctx->key2_id = 0;
algname = crypto_tfm_alg_name(&tfm->base);
ret = se_algname_to_algid(algname);
if (ret < 0) {
dev_err(ctx->se->dev, "invalid algorithm\n");
return ret;
}
ctx->alg = ret;
return 0;
}
static void tegra_aes_cra_exit(struct crypto_skcipher *tfm)
{
struct tegra_aes_ctx *ctx = crypto_tfm_ctx(&tfm->base);
if (ctx->key1_id)
tegra_key_invalidate(ctx->se, ctx->key1_id, ctx->alg);
if (ctx->key2_id)
tegra_key_invalidate(ctx->se, ctx->key2_id, ctx->alg);
}
static int tegra_aes_setkey(struct crypto_skcipher *tfm,
const u8 *key, u32 keylen)
{
struct tegra_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
if (aes_check_keylen(keylen)) {
dev_dbg(ctx->se->dev, "invalid key length (%d)\n", keylen);
return -EINVAL;
}
return tegra_key_submit(ctx->se, key, keylen, ctx->alg, &ctx->key1_id);
}
static int tegra_xts_setkey(struct crypto_skcipher *tfm,
const u8 *key, u32 keylen)
{
struct tegra_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
u32 len = keylen / 2;
int ret;
ret = xts_verify_key(tfm, key, keylen);
if (ret || aes_check_keylen(len)) {
dev_dbg(ctx->se->dev, "invalid key length (%d)\n", keylen);
return -EINVAL;
}
ret = tegra_key_submit(ctx->se, key, len,
ctx->alg, &ctx->key1_id);
if (ret)
return ret;
return tegra_key_submit(ctx->se, key + len, len,
ctx->alg, &ctx->key2_id);
return 0;
}
static int tegra_aes_kac_manifest(u32 user, u32 alg, u32 keylen)
{
int manifest;
manifest = SE_KAC_USER_NS;
switch (alg) {
case SE_ALG_CBC:
case SE_ALG_ECB:
case SE_ALG_CTR:
manifest |= SE_KAC_ENC;
break;
case SE_ALG_XTS:
manifest |= SE_KAC_XTS;
break;
case SE_ALG_GCM:
manifest |= SE_KAC_GCM;
break;
case SE_ALG_CMAC:
manifest |= SE_KAC_CMAC;
break;
case SE_ALG_CBC_MAC:
manifest |= SE_KAC_ENC;
break;
default:
return -EINVAL;
}
switch (keylen) {
case AES_KEYSIZE_128:
manifest |= SE_KAC_SIZE_128;
break;
case AES_KEYSIZE_192:
manifest |= SE_KAC_SIZE_192;
break;
case AES_KEYSIZE_256:
manifest |= SE_KAC_SIZE_256;
break;
default:
return -EINVAL;
}
return manifest;
}
static int tegra_aes_crypt(struct skcipher_request *req, bool encrypt)
{
struct crypto_skcipher *tfm;
struct tegra_aes_ctx *ctx;
struct tegra_aes_reqctx *rctx;
tfm = crypto_skcipher_reqtfm(req);
ctx = crypto_skcipher_ctx(tfm);
rctx = skcipher_request_ctx(req);
if (ctx->alg != SE_ALG_XTS) {
if (!IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(tfm))) {
dev_dbg(ctx->se->dev, "invalid length (%d)", req->cryptlen);
return -EINVAL;
}
} else if (req->cryptlen < XTS_BLOCK_SIZE) {
dev_dbg(ctx->se->dev, "invalid length (%d)", req->cryptlen);
return -EINVAL;
}
if (!req->cryptlen)
return 0;
rctx->encrypt = encrypt;
rctx->config = tegra234_aes_cfg(ctx->alg, encrypt);
rctx->crypto_config = tegra234_aes_crypto_cfg(ctx->alg, encrypt);
rctx->crypto_config |= SE_AES_KEY_INDEX(ctx->key1_id);
if (ctx->key2_id)
rctx->crypto_config |= SE_AES_KEY2_INDEX(ctx->key2_id);
return crypto_transfer_skcipher_request_to_engine(ctx->se->engine, req);
}
static int tegra_aes_encrypt(struct skcipher_request *req)
{
return tegra_aes_crypt(req, true);
}
static int tegra_aes_decrypt(struct skcipher_request *req)
{
return tegra_aes_crypt(req, false);
}
static struct tegra_se_alg tegra_aes_algs[] = {
{
.alg.skcipher.op.do_one_request = tegra_aes_do_one_req,
.alg.skcipher.base = {
.init = tegra_aes_cra_init,
.exit = tegra_aes_cra_exit,
.setkey = tegra_aes_setkey,
.encrypt = tegra_aes_encrypt,
.decrypt = tegra_aes_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-tegra",
.cra_priority = 500,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct tegra_aes_ctx),
.cra_alignmask = 0xf,
.cra_module = THIS_MODULE,
},
}
}, {
.alg.skcipher.op.do_one_request = tegra_aes_do_one_req,
.alg.skcipher.base = {
.init = tegra_aes_cra_init,
.exit = tegra_aes_cra_exit,
.setkey = tegra_aes_setkey,
.encrypt = tegra_aes_encrypt,
.decrypt = tegra_aes_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.base = {
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-tegra",
.cra_priority = 500,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct tegra_aes_ctx),
.cra_alignmask = 0xf,
.cra_module = THIS_MODULE,
},
}
}, {
.alg.skcipher.op.do_one_request = tegra_aes_do_one_req,
.alg.skcipher.base = {
.init = tegra_aes_cra_init,
.exit = tegra_aes_cra_exit,
.setkey = tegra_aes_setkey,
.encrypt = tegra_aes_encrypt,
.decrypt = tegra_aes_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-tegra",
.cra_priority = 500,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct tegra_aes_ctx),
.cra_alignmask = 0xf,
.cra_module = THIS_MODULE,
},
}
}, {
.alg.skcipher.op.do_one_request = tegra_aes_do_one_req,
.alg.skcipher.base = {
.init = tegra_aes_cra_init,
.exit = tegra_aes_cra_exit,
.setkey = tegra_xts_setkey,
.encrypt = tegra_aes_encrypt,
.decrypt = tegra_aes_decrypt,
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "xts(aes)",
.cra_driver_name = "xts-aes-tegra",
.cra_priority = 500,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct tegra_aes_ctx),
.cra_alignmask = (__alignof__(u64) - 1),
.cra_module = THIS_MODULE,
},
}
},
};
static unsigned int tegra_gmac_prep_cmd(struct tegra_aead_ctx *ctx,
struct tegra_aead_reqctx *rctx)
{
unsigned int data_count, res_bits, i = 0;
struct tegra_se *se = ctx->se;
u32 *cpuvaddr = se->cmdbuf->addr;
data_count = (rctx->assoclen / AES_BLOCK_SIZE);
res_bits = (rctx->assoclen % AES_BLOCK_SIZE) * 8;
/*
* Hardware processes data_count + 1 blocks.
* Reduce 1 block if there is no residue
*/
if (!res_bits)
data_count--;
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) |
SE_LAST_BLOCK_RES_BITS(res_bits);
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 4);
cpuvaddr[i++] = rctx->config;
cpuvaddr[i++] = rctx->crypto_config;
cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr);
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) |
SE_ADDR_HI_SZ(rctx->assoclen);
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
cpuvaddr[i++] = SE_AES_OP_WRSTALL | SE_AES_OP_FINAL |
SE_AES_OP_INIT | SE_AES_OP_LASTBUF |
SE_AES_OP_START;
cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
return i;
}
static unsigned int tegra_gcm_crypt_prep_cmd(struct tegra_aead_ctx *ctx,
struct tegra_aead_reqctx *rctx)
{
unsigned int data_count, res_bits, i = 0, j;
struct tegra_se *se = ctx->se;
u32 *cpuvaddr = se->cmdbuf->addr, op;
data_count = (rctx->cryptlen / AES_BLOCK_SIZE);
res_bits = (rctx->cryptlen % AES_BLOCK_SIZE) * 8;
op = SE_AES_OP_WRSTALL | SE_AES_OP_FINAL |
SE_AES_OP_LASTBUF | SE_AES_OP_START;
/*
* If there is no assoc data,
* this will be the init command
*/
if (!rctx->assoclen)
op |= SE_AES_OP_INIT;
/*
* Hardware processes data_count + 1 blocks.
* Reduce 1 block if there is no residue
*/
if (!res_bits)
data_count--;
cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
cpuvaddr[i++] = rctx->iv[j];
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) |
SE_LAST_BLOCK_RES_BITS(res_bits);
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
cpuvaddr[i++] = rctx->config;
cpuvaddr[i++] = rctx->crypto_config;
/* Source Address */
cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr);
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) |
SE_ADDR_HI_SZ(rctx->cryptlen);
/* Destination Address */
cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr);
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) |
SE_ADDR_HI_SZ(rctx->cryptlen);
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
cpuvaddr[i++] = op;
cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n", rctx->config, rctx->crypto_config);
return i;
}
static int tegra_gcm_prep_final_cmd(struct tegra_se *se, u32 *cpuvaddr,
struct tegra_aead_reqctx *rctx)
{
unsigned int i = 0, j;
u32 op;
op = SE_AES_OP_WRSTALL | SE_AES_OP_FINAL |
SE_AES_OP_LASTBUF | SE_AES_OP_START;
/*
* Set init for zero sized vector
*/
if (!rctx->assoclen && !rctx->cryptlen)
op |= SE_AES_OP_INIT;
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->aad_len, 2);
cpuvaddr[i++] = rctx->assoclen * 8;
cpuvaddr[i++] = 0;
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->cryp_msg_len, 2);
cpuvaddr[i++] = rctx->cryptlen * 8;
cpuvaddr[i++] = 0;
cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
cpuvaddr[i++] = rctx->iv[j];
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
cpuvaddr[i++] = rctx->config;
cpuvaddr[i++] = rctx->crypto_config;
cpuvaddr[i++] = 0;
cpuvaddr[i++] = 0;
/* Destination Address */
cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr);
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) |
SE_ADDR_HI_SZ(0x10); /* HW always generates 128-bit tag */
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
cpuvaddr[i++] = op;
cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n", rctx->config, rctx->crypto_config);
return i;
}
static int tegra_gcm_do_gmac(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
{
struct tegra_se *se = ctx->se;
unsigned int cmdlen;
scatterwalk_map_and_copy(rctx->inbuf.buf,
rctx->src_sg, 0, rctx->assoclen, 0);
rctx->config = tegra234_aes_cfg(SE_ALG_GMAC, rctx->encrypt);
rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_GMAC, rctx->encrypt) |
SE_AES_KEY_INDEX(ctx->key_id);
cmdlen = tegra_gmac_prep_cmd(ctx, rctx);
return tegra_se_host1x_submit(se, cmdlen);
}
static int tegra_gcm_do_crypt(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
{
struct tegra_se *se = ctx->se;
int cmdlen, ret;
scatterwalk_map_and_copy(rctx->inbuf.buf, rctx->src_sg,
rctx->assoclen, rctx->cryptlen, 0);
rctx->config = tegra234_aes_cfg(SE_ALG_GCM, rctx->encrypt);
rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_GCM, rctx->encrypt) |
SE_AES_KEY_INDEX(ctx->key_id);
/* Prepare command and submit */
cmdlen = tegra_gcm_crypt_prep_cmd(ctx, rctx);
ret = tegra_se_host1x_submit(se, cmdlen);
if (ret)
return ret;
/* Copy the result */
scatterwalk_map_and_copy(rctx->outbuf.buf, rctx->dst_sg,
rctx->assoclen, rctx->cryptlen, 1);
return 0;
}
static int tegra_gcm_do_final(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
{
struct tegra_se *se = ctx->se;
u32 *cpuvaddr = se->cmdbuf->addr;
int cmdlen, ret, offset;
rctx->config = tegra234_aes_cfg(SE_ALG_GCM_FINAL, rctx->encrypt);
rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_GCM_FINAL, rctx->encrypt) |
SE_AES_KEY_INDEX(ctx->key_id);
/* Prepare command and submit */
cmdlen = tegra_gcm_prep_final_cmd(se, cpuvaddr, rctx);
ret = tegra_se_host1x_submit(se, cmdlen);
if (ret)
return ret;
if (rctx->encrypt) {
/* Copy the result */
offset = rctx->assoclen + rctx->cryptlen;
scatterwalk_map_and_copy(rctx->outbuf.buf, rctx->dst_sg,
offset, rctx->authsize, 1);
}
return 0;
}
static int tegra_gcm_do_verify(struct tegra_se *se, struct tegra_aead_reqctx *rctx)
{
unsigned int offset;
u8 mac[16];
offset = rctx->assoclen + rctx->cryptlen;
scatterwalk_map_and_copy(mac, rctx->src_sg, offset, rctx->authsize, 0);
if (crypto_memneq(rctx->outbuf.buf, mac, rctx->authsize))
return -EBADMSG;
return 0;
}
static inline int tegra_ccm_check_iv(const u8 *iv)
{
/* iv[0] gives value of q-1
* 2 <= q <= 8 as per NIST 800-38C notation
* 2 <= L <= 8, so 1 <= L' <= 7. as per rfc 3610 notation
*/
if (iv[0] < 1 || iv[0] > 7) {
pr_debug("ccm_check_iv failed %d\n", iv[0]);
return -EINVAL;
}
return 0;
}
static unsigned int tegra_cbcmac_prep_cmd(struct tegra_aead_ctx *ctx,
struct tegra_aead_reqctx *rctx)
{
unsigned int data_count, i = 0;
struct tegra_se *se = ctx->se;
u32 *cpuvaddr = se->cmdbuf->addr;
data_count = (rctx->inbuf.size / AES_BLOCK_SIZE) - 1;
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count);
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
cpuvaddr[i++] = rctx->config;
cpuvaddr[i++] = rctx->crypto_config;
cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr);
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) |
SE_ADDR_HI_SZ(rctx->inbuf.size);
cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr);
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) |
SE_ADDR_HI_SZ(0x10); /* HW always generates 128 bit tag */
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
cpuvaddr[i++] = SE_AES_OP_WRSTALL |
SE_AES_OP_LASTBUF | SE_AES_OP_START;
cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
return i;
}
static unsigned int tegra_ctr_prep_cmd(struct tegra_aead_ctx *ctx,
struct tegra_aead_reqctx *rctx)
{
unsigned int i = 0, j;
struct tegra_se *se = ctx->se;
u32 *cpuvaddr = se->cmdbuf->addr;
cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
cpuvaddr[i++] = rctx->iv[j];
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
cpuvaddr[i++] = (rctx->inbuf.size / AES_BLOCK_SIZE) - 1;
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
cpuvaddr[i++] = rctx->config;
cpuvaddr[i++] = rctx->crypto_config;
/* Source address setting */
cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr);
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) |
SE_ADDR_HI_SZ(rctx->inbuf.size);
/* Destination address setting */
cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr);
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) |
SE_ADDR_HI_SZ(rctx->inbuf.size);
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
cpuvaddr[i++] = SE_AES_OP_WRSTALL | SE_AES_OP_LASTBUF |
SE_AES_OP_START;
cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n",
rctx->config, rctx->crypto_config);
return i;
}
static int tegra_ccm_do_cbcmac(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
{
struct tegra_se *se = ctx->se;
int cmdlen;
rctx->config = tegra234_aes_cfg(SE_ALG_CBC_MAC, rctx->encrypt);
rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_CBC_MAC,
rctx->encrypt) |
SE_AES_KEY_INDEX(ctx->key_id);
/* Prepare command and submit */
cmdlen = tegra_cbcmac_prep_cmd(ctx, rctx);
return tegra_se_host1x_submit(se, cmdlen);
}
static int tegra_ccm_set_msg_len(u8 *block, unsigned int msglen, int csize)
{
__be32 data;
memset(block, 0, csize);
block += csize;
if (csize >= 4)
csize = 4;
else if (msglen > (1 << (8 * csize)))
return -EOVERFLOW;
data = cpu_to_be32(msglen);
memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
return 0;
}
static int tegra_ccm_format_nonce(struct tegra_aead_reqctx *rctx, u8 *nonce)
{
unsigned int q, t;
u8 *q_ptr, *iv = (u8 *)rctx->iv;
memcpy(nonce, rctx->iv, 16);
/*** 1. Prepare Flags Octet ***/
/* Encode t (mac length) */
t = rctx->authsize;
nonce[0] |= (((t - 2) / 2) << 3);
/* Adata */
if (rctx->assoclen)
nonce[0] |= (1 << 6);
/*** Encode Q - message length ***/
q = iv[0] + 1;
q_ptr = nonce + 16 - q;
return tegra_ccm_set_msg_len(q_ptr, rctx->cryptlen, q);
}
static int tegra_ccm_format_adata(u8 *adata, unsigned int a)
{
int len = 0;
/* add control info for associated data
* RFC 3610 and NIST Special Publication 800-38C
*/
if (a < 65280) {
*(__be16 *)adata = cpu_to_be16(a);
len = 2;
} else {
*(__be16 *)adata = cpu_to_be16(0xfffe);
*(__be32 *)&adata[2] = cpu_to_be32(a);
len = 6;
}
return len;
}
static int tegra_ccm_add_padding(u8 *buf, unsigned int len)
{
unsigned int padlen = 16 - (len % 16);
u8 padding[16] = {0};
if (padlen == 16)
return 0;
memcpy(buf, padding, padlen);
return padlen;
}
static int tegra_ccm_format_blocks(struct tegra_aead_reqctx *rctx)
{
unsigned int alen = 0, offset = 0;
u8 nonce[16], adata[16];
int ret;
ret = tegra_ccm_format_nonce(rctx, nonce);
if (ret)
return ret;
memcpy(rctx->inbuf.buf, nonce, 16);
offset = 16;
if (rctx->assoclen) {
alen = tegra_ccm_format_adata(adata, rctx->assoclen);
memcpy(rctx->inbuf.buf + offset, adata, alen);
offset += alen;
scatterwalk_map_and_copy(rctx->inbuf.buf + offset,
rctx->src_sg, 0, rctx->assoclen, 0);
offset += rctx->assoclen;
offset += tegra_ccm_add_padding(rctx->inbuf.buf + offset,
rctx->assoclen + alen);
}
return offset;
}
static int tegra_ccm_mac_result(struct tegra_se *se, struct tegra_aead_reqctx *rctx)
{
u32 result[16];
int i, ret;
/* Read and clear Result */
for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
result[i] = readl(se->base + se->hw->regs->result + (i * 4));
for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
writel(0, se->base + se->hw->regs->result + (i * 4));
if (rctx->encrypt) {
memcpy(rctx->authdata, result, rctx->authsize);
} else {
ret = crypto_memneq(rctx->authdata, result, rctx->authsize);
if (ret)
return -EBADMSG;
}
return 0;
}
static int tegra_ccm_ctr_result(struct tegra_se *se, struct tegra_aead_reqctx *rctx)
{
/* Copy result */
scatterwalk_map_and_copy(rctx->outbuf.buf + 16, rctx->dst_sg,
rctx->assoclen, rctx->cryptlen, 1);
if (rctx->encrypt)
scatterwalk_map_and_copy(rctx->outbuf.buf, rctx->dst_sg,
rctx->assoclen + rctx->cryptlen,
rctx->authsize, 1);
else
memcpy(rctx->authdata, rctx->outbuf.buf, rctx->authsize);
return 0;
}
static int tegra_ccm_compute_auth(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
{
struct tegra_se *se = ctx->se;
struct scatterlist *sg;
int offset, ret;
offset = tegra_ccm_format_blocks(rctx);
if (offset < 0)
return -EINVAL;
/* Copy plain text to the buffer */
sg = rctx->encrypt ? rctx->src_sg : rctx->dst_sg;
scatterwalk_map_and_copy(rctx->inbuf.buf + offset,
sg, rctx->assoclen,
rctx->cryptlen, 0);
offset += rctx->cryptlen;
offset += tegra_ccm_add_padding(rctx->inbuf.buf + offset, rctx->cryptlen);
rctx->inbuf.size = offset;
ret = tegra_ccm_do_cbcmac(ctx, rctx);
if (ret)
return ret;
return tegra_ccm_mac_result(se, rctx);
}
static int tegra_ccm_do_ctr(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
{
struct tegra_se *se = ctx->se;
unsigned int cmdlen, offset = 0;
struct scatterlist *sg = rctx->src_sg;
int ret;
rctx->config = tegra234_aes_cfg(SE_ALG_CTR, rctx->encrypt);
rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_CTR, rctx->encrypt) |
SE_AES_KEY_INDEX(ctx->key_id);
/* Copy authdata in the top of buffer for encryption/decryption */
if (rctx->encrypt)
memcpy(rctx->inbuf.buf, rctx->authdata, rctx->authsize);
else
scatterwalk_map_and_copy(rctx->inbuf.buf, sg,
rctx->assoclen + rctx->cryptlen,
rctx->authsize, 0);
offset += rctx->authsize;
offset += tegra_ccm_add_padding(rctx->inbuf.buf + offset, rctx->authsize);
/* If there is no cryptlen, proceed to submit the task */
if (rctx->cryptlen) {
scatterwalk_map_and_copy(rctx->inbuf.buf + offset, sg,
rctx->assoclen, rctx->cryptlen, 0);
offset += rctx->cryptlen;
offset += tegra_ccm_add_padding(rctx->inbuf.buf + offset, rctx->cryptlen);
}
rctx->inbuf.size = offset;
/* Prepare command and submit */
cmdlen = tegra_ctr_prep_cmd(ctx, rctx);
ret = tegra_se_host1x_submit(se, cmdlen);
if (ret)
return ret;
return tegra_ccm_ctr_result(se, rctx);
}
static int tegra_ccm_crypt_init(struct aead_request *req, struct tegra_se *se,
struct tegra_aead_reqctx *rctx)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
u8 *iv = (u8 *)rctx->iv;
int ret, i;
rctx->src_sg = req->src;
rctx->dst_sg = req->dst;
rctx->assoclen = req->assoclen;
rctx->authsize = crypto_aead_authsize(tfm);
memcpy(iv, req->iv, 16);
ret = tegra_ccm_check_iv(iv);
if (ret)
return ret;
/* Note: rfc 3610 and NIST 800-38C require counter (ctr_0) of
* zero to encrypt auth tag.
* req->iv has the formatted ctr_0 (i.e. Flags || N || 0).
*/
memset(iv + 15 - iv[0], 0, iv[0] + 1);
/* Clear any previous result */
for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
writel(0, se->base + se->hw->regs->result + (i * 4));
return 0;
}
static int tegra_ccm_do_one_req(struct crypto_engine *engine, void *areq)
{
struct aead_request *req = container_of(areq, struct aead_request, base);
struct tegra_aead_reqctx *rctx = aead_request_ctx(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct tegra_se *se = ctx->se;
int ret;
/* Allocate buffers required */
rctx->inbuf.buf = dma_alloc_coherent(ctx->se->dev, SE_AES_BUFLEN,
&rctx->inbuf.addr, GFP_KERNEL);
if (!rctx->inbuf.buf)
return -ENOMEM;
rctx->inbuf.size = SE_AES_BUFLEN;
rctx->outbuf.buf = dma_alloc_coherent(ctx->se->dev, SE_AES_BUFLEN,
&rctx->outbuf.addr, GFP_KERNEL);
if (!rctx->outbuf.buf) {
ret = -ENOMEM;
goto outbuf_err;
}
rctx->outbuf.size = SE_AES_BUFLEN;
ret = tegra_ccm_crypt_init(req, se, rctx);
if (ret)
goto out;
if (rctx->encrypt) {
rctx->cryptlen = req->cryptlen;
/* CBC MAC Operation */
ret = tegra_ccm_compute_auth(ctx, rctx);
if (ret)
goto out;
/* CTR operation */
ret = tegra_ccm_do_ctr(ctx, rctx);
if (ret)
goto out;
} else {
rctx->cryptlen = req->cryptlen - ctx->authsize;
if (ret)
goto out;
/* CTR operation */
ret = tegra_ccm_do_ctr(ctx, rctx);
if (ret)
goto out;
/* CBC MAC Operation */
ret = tegra_ccm_compute_auth(ctx, rctx);
if (ret)
goto out;
}
out:
dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN,
rctx->outbuf.buf, rctx->outbuf.addr);
outbuf_err:
dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN,
rctx->inbuf.buf, rctx->inbuf.addr);
crypto_finalize_aead_request(ctx->se->engine, req, ret);
return 0;
}
static int tegra_gcm_do_one_req(struct crypto_engine *engine, void *areq)
{
struct aead_request *req = container_of(areq, struct aead_request, base);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct tegra_aead_reqctx *rctx = aead_request_ctx(req);
int ret;
/* Allocate buffers required */
rctx->inbuf.buf = dma_alloc_coherent(ctx->se->dev, SE_AES_BUFLEN,
&rctx->inbuf.addr, GFP_KERNEL);
if (!rctx->inbuf.buf)
return -ENOMEM;
rctx->inbuf.size = SE_AES_BUFLEN;
rctx->outbuf.buf = dma_alloc_coherent(ctx->se->dev, SE_AES_BUFLEN,
&rctx->outbuf.addr, GFP_KERNEL);
if (!rctx->outbuf.buf) {
ret = -ENOMEM;
goto outbuf_err;
}
rctx->outbuf.size = SE_AES_BUFLEN;
rctx->src_sg = req->src;
rctx->dst_sg = req->dst;
rctx->assoclen = req->assoclen;
rctx->authsize = crypto_aead_authsize(tfm);
if (rctx->encrypt)
rctx->cryptlen = req->cryptlen;
else
rctx->cryptlen = req->cryptlen - ctx->authsize;
memcpy(rctx->iv, req->iv, GCM_AES_IV_SIZE);
rctx->iv[3] = (1 << 24);
/* If there is associated data perform GMAC operation */
if (rctx->assoclen) {
ret = tegra_gcm_do_gmac(ctx, rctx);
if (ret)
goto out;
}
/* GCM Encryption/Decryption operation */
if (rctx->cryptlen) {
ret = tegra_gcm_do_crypt(ctx, rctx);
if (ret)
goto out;
}
/* GCM_FINAL operation */
ret = tegra_gcm_do_final(ctx, rctx);
if (ret)
goto out;
if (!rctx->encrypt)
ret = tegra_gcm_do_verify(ctx->se, rctx);
out:
dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN,
rctx->outbuf.buf, rctx->outbuf.addr);
outbuf_err:
dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN,
rctx->inbuf.buf, rctx->inbuf.addr);
/* Finalize the request if there are no errors */
crypto_finalize_aead_request(ctx->se->engine, req, ret);
return 0;
}
static int tegra_aead_cra_init(struct crypto_aead *tfm)
{
struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct aead_alg *alg = crypto_aead_alg(tfm);
struct tegra_se_alg *se_alg;
const char *algname;
int ret;
algname = crypto_tfm_alg_name(&tfm->base);
se_alg = container_of(alg, struct tegra_se_alg, alg.aead.base);
crypto_aead_set_reqsize(tfm, sizeof(struct tegra_aead_reqctx));
ctx->se = se_alg->se_dev;
ctx->key_id = 0;
ret = se_algname_to_algid(algname);
if (ret < 0) {
dev_err(ctx->se->dev, "invalid algorithm\n");
return ret;
}
ctx->alg = ret;
return 0;
}
static int tegra_ccm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
switch (authsize) {
case 4:
case 6:
case 8:
case 10:
case 12:
case 14:
case 16:
break;
default:
return -EINVAL;
}
ctx->authsize = authsize;
return 0;
}
static int tegra_gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
int ret;
ret = crypto_gcm_check_authsize(authsize);
if (ret)
return ret;
ctx->authsize = authsize;
return 0;
}
static void tegra_aead_cra_exit(struct crypto_aead *tfm)
{
struct tegra_aead_ctx *ctx = crypto_tfm_ctx(&tfm->base);
if (ctx->key_id)
tegra_key_invalidate(ctx->se, ctx->key_id, ctx->alg);
}
static int tegra_aead_crypt(struct aead_request *req, bool encrypt)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct tegra_aead_reqctx *rctx = aead_request_ctx(req);
rctx->encrypt = encrypt;
return crypto_transfer_aead_request_to_engine(ctx->se->engine, req);
}
static int tegra_aead_encrypt(struct aead_request *req)
{
return tegra_aead_crypt(req, true);
}
static int tegra_aead_decrypt(struct aead_request *req)
{
return tegra_aead_crypt(req, false);
}
static int tegra_aead_setkey(struct crypto_aead *tfm,
const u8 *key, u32 keylen)
{
struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
if (aes_check_keylen(keylen)) {
dev_dbg(ctx->se->dev, "invalid key length (%d)\n", keylen);
return -EINVAL;
}
return tegra_key_submit(ctx->se, key, keylen, ctx->alg, &ctx->key_id);
}
static unsigned int tegra_cmac_prep_cmd(struct tegra_cmac_ctx *ctx,
struct tegra_cmac_reqctx *rctx)
{
unsigned int data_count, res_bits = 0, i = 0, j;
struct tegra_se *se = ctx->se;
u32 *cpuvaddr = se->cmdbuf->addr, op;
data_count = (rctx->datbuf.size / AES_BLOCK_SIZE);
op = SE_AES_OP_WRSTALL | SE_AES_OP_START | SE_AES_OP_LASTBUF;
if (!(rctx->task & SHA_UPDATE)) {
op |= SE_AES_OP_FINAL;
res_bits = (rctx->datbuf.size % AES_BLOCK_SIZE) * 8;
}
if (!res_bits && data_count)
data_count--;
if (rctx->task & SHA_FIRST) {
rctx->task &= ~SHA_FIRST;
cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
/* Load 0 IV */
for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
cpuvaddr[i++] = 0;
}
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) |
SE_LAST_BLOCK_RES_BITS(res_bits);
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
cpuvaddr[i++] = rctx->config;
cpuvaddr[i++] = rctx->crypto_config;
/* Source Address */
cpuvaddr[i++] = lower_32_bits(rctx->datbuf.addr);
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->datbuf.addr)) |
SE_ADDR_HI_SZ(rctx->datbuf.size);
cpuvaddr[i++] = 0;
cpuvaddr[i++] = SE_ADDR_HI_SZ(AES_BLOCK_SIZE);
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
cpuvaddr[i++] = op;
cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
return i;
}
static void tegra_cmac_copy_result(struct tegra_se *se, struct tegra_cmac_reqctx *rctx)
{
int i;
for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
rctx->result[i] = readl(se->base + se->hw->regs->result + (i * 4));
}
static void tegra_cmac_paste_result(struct tegra_se *se, struct tegra_cmac_reqctx *rctx)
{
int i;
for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
writel(rctx->result[i],
se->base + se->hw->regs->result + (i * 4));
}
static int tegra_cmac_do_update(struct ahash_request *req)
{
struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
struct tegra_se *se = ctx->se;
unsigned int nblks, nresidue, cmdlen;
int ret;
if (!req->nbytes)
return 0;
nresidue = (req->nbytes + rctx->residue.size) % rctx->blk_size;
nblks = (req->nbytes + rctx->residue.size) / rctx->blk_size;
/*
* Reserve the last block as residue during final() to process.
*/
if (!nresidue && nblks) {
nresidue += rctx->blk_size;
nblks--;
}
rctx->src_sg = req->src;
rctx->datbuf.size = (req->nbytes + rctx->residue.size) - nresidue;
rctx->total_len += rctx->datbuf.size;
rctx->config = tegra234_aes_cfg(SE_ALG_CMAC, 0);
rctx->crypto_config = SE_AES_KEY_INDEX(ctx->key_id);
/*
* Keep one block and residue bytes in residue and
* return. The bytes will be processed in final()
*/
if (nblks < 1) {
scatterwalk_map_and_copy(rctx->residue.buf + rctx->residue.size,
rctx->src_sg, 0, req->nbytes, 0);
rctx->residue.size += req->nbytes;
return 0;
}
/* Copy the previous residue first */
if (rctx->residue.size)
memcpy(rctx->datbuf.buf, rctx->residue.buf, rctx->residue.size);
scatterwalk_map_and_copy(rctx->datbuf.buf + rctx->residue.size,
rctx->src_sg, 0, req->nbytes - nresidue, 0);
scatterwalk_map_and_copy(rctx->residue.buf, rctx->src_sg,
req->nbytes - nresidue, nresidue, 0);
/* Update residue value with the residue after current block */
rctx->residue.size = nresidue;
/*
* If this is not the first 'update' call, paste the previous copied
* intermediate results to the registers so that it gets picked up.
* This is to support the import/export functionality.
*/
if (!(rctx->task & SHA_FIRST))
tegra_cmac_paste_result(ctx->se, rctx);
cmdlen = tegra_cmac_prep_cmd(ctx, rctx);
ret = tegra_se_host1x_submit(se, cmdlen);
/*
* If this is not the final update, copy the intermediate results
* from the registers so that it can be used in the next 'update'
* call. This is to support the import/export functionality.
*/
if (!(rctx->task & SHA_FINAL))
tegra_cmac_copy_result(ctx->se, rctx);
return ret;
}
static int tegra_cmac_do_final(struct ahash_request *req)
{
struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
struct tegra_se *se = ctx->se;
u32 *result = (u32 *)req->result;
int ret = 0, i, cmdlen;
if (!req->nbytes && !rctx->total_len && ctx->fallback_tfm) {
return crypto_shash_tfm_digest(ctx->fallback_tfm,
rctx->datbuf.buf, 0, req->result);
}
memcpy(rctx->datbuf.buf, rctx->residue.buf, rctx->residue.size);
rctx->datbuf.size = rctx->residue.size;
rctx->total_len += rctx->residue.size;
rctx->config = tegra234_aes_cfg(SE_ALG_CMAC, 0);
/* Prepare command and submit */
cmdlen = tegra_cmac_prep_cmd(ctx, rctx);
ret = tegra_se_host1x_submit(se, cmdlen);
if (ret)
goto out;
/* Read and clear Result register */
for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
result[i] = readl(se->base + se->hw->regs->result + (i * 4));
for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
writel(0, se->base + se->hw->regs->result + (i * 4));
out:
dma_free_coherent(se->dev, SE_SHA_BUFLEN,
rctx->datbuf.buf, rctx->datbuf.addr);
dma_free_coherent(se->dev, crypto_ahash_blocksize(tfm) * 2,
rctx->residue.buf, rctx->residue.addr);
return ret;
}
static int tegra_cmac_do_one_req(struct crypto_engine *engine, void *areq)
{
struct ahash_request *req = ahash_request_cast(areq);
struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
struct tegra_se *se = ctx->se;
int ret;
if (rctx->task & SHA_UPDATE) {
ret = tegra_cmac_do_update(req);
rctx->task &= ~SHA_UPDATE;
}
if (rctx->task & SHA_FINAL) {
ret = tegra_cmac_do_final(req);
rctx->task &= ~SHA_FINAL;
}
crypto_finalize_hash_request(se->engine, req, ret);
return 0;
}
static void tegra_cmac_init_fallback(struct crypto_ahash *tfm, struct tegra_cmac_ctx *ctx,
const char *algname)
{
unsigned int statesize;
ctx->fallback_tfm = crypto_alloc_shash(algname, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->fallback_tfm)) {
dev_warn(ctx->se->dev, "failed to allocate fallback for %s\n", algname);
ctx->fallback_tfm = NULL;
return;
}
statesize = crypto_shash_statesize(ctx->fallback_tfm);
if (statesize > sizeof(struct tegra_cmac_reqctx))
crypto_ahash_set_statesize(tfm, statesize);
}
static int tegra_cmac_cra_init(struct crypto_tfm *tfm)
{
struct tegra_cmac_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_ahash *ahash_tfm = __crypto_ahash_cast(tfm);
struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
struct tegra_se_alg *se_alg;
const char *algname;
int ret;
algname = crypto_tfm_alg_name(tfm);
se_alg = container_of(alg, struct tegra_se_alg, alg.ahash.base);
crypto_ahash_set_reqsize(ahash_tfm, sizeof(struct tegra_cmac_reqctx));
ctx->se = se_alg->se_dev;
ctx->key_id = 0;
ret = se_algname_to_algid(algname);
if (ret < 0) {
dev_err(ctx->se->dev, "invalid algorithm\n");
return ret;
}
ctx->alg = ret;
tegra_cmac_init_fallback(ahash_tfm, ctx, algname);
return 0;
}
static void tegra_cmac_cra_exit(struct crypto_tfm *tfm)
{
struct tegra_cmac_ctx *ctx = crypto_tfm_ctx(tfm);
if (ctx->fallback_tfm)
crypto_free_shash(ctx->fallback_tfm);
tegra_key_invalidate(ctx->se, ctx->key_id, ctx->alg);
}
static int tegra_cmac_init(struct ahash_request *req)
{
struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
struct tegra_se *se = ctx->se;
int i;
rctx->total_len = 0;
rctx->datbuf.size = 0;
rctx->residue.size = 0;
rctx->task = SHA_FIRST;
rctx->blk_size = crypto_ahash_blocksize(tfm);
rctx->residue.buf = dma_alloc_coherent(se->dev, rctx->blk_size * 2,
&rctx->residue.addr, GFP_KERNEL);
if (!rctx->residue.buf)
goto resbuf_fail;
rctx->residue.size = 0;
rctx->datbuf.buf = dma_alloc_coherent(se->dev, SE_SHA_BUFLEN,
&rctx->datbuf.addr, GFP_KERNEL);
if (!rctx->datbuf.buf)
goto datbuf_fail;
rctx->datbuf.size = 0;
/* Clear any previous result */
for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
writel(0, se->base + se->hw->regs->result + (i * 4));
return 0;
datbuf_fail:
dma_free_coherent(se->dev, rctx->blk_size, rctx->residue.buf,
rctx->residue.addr);
resbuf_fail:
return -ENOMEM;
}
static int tegra_cmac_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
if (aes_check_keylen(keylen)) {
dev_dbg(ctx->se->dev, "invalid key length (%d)\n", keylen);
return -EINVAL;
}
if (ctx->fallback_tfm)
crypto_shash_setkey(ctx->fallback_tfm, key, keylen);
return tegra_key_submit(ctx->se, key, keylen, ctx->alg, &ctx->key_id);
}
static int tegra_cmac_update(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
rctx->task |= SHA_UPDATE;
return crypto_transfer_hash_request_to_engine(ctx->se->engine, req);
}
static int tegra_cmac_final(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
rctx->task |= SHA_FINAL;
return crypto_transfer_hash_request_to_engine(ctx->se->engine, req);
}
static int tegra_cmac_finup(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
rctx->task |= SHA_UPDATE | SHA_FINAL;
return crypto_transfer_hash_request_to_engine(ctx->se->engine, req);
}
static int tegra_cmac_digest(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
tegra_cmac_init(req);
rctx->task |= SHA_UPDATE | SHA_FINAL;
return crypto_transfer_hash_request_to_engine(ctx->se->engine, req);
}
static int tegra_cmac_export(struct ahash_request *req, void *out)
{
struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
memcpy(out, rctx, sizeof(*rctx));
return 0;
}
static int tegra_cmac_import(struct ahash_request *req, const void *in)
{
struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
memcpy(rctx, in, sizeof(*rctx));
return 0;
}
static struct tegra_se_alg tegra_aead_algs[] = {
{
.alg.aead.op.do_one_request = tegra_gcm_do_one_req,
.alg.aead.base = {
.init = tegra_aead_cra_init,
.exit = tegra_aead_cra_exit,
.setkey = tegra_aead_setkey,
.setauthsize = tegra_gcm_setauthsize,
.encrypt = tegra_aead_encrypt,
.decrypt = tegra_aead_decrypt,
.maxauthsize = AES_BLOCK_SIZE,
.ivsize = GCM_AES_IV_SIZE,
.base = {
.cra_name = "gcm(aes)",
.cra_driver_name = "gcm-aes-tegra",
.cra_priority = 500,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct tegra_aead_ctx),
.cra_alignmask = 0xf,
.cra_module = THIS_MODULE,
},
}
}, {
.alg.aead.op.do_one_request = tegra_ccm_do_one_req,
.alg.aead.base = {
.init = tegra_aead_cra_init,
.exit = tegra_aead_cra_exit,
.setkey = tegra_aead_setkey,
.setauthsize = tegra_ccm_setauthsize,
.encrypt = tegra_aead_encrypt,
.decrypt = tegra_aead_decrypt,
.maxauthsize = AES_BLOCK_SIZE,
.ivsize = AES_BLOCK_SIZE,
.chunksize = AES_BLOCK_SIZE,
.base = {
.cra_name = "ccm(aes)",
.cra_driver_name = "ccm-aes-tegra",
.cra_priority = 500,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct tegra_aead_ctx),
.cra_alignmask = 0xf,
.cra_module = THIS_MODULE,
},
}
}
};
static struct tegra_se_alg tegra_cmac_algs[] = {
{
.alg.ahash.op.do_one_request = tegra_cmac_do_one_req,
.alg.ahash.base = {
.init = tegra_cmac_init,
.setkey = tegra_cmac_setkey,
.update = tegra_cmac_update,
.final = tegra_cmac_final,
.finup = tegra_cmac_finup,
.digest = tegra_cmac_digest,
.export = tegra_cmac_export,
.import = tegra_cmac_import,
.halg.digestsize = AES_BLOCK_SIZE,
.halg.statesize = sizeof(struct tegra_cmac_reqctx),
.halg.base = {
.cra_name = "cmac(aes)",
.cra_driver_name = "tegra-se-cmac",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AHASH,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct tegra_cmac_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = tegra_cmac_cra_init,
.cra_exit = tegra_cmac_cra_exit,
}
}
}
};
int tegra_init_aes(struct tegra_se *se)
{
struct aead_engine_alg *aead_alg;
struct ahash_engine_alg *ahash_alg;
struct skcipher_engine_alg *sk_alg;
int i, ret;
se->manifest = tegra_aes_kac_manifest;
for (i = 0; i < ARRAY_SIZE(tegra_aes_algs); i++) {
sk_alg = &tegra_aes_algs[i].alg.skcipher;
tegra_aes_algs[i].se_dev = se;
ret = crypto_engine_register_skcipher(sk_alg);
if (ret) {
dev_err(se->dev, "failed to register %s\n",
sk_alg->base.base.cra_name);
goto err_aes;
}
}
for (i = 0; i < ARRAY_SIZE(tegra_aead_algs); i++) {
aead_alg = &tegra_aead_algs[i].alg.aead;
tegra_aead_algs[i].se_dev = se;
ret = crypto_engine_register_aead(aead_alg);
if (ret) {
dev_err(se->dev, "failed to register %s\n",
aead_alg->base.base.cra_name);
goto err_aead;
}
}
for (i = 0; i < ARRAY_SIZE(tegra_cmac_algs); i++) {
ahash_alg = &tegra_cmac_algs[i].alg.ahash;
tegra_cmac_algs[i].se_dev = se;
ret = crypto_engine_register_ahash(ahash_alg);
if (ret) {
dev_err(se->dev, "failed to register %s\n",
ahash_alg->base.halg.base.cra_name);
goto err_cmac;
}
}
return 0;
err_cmac:
while (i--)
crypto_engine_unregister_ahash(&tegra_cmac_algs[i].alg.ahash);
i = ARRAY_SIZE(tegra_aead_algs);
err_aead:
while (i--)
crypto_engine_unregister_aead(&tegra_aead_algs[i].alg.aead);
i = ARRAY_SIZE(tegra_aes_algs);
err_aes:
while (i--)
crypto_engine_unregister_skcipher(&tegra_aes_algs[i].alg.skcipher);
return ret;
}
void tegra_deinit_aes(struct tegra_se *se)
{
int i;
for (i = 0; i < ARRAY_SIZE(tegra_aes_algs); i++)
crypto_engine_unregister_skcipher(&tegra_aes_algs[i].alg.skcipher);
for (i = 0; i < ARRAY_SIZE(tegra_aead_algs); i++)
crypto_engine_unregister_aead(&tegra_aead_algs[i].alg.aead);
for (i = 0; i < ARRAY_SIZE(tegra_cmac_algs); i++)
crypto_engine_unregister_ahash(&tegra_cmac_algs[i].alg.ahash);
}