Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
/* SPDX-License-Identifier: GPL-2.0-only */
/*
 * Copyright (C) 2012 ARM Ltd.
 */
#ifndef __ASM_PGTABLE_H
#define __ASM_PGTABLE_H

#include <asm/bug.h>
#include <asm/proc-fns.h>

#include <asm/memory.h>
#include <asm/mte.h>
#include <asm/pgtable-hwdef.h>
#include <asm/pgtable-prot.h>
#include <asm/tlbflush.h>

/*
 * VMALLOC range.
 *
 * VMALLOC_START: beginning of the kernel vmalloc space
 * VMALLOC_END: extends to the available space below vmemmap
 */
#define VMALLOC_START		(MODULES_END)
#if VA_BITS == VA_BITS_MIN
#define VMALLOC_END		(VMEMMAP_START - SZ_8M)
#else
#define VMEMMAP_UNUSED_NPAGES	((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
#define VMALLOC_END		(VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
#endif

#define vmemmap			((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))

#ifndef __ASSEMBLY__

#include <asm/cmpxchg.h>
#include <asm/fixmap.h>
#include <linux/mmdebug.h>
#include <linux/mm_types.h>
#include <linux/sched.h>
#include <linux/page_table_check.h>

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE

/* Set stride and tlb_level in flush_*_tlb_range */
#define flush_pmd_tlb_range(vma, addr, end)	\
	__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
#define flush_pud_tlb_range(vma, addr, end)	\
	__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

/*
 * Outside of a few very special situations (e.g. hibernation), we always
 * use broadcast TLB invalidation instructions, therefore a spurious page
 * fault on one CPU which has been handled concurrently by another CPU
 * does not need to perform additional invalidation.
 */
#define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)

/*
 * ZERO_PAGE is a global shared page that is always zero: used
 * for zero-mapped memory areas etc..
 */
extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
#define ZERO_PAGE(vaddr)	phys_to_page(__pa_symbol(empty_zero_page))

#define pte_ERROR(e)	\
	pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))

/*
 * Macros to convert between a physical address and its placement in a
 * page table entry, taking care of 52-bit addresses.
 */
#ifdef CONFIG_ARM64_PA_BITS_52
static inline phys_addr_t __pte_to_phys(pte_t pte)
{
	pte_val(pte) &= ~PTE_MAYBE_SHARED;
	return (pte_val(pte) & PTE_ADDR_LOW) |
		((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
}
static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
{
	return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
}
#else
#define __pte_to_phys(pte)	(pte_val(pte) & PTE_ADDR_LOW)
#define __phys_to_pte_val(phys)	(phys)
#endif

#define pte_pfn(pte)		(__pte_to_phys(pte) >> PAGE_SHIFT)
#define pfn_pte(pfn,prot)	\
	__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))

#define pte_none(pte)		(!pte_val(pte))
#define __pte_clear(mm, addr, ptep) \
				__set_pte(ptep, __pte(0))
#define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))

/*
 * The following only work if pte_present(). Undefined behaviour otherwise.
 */
#define pte_present(pte)	(pte_valid(pte) || pte_present_invalid(pte))
#define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))
#define pte_special(pte)	(!!(pte_val(pte) & PTE_SPECIAL))
#define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))
#define pte_rdonly(pte)		(!!(pte_val(pte) & PTE_RDONLY))
#define pte_user(pte)		(!!(pte_val(pte) & PTE_USER))
#define pte_user_exec(pte)	(!(pte_val(pte) & PTE_UXN))
#define pte_cont(pte)		(!!(pte_val(pte) & PTE_CONT))
#define pte_devmap(pte)		(!!(pte_val(pte) & PTE_DEVMAP))
#define pte_tagged(pte)		((pte_val(pte) & PTE_ATTRINDX_MASK) == \
				 PTE_ATTRINDX(MT_NORMAL_TAGGED))

#define pte_cont_addr_end(addr, end)						\
({	unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK;	\
	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
})

#define pmd_cont_addr_end(addr, end)						\
({	unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK;	\
	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
})

#define pte_hw_dirty(pte)	(pte_write(pte) && !pte_rdonly(pte))
#define pte_sw_dirty(pte)	(!!(pte_val(pte) & PTE_DIRTY))
#define pte_dirty(pte)		(pte_sw_dirty(pte) || pte_hw_dirty(pte))

#define pte_valid(pte)		(!!(pte_val(pte) & PTE_VALID))
#define pte_present_invalid(pte) \
	((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID)
/*
 * Execute-only user mappings do not have the PTE_USER bit set. All valid
 * kernel mappings have the PTE_UXN bit set.
 */
#define pte_valid_not_user(pte) \
	((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
/*
 * Returns true if the pte is valid and has the contiguous bit set.
 */
#define pte_valid_cont(pte)	(pte_valid(pte) && pte_cont(pte))
/*
 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
 * so that we don't erroneously return false for pages that have been
 * remapped as PROT_NONE but are yet to be flushed from the TLB.
 * Note that we can't make any assumptions based on the state of the access
 * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
 * TLB.
 */
#define pte_accessible(mm, pte)	\
	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))

/*
 * p??_access_permitted() is true for valid user mappings (PTE_USER
 * bit set, subject to the write permission check). For execute-only
 * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
 * not set) must return false. PROT_NONE mappings do not have the
 * PTE_VALID bit set.
 */
#define pte_access_permitted(pte, write) \
	(((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
#define pmd_access_permitted(pmd, write) \
	(pte_access_permitted(pmd_pte(pmd), (write)))
#define pud_access_permitted(pud, write) \
	(pte_access_permitted(pud_pte(pud), (write)))

static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
{
	pte_val(pte) &= ~pgprot_val(prot);
	return pte;
}

static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
{
	pte_val(pte) |= pgprot_val(prot);
	return pte;
}

static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
{
	pmd_val(pmd) &= ~pgprot_val(prot);
	return pmd;
}

static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
{
	pmd_val(pmd) |= pgprot_val(prot);
	return pmd;
}

static inline pte_t pte_mkwrite_novma(pte_t pte)
{
	pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
	pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
	return pte;
}

static inline pte_t pte_mkclean(pte_t pte)
{
	pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));

	return pte;
}

static inline pte_t pte_mkdirty(pte_t pte)
{
	pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));

	if (pte_write(pte))
		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));

	return pte;
}

static inline pte_t pte_wrprotect(pte_t pte)
{
	/*
	 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
	 * clear), set the PTE_DIRTY bit.
	 */
	if (pte_hw_dirty(pte))
		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));

	pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
	return pte;
}

static inline pte_t pte_mkold(pte_t pte)
{
	return clear_pte_bit(pte, __pgprot(PTE_AF));
}

static inline pte_t pte_mkyoung(pte_t pte)
{
	return set_pte_bit(pte, __pgprot(PTE_AF));
}

static inline pte_t pte_mkspecial(pte_t pte)
{
	return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
}

static inline pte_t pte_mkcont(pte_t pte)
{
	pte = set_pte_bit(pte, __pgprot(PTE_CONT));
	return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
}

static inline pte_t pte_mknoncont(pte_t pte)
{
	return clear_pte_bit(pte, __pgprot(PTE_CONT));
}

static inline pte_t pte_mkpresent(pte_t pte)
{
	return set_pte_bit(pte, __pgprot(PTE_VALID));
}

static inline pte_t pte_mkinvalid(pte_t pte)
{
	pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID));
	pte = clear_pte_bit(pte, __pgprot(PTE_VALID));
	return pte;
}

static inline pmd_t pmd_mkcont(pmd_t pmd)
{
	return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
}

static inline pte_t pte_mkdevmap(pte_t pte)
{
	return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
}

#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
static inline int pte_uffd_wp(pte_t pte)
{
	return !!(pte_val(pte) & PTE_UFFD_WP);
}

static inline pte_t pte_mkuffd_wp(pte_t pte)
{
	return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP)));
}

static inline pte_t pte_clear_uffd_wp(pte_t pte)
{
	return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP));
}
#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */

static inline void __set_pte_nosync(pte_t *ptep, pte_t pte)
{
	WRITE_ONCE(*ptep, pte);
}

static inline void __set_pte(pte_t *ptep, pte_t pte)
{
	__set_pte_nosync(ptep, pte);

	/*
	 * Only if the new pte is valid and kernel, otherwise TLB maintenance
	 * or update_mmu_cache() have the necessary barriers.
	 */
	if (pte_valid_not_user(pte)) {
		dsb(ishst);
		isb();
	}
}

static inline pte_t __ptep_get(pte_t *ptep)
{
	return READ_ONCE(*ptep);
}

extern void __sync_icache_dcache(pte_t pteval);
bool pgattr_change_is_safe(u64 old, u64 new);

/*
 * PTE bits configuration in the presence of hardware Dirty Bit Management
 * (PTE_WRITE == PTE_DBM):
 *
 * Dirty  Writable | PTE_RDONLY  PTE_WRITE  PTE_DIRTY (sw)
 *   0      0      |   1           0          0
 *   0      1      |   1           1          0
 *   1      0      |   1           0          1
 *   1      1      |   0           1          x
 *
 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
 * the page fault mechanism. Checking the dirty status of a pte becomes:
 *
 *   PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
 */

static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
					   pte_t pte)
{
	pte_t old_pte;

	if (!IS_ENABLED(CONFIG_DEBUG_VM))
		return;

	old_pte = __ptep_get(ptep);

	if (!pte_valid(old_pte) || !pte_valid(pte))
		return;
	if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
		return;

	/*
	 * Check for potential race with hardware updates of the pte
	 * (__ptep_set_access_flags safely changes valid ptes without going
	 * through an invalid entry).
	 */
	VM_WARN_ONCE(!pte_young(pte),
		     "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
		     __func__, pte_val(old_pte), pte_val(pte));
	VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
		     "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
		     __func__, pte_val(old_pte), pte_val(pte));
	VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
		     "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
		     __func__, pte_val(old_pte), pte_val(pte));
}

static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
{
	if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
		__sync_icache_dcache(pte);

	/*
	 * If the PTE would provide user space access to the tags associated
	 * with it then ensure that the MTE tags are synchronised.  Although
	 * pte_access_permitted() returns false for exec only mappings, they
	 * don't expose tags (instruction fetches don't check tags).
	 */
	if (system_supports_mte() && pte_access_permitted(pte, false) &&
	    !pte_special(pte) && pte_tagged(pte))
		mte_sync_tags(pte, nr_pages);
}

/*
 * Select all bits except the pfn
 */
static inline pgprot_t pte_pgprot(pte_t pte)
{
	unsigned long pfn = pte_pfn(pte);

	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
}

#define pte_advance_pfn pte_advance_pfn
static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
{
	return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
}

static inline void __set_ptes(struct mm_struct *mm,
			      unsigned long __always_unused addr,
			      pte_t *ptep, pte_t pte, unsigned int nr)
{
	page_table_check_ptes_set(mm, ptep, pte, nr);
	__sync_cache_and_tags(pte, nr);

	for (;;) {
		__check_safe_pte_update(mm, ptep, pte);
		__set_pte(ptep, pte);
		if (--nr == 0)
			break;
		ptep++;
		pte = pte_advance_pfn(pte, 1);
	}
}

/*
 * Huge pte definitions.
 */
#define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))

/*
 * Hugetlb definitions.
 */
#define HUGE_MAX_HSTATE		4
#define HPAGE_SHIFT		PMD_SHIFT
#define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
#define HPAGE_MASK		(~(HPAGE_SIZE - 1))
#define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)

static inline pte_t pgd_pte(pgd_t pgd)
{
	return __pte(pgd_val(pgd));
}

static inline pte_t p4d_pte(p4d_t p4d)
{
	return __pte(p4d_val(p4d));
}

static inline pte_t pud_pte(pud_t pud)
{
	return __pte(pud_val(pud));
}

static inline pud_t pte_pud(pte_t pte)
{
	return __pud(pte_val(pte));
}

static inline pmd_t pud_pmd(pud_t pud)
{
	return __pmd(pud_val(pud));
}

static inline pte_t pmd_pte(pmd_t pmd)
{
	return __pte(pmd_val(pmd));
}

static inline pmd_t pte_pmd(pte_t pte)
{
	return __pmd(pte_val(pte));
}

static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
{
	return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
}

static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
{
	return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
}

static inline pte_t pte_swp_mkexclusive(pte_t pte)
{
	return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
}

static inline int pte_swp_exclusive(pte_t pte)
{
	return pte_val(pte) & PTE_SWP_EXCLUSIVE;
}

static inline pte_t pte_swp_clear_exclusive(pte_t pte)
{
	return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
}

#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
{
	return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
}

static inline int pte_swp_uffd_wp(pte_t pte)
{
	return !!(pte_val(pte) & PTE_SWP_UFFD_WP);
}

static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
{
	return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
}
#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */

#ifdef CONFIG_NUMA_BALANCING
/*
 * See the comment in include/linux/pgtable.h
 */
static inline int pte_protnone(pte_t pte)
{
	/*
	 * pte_present_invalid() tells us that the pte is invalid from HW
	 * perspective but present from SW perspective, so the fields are to be
	 * interpretted as per the HW layout. The second 2 checks are the unique
	 * encoding that we use for PROT_NONE. It is insufficient to only use
	 * the first check because we share the same encoding scheme with pmds
	 * which support pmd_mkinvalid(), so can be present-invalid without
	 * being PROT_NONE.
	 */
	return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte);
}

static inline int pmd_protnone(pmd_t pmd)
{
	return pte_protnone(pmd_pte(pmd));
}
#endif

#define pmd_present(pmd)	pte_present(pmd_pte(pmd))

/*
 * THP definitions.
 */

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_trans_huge(pmd_t pmd)
{
	return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

#define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
#define pmd_young(pmd)		pte_young(pmd_pte(pmd))
#define pmd_valid(pmd)		pte_valid(pmd_pte(pmd))
#define pmd_user(pmd)		pte_user(pmd_pte(pmd))
#define pmd_user_exec(pmd)	pte_user_exec(pmd_pte(pmd))
#define pmd_cont(pmd)		pte_cont(pmd_pte(pmd))
#define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
#define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
#define pmd_mkwrite_novma(pmd)	pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
#define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
#define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
#define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
#define pmd_mkinvalid(pmd)	pte_pmd(pte_mkinvalid(pmd_pte(pmd)))
#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
#define pmd_uffd_wp(pmd)	pte_uffd_wp(pmd_pte(pmd))
#define pmd_mkuffd_wp(pmd)	pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)))
#define pmd_clear_uffd_wp(pmd)	pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)))
#define pmd_swp_uffd_wp(pmd)	pte_swp_uffd_wp(pmd_pte(pmd))
#define pmd_swp_mkuffd_wp(pmd)	pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)))
#define pmd_swp_clear_uffd_wp(pmd) \
				pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)))
#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */

#define pmd_write(pmd)		pte_write(pmd_pte(pmd))

#define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define pmd_devmap(pmd)		pte_devmap(pmd_pte(pmd))
#endif
static inline pmd_t pmd_mkdevmap(pmd_t pmd)
{
	return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
}

#define __pmd_to_phys(pmd)	__pte_to_phys(pmd_pte(pmd))
#define __phys_to_pmd_val(phys)	__phys_to_pte_val(phys)
#define pmd_pfn(pmd)		((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
#define pfn_pmd(pfn,prot)	__pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
#define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)

#define pud_young(pud)		pte_young(pud_pte(pud))
#define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
#define pud_write(pud)		pte_write(pud_pte(pud))

#define pud_mkhuge(pud)		(__pud(pud_val(pud) & ~PUD_TABLE_BIT))

#define __pud_to_phys(pud)	__pte_to_phys(pud_pte(pud))
#define __phys_to_pud_val(phys)	__phys_to_pte_val(phys)
#define pud_pfn(pud)		((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
#define pfn_pud(pfn,prot)	__pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))

static inline void __set_pte_at(struct mm_struct *mm,
				unsigned long __always_unused addr,
				pte_t *ptep, pte_t pte, unsigned int nr)
{
	__sync_cache_and_tags(pte, nr);
	__check_safe_pte_update(mm, ptep, pte);
	__set_pte(ptep, pte);
}

static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
			      pmd_t *pmdp, pmd_t pmd)
{
	page_table_check_pmd_set(mm, pmdp, pmd);
	return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd),
						PMD_SIZE >> PAGE_SHIFT);
}

static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
			      pud_t *pudp, pud_t pud)
{
	page_table_check_pud_set(mm, pudp, pud);
	return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud),
						PUD_SIZE >> PAGE_SHIFT);
}

#define __p4d_to_phys(p4d)	__pte_to_phys(p4d_pte(p4d))
#define __phys_to_p4d_val(phys)	__phys_to_pte_val(phys)

#define __pgd_to_phys(pgd)	__pte_to_phys(pgd_pte(pgd))
#define __phys_to_pgd_val(phys)	__phys_to_pte_val(phys)

#define __pgprot_modify(prot,mask,bits) \
	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))

#define pgprot_nx(prot) \
	__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)

/*
 * Mark the prot value as uncacheable and unbufferable.
 */
#define pgprot_noncached(prot) \
	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
#define pgprot_writecombine(prot) \
	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
#define pgprot_device(prot) \
	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
#define pgprot_tagged(prot) \
	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
#define pgprot_mhp	pgprot_tagged
/*
 * DMA allocations for non-coherent devices use what the Arm architecture calls
 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
 * and merging of writes.  This is different from "Device-nGnR[nE]" memory which
 * is intended for MMIO and thus forbids speculation, preserves access size,
 * requires strict alignment and can also force write responses to come from the
 * endpoint.
 */
#define pgprot_dmacoherent(prot) \
	__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
			PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)

#define __HAVE_PHYS_MEM_ACCESS_PROT
struct file;
extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
				     unsigned long size, pgprot_t vma_prot);

#define pmd_none(pmd)		(!pmd_val(pmd))

#define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
				 PMD_TYPE_TABLE)
#define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
				 PMD_TYPE_SECT)
#define pmd_leaf(pmd)		(pmd_present(pmd) && !pmd_table(pmd))
#define pmd_bad(pmd)		(!pmd_table(pmd))

#define pmd_leaf_size(pmd)	(pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
#define pte_leaf_size(pte)	(pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)

#if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
static inline bool pud_sect(pud_t pud) { return false; }
static inline bool pud_table(pud_t pud) { return true; }
#else
#define pud_sect(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
				 PUD_TYPE_SECT)
#define pud_table(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
				 PUD_TYPE_TABLE)
#endif

extern pgd_t init_pg_dir[];
extern pgd_t init_pg_end[];
extern pgd_t swapper_pg_dir[];
extern pgd_t idmap_pg_dir[];
extern pgd_t tramp_pg_dir[];
extern pgd_t reserved_pg_dir[];

extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);

static inline bool in_swapper_pgdir(void *addr)
{
	return ((unsigned long)addr & PAGE_MASK) ==
	        ((unsigned long)swapper_pg_dir & PAGE_MASK);
}

static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
{
#ifdef __PAGETABLE_PMD_FOLDED
	if (in_swapper_pgdir(pmdp)) {
		set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
		return;
	}
#endif /* __PAGETABLE_PMD_FOLDED */

	WRITE_ONCE(*pmdp, pmd);

	if (pmd_valid(pmd)) {
		dsb(ishst);
		isb();
	}
}

static inline void pmd_clear(pmd_t *pmdp)
{
	set_pmd(pmdp, __pmd(0));
}

static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
{
	return __pmd_to_phys(pmd);
}

static inline unsigned long pmd_page_vaddr(pmd_t pmd)
{
	return (unsigned long)__va(pmd_page_paddr(pmd));
}

/* Find an entry in the third-level page table. */
#define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))

#define pte_set_fixmap(addr)		((pte_t *)set_fixmap_offset(FIX_PTE, addr))
#define pte_set_fixmap_offset(pmd, addr)	pte_set_fixmap(pte_offset_phys(pmd, addr))
#define pte_clear_fixmap()		clear_fixmap(FIX_PTE)

#define pmd_page(pmd)			phys_to_page(__pmd_to_phys(pmd))

/* use ONLY for statically allocated translation tables */
#define pte_offset_kimg(dir,addr)	((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */
#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page),prot)

#if CONFIG_PGTABLE_LEVELS > 2

#define pmd_ERROR(e)	\
	pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))

#define pud_none(pud)		(!pud_val(pud))
#define pud_bad(pud)		(!pud_table(pud))
#define pud_present(pud)	pte_present(pud_pte(pud))
#ifndef __PAGETABLE_PMD_FOLDED
#define pud_leaf(pud)		(pud_present(pud) && !pud_table(pud))
#else
#define pud_leaf(pud)		false
#endif
#define pud_valid(pud)		pte_valid(pud_pte(pud))
#define pud_user(pud)		pte_user(pud_pte(pud))
#define pud_user_exec(pud)	pte_user_exec(pud_pte(pud))

static inline bool pgtable_l4_enabled(void);

static inline void set_pud(pud_t *pudp, pud_t pud)
{
	if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
		set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
		return;
	}

	WRITE_ONCE(*pudp, pud);

	if (pud_valid(pud)) {
		dsb(ishst);
		isb();
	}
}

static inline void pud_clear(pud_t *pudp)
{
	set_pud(pudp, __pud(0));
}

static inline phys_addr_t pud_page_paddr(pud_t pud)
{
	return __pud_to_phys(pud);
}

static inline pmd_t *pud_pgtable(pud_t pud)
{
	return (pmd_t *)__va(pud_page_paddr(pud));
}

/* Find an entry in the second-level page table. */
#define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))

#define pmd_set_fixmap(addr)		((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
#define pmd_set_fixmap_offset(pud, addr)	pmd_set_fixmap(pmd_offset_phys(pud, addr))
#define pmd_clear_fixmap()		clear_fixmap(FIX_PMD)

#define pud_page(pud)			phys_to_page(__pud_to_phys(pud))

/* use ONLY for statically allocated translation tables */
#define pmd_offset_kimg(dir,addr)	((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))

#else

#define pud_valid(pud)		false
#define pud_page_paddr(pud)	({ BUILD_BUG(); 0; })
#define pud_user_exec(pud)	pud_user(pud) /* Always 0 with folding */

/* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
#define pmd_set_fixmap(addr)		NULL
#define pmd_set_fixmap_offset(pudp, addr)	((pmd_t *)pudp)
#define pmd_clear_fixmap()

#define pmd_offset_kimg(dir,addr)	((pmd_t *)dir)

#endif	/* CONFIG_PGTABLE_LEVELS > 2 */

#if CONFIG_PGTABLE_LEVELS > 3

static __always_inline bool pgtable_l4_enabled(void)
{
	if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
		return true;
	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
		return vabits_actual == VA_BITS;
	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
}

static inline bool mm_pud_folded(const struct mm_struct *mm)
{
	return !pgtable_l4_enabled();
}
#define mm_pud_folded  mm_pud_folded

#define pud_ERROR(e)	\
	pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))

#define p4d_none(p4d)		(pgtable_l4_enabled() && !p4d_val(p4d))
#define p4d_bad(p4d)		(pgtable_l4_enabled() && !(p4d_val(p4d) & 2))
#define p4d_present(p4d)	(!p4d_none(p4d))

static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
{
	if (in_swapper_pgdir(p4dp)) {
		set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
		return;
	}

	WRITE_ONCE(*p4dp, p4d);
	dsb(ishst);
	isb();
}

static inline void p4d_clear(p4d_t *p4dp)
{
	if (pgtable_l4_enabled())
		set_p4d(p4dp, __p4d(0));
}

static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
{
	return __p4d_to_phys(p4d);
}

#define pud_index(addr)		(((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))

static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
{
	return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
}

static inline pud_t *p4d_pgtable(p4d_t p4d)
{
	return (pud_t *)__va(p4d_page_paddr(p4d));
}

static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
{
	BUG_ON(!pgtable_l4_enabled());

	return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
}

static inline
pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
{
	if (!pgtable_l4_enabled())
		return p4d_to_folded_pud(p4dp, addr);
	return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
}
#define pud_offset_lockless pud_offset_lockless

static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
{
	return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
}
#define pud_offset	pud_offset

static inline pud_t *pud_set_fixmap(unsigned long addr)
{
	if (!pgtable_l4_enabled())
		return NULL;
	return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
}

static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
{
	if (!pgtable_l4_enabled())
		return p4d_to_folded_pud(p4dp, addr);
	return pud_set_fixmap(pud_offset_phys(p4dp, addr));
}

static inline void pud_clear_fixmap(void)
{
	if (pgtable_l4_enabled())
		clear_fixmap(FIX_PUD);
}

/* use ONLY for statically allocated translation tables */
static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
{
	if (!pgtable_l4_enabled())
		return p4d_to_folded_pud(p4dp, addr);
	return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
}

#define p4d_page(p4d)		pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))

#else

static inline bool pgtable_l4_enabled(void) { return false; }

#define p4d_page_paddr(p4d)	({ BUILD_BUG(); 0;})

/* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
#define pud_set_fixmap(addr)		NULL
#define pud_set_fixmap_offset(pgdp, addr)	((pud_t *)pgdp)
#define pud_clear_fixmap()

#define pud_offset_kimg(dir,addr)	((pud_t *)dir)

#endif  /* CONFIG_PGTABLE_LEVELS > 3 */

#if CONFIG_PGTABLE_LEVELS > 4

static __always_inline bool pgtable_l5_enabled(void)
{
	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
		return vabits_actual == VA_BITS;
	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
}

static inline bool mm_p4d_folded(const struct mm_struct *mm)
{
	return !pgtable_l5_enabled();
}
#define mm_p4d_folded  mm_p4d_folded

#define p4d_ERROR(e)	\
	pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))

#define pgd_none(pgd)		(pgtable_l5_enabled() && !pgd_val(pgd))
#define pgd_bad(pgd)		(pgtable_l5_enabled() && !(pgd_val(pgd) & 2))
#define pgd_present(pgd)	(!pgd_none(pgd))

static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
{
	if (in_swapper_pgdir(pgdp)) {
		set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
		return;
	}

	WRITE_ONCE(*pgdp, pgd);
	dsb(ishst);
	isb();
}

static inline void pgd_clear(pgd_t *pgdp)
{
	if (pgtable_l5_enabled())
		set_pgd(pgdp, __pgd(0));
}

static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
{
	return __pgd_to_phys(pgd);
}

#define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))

static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
{
	return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
}

static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
{
	BUG_ON(!pgtable_l5_enabled());

	return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
}

static inline
p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
{
	if (!pgtable_l5_enabled())
		return pgd_to_folded_p4d(pgdp, addr);
	return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
}
#define p4d_offset_lockless p4d_offset_lockless

static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
{
	return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
}

static inline p4d_t *p4d_set_fixmap(unsigned long addr)
{
	if (!pgtable_l5_enabled())
		return NULL;
	return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
}

static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
{
	if (!pgtable_l5_enabled())
		return pgd_to_folded_p4d(pgdp, addr);
	return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
}

static inline void p4d_clear_fixmap(void)
{
	if (pgtable_l5_enabled())
		clear_fixmap(FIX_P4D);
}

/* use ONLY for statically allocated translation tables */
static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
{
	if (!pgtable_l5_enabled())
		return pgd_to_folded_p4d(pgdp, addr);
	return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
}

#define pgd_page(pgd)		pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))

#else

static inline bool pgtable_l5_enabled(void) { return false; }

#define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))

/* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
#define p4d_set_fixmap(addr)		NULL
#define p4d_set_fixmap_offset(p4dp, addr)	((p4d_t *)p4dp)
#define p4d_clear_fixmap()

#define p4d_offset_kimg(dir,addr)	((p4d_t *)dir)

#endif  /* CONFIG_PGTABLE_LEVELS > 4 */

#define pgd_ERROR(e)	\
	pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))

#define pgd_set_fixmap(addr)	((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
#define pgd_clear_fixmap()	clear_fixmap(FIX_PGD)

static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
	/*
	 * Normal and Normal-Tagged are two different memory types and indices
	 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
	 */
	const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
			      PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE |
			      PTE_GP | PTE_ATTRINDX_MASK;
	/* preserve the hardware dirty information */
	if (pte_hw_dirty(pte))
		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));

	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
	/*
	 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
	 * dirtiness again.
	 */
	if (pte_sw_dirty(pte))
		pte = pte_mkdirty(pte);
	return pte;
}

static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
{
	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
}

extern int __ptep_set_access_flags(struct vm_area_struct *vma,
				 unsigned long address, pte_t *ptep,
				 pte_t entry, int dirty);

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
					unsigned long address, pmd_t *pmdp,
					pmd_t entry, int dirty)
{
	return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
							pmd_pte(entry), dirty);
}

static inline int pud_devmap(pud_t pud)
{
	return 0;
}

static inline int pgd_devmap(pgd_t pgd)
{
	return 0;
}
#endif

#ifdef CONFIG_PAGE_TABLE_CHECK
static inline bool pte_user_accessible_page(pte_t pte)
{
	return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte));
}

static inline bool pmd_user_accessible_page(pmd_t pmd)
{
	return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
}

static inline bool pud_user_accessible_page(pud_t pud)
{
	return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud));
}
#endif

/*
 * Atomic pte/pmd modifications.
 */
static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
					      unsigned long address,
					      pte_t *ptep)
{
	pte_t old_pte, pte;

	pte = __ptep_get(ptep);
	do {
		old_pte = pte;
		pte = pte_mkold(pte);
		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
					       pte_val(old_pte), pte_val(pte));
	} while (pte_val(pte) != pte_val(old_pte));

	return pte_young(pte);
}

static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
					 unsigned long address, pte_t *ptep)
{
	int young = __ptep_test_and_clear_young(vma, address, ptep);

	if (young) {
		/*
		 * We can elide the trailing DSB here since the worst that can
		 * happen is that a CPU continues to use the young entry in its
		 * TLB and we mistakenly reclaim the associated page. The
		 * window for such an event is bounded by the next
		 * context-switch, which provides a DSB to complete the TLB
		 * invalidation.
		 */
		flush_tlb_page_nosync(vma, address);
	}

	return young;
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
					    unsigned long address,
					    pmd_t *pmdp)
{
	return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
				       unsigned long address, pte_t *ptep)
{
	pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));

	page_table_check_pte_clear(mm, pte);

	return pte;
}

static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
				pte_t *ptep, unsigned int nr, int full)
{
	for (;;) {
		__ptep_get_and_clear(mm, addr, ptep);
		if (--nr == 0)
			break;
		ptep++;
		addr += PAGE_SIZE;
	}
}

static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
				unsigned long addr, pte_t *ptep,
				unsigned int nr, int full)
{
	pte_t pte, tmp_pte;

	pte = __ptep_get_and_clear(mm, addr, ptep);
	while (--nr) {
		ptep++;
		addr += PAGE_SIZE;
		tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
		if (pte_dirty(tmp_pte))
			pte = pte_mkdirty(pte);
		if (pte_young(tmp_pte))
			pte = pte_mkyoung(pte);
	}
	return pte;
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
					    unsigned long address, pmd_t *pmdp)
{
	pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0));

	page_table_check_pmd_clear(mm, pmd);

	return pmd;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
					unsigned long address, pte_t *ptep,
					pte_t pte)
{
	pte_t old_pte;

	do {
		old_pte = pte;
		pte = pte_wrprotect(pte);
		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
					       pte_val(old_pte), pte_val(pte));
	} while (pte_val(pte) != pte_val(old_pte));
}

/*
 * __ptep_set_wrprotect - mark read-only while trasferring potential hardware
 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
 */
static inline void __ptep_set_wrprotect(struct mm_struct *mm,
					unsigned long address, pte_t *ptep)
{
	___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
}

static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
				pte_t *ptep, unsigned int nr)
{
	unsigned int i;

	for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
		__ptep_set_wrprotect(mm, address, ptep);
}

static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
					   unsigned long addr, pte_t *ptep,
					   pte_t pte, cydp_t flags)
{
	pte_t old_pte;

	do {
		old_pte = pte;

		if (flags & CYDP_CLEAR_YOUNG)
			pte = pte_mkold(pte);
		if (flags & CYDP_CLEAR_DIRTY)
			pte = pte_mkclean(pte);

		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
					       pte_val(old_pte), pte_val(pte));
	} while (pte_val(pte) != pte_val(old_pte));
}

static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
					    unsigned long addr, pte_t *ptep,
					    unsigned int nr, cydp_t flags)
{
	pte_t pte;

	for (;;) {
		pte = __ptep_get(ptep);

		if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
			__set_pte(ptep, pte_mkclean(pte_mkold(pte)));
		else
			__clear_young_dirty_pte(vma, addr, ptep, pte, flags);

		if (--nr == 0)
			break;
		ptep++;
		addr += PAGE_SIZE;
	}
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
				      unsigned long address, pmd_t *pmdp)
{
	__ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
}

#define pmdp_establish pmdp_establish
static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
		unsigned long address, pmd_t *pmdp, pmd_t pmd)
{
	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
	return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
}
#endif

/*
 * Encode and decode a swap entry:
 *	bits 0-1:	present (must be zero)
 *	bits 2:		remember PG_anon_exclusive
 *	bit  3:		remember uffd-wp state
 *	bits 6-10:	swap type
 *	bit  11:	PTE_PRESENT_INVALID (must be zero)
 *	bits 12-61:	swap offset
 */
#define __SWP_TYPE_SHIFT	6
#define __SWP_TYPE_BITS		5
#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
#define __SWP_OFFSET_SHIFT	12
#define __SWP_OFFSET_BITS	50
#define __SWP_OFFSET_MASK	((1UL << __SWP_OFFSET_BITS) - 1)

#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
#define __swp_offset(x)		(((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })

#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
#define __pmd_to_swp_entry(pmd)		((swp_entry_t) { pmd_val(pmd) })
#define __swp_entry_to_pmd(swp)		__pmd((swp).val)
#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */

/*
 * Ensure that there are not more swap files than can be encoded in the kernel
 * PTEs.
 */
#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)

#ifdef CONFIG_ARM64_MTE

#define __HAVE_ARCH_PREPARE_TO_SWAP
extern int arch_prepare_to_swap(struct folio *folio);

#define __HAVE_ARCH_SWAP_INVALIDATE
static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
{
	if (system_supports_mte())
		mte_invalidate_tags(type, offset);
}

static inline void arch_swap_invalidate_area(int type)
{
	if (system_supports_mte())
		mte_invalidate_tags_area(type);
}

#define __HAVE_ARCH_SWAP_RESTORE
extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);

#endif /* CONFIG_ARM64_MTE */

/*
 * On AArch64, the cache coherency is handled via the __set_ptes() function.
 */
static inline void update_mmu_cache_range(struct vm_fault *vmf,
		struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
		unsigned int nr)
{
	/*
	 * We don't do anything here, so there's a very small chance of
	 * us retaking a user fault which we just fixed up. The alternative
	 * is doing a dsb(ishst), but that penalises the fastpath.
	 */
}

#define update_mmu_cache(vma, addr, ptep) \
	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
#define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)

#ifdef CONFIG_ARM64_PA_BITS_52
#define phys_to_ttbr(addr)	(((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
#else
#define phys_to_ttbr(addr)	(addr)
#endif

/*
 * On arm64 without hardware Access Flag, copying from user will fail because
 * the pte is old and cannot be marked young. So we always end up with zeroed
 * page after fork() + CoW for pfn mappings. We don't always have a
 * hardware-managed access flag on arm64.
 */
#define arch_has_hw_pte_young		cpu_has_hw_af

/*
 * Experimentally, it's cheap to set the access flag in hardware and we
 * benefit from prefaulting mappings as 'old' to start with.
 */
#define arch_wants_old_prefaulted_pte	cpu_has_hw_af

static inline bool pud_sect_supported(void)
{
	return PAGE_SIZE == SZ_4K;
}


#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
#define ptep_modify_prot_start ptep_modify_prot_start
extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
				    unsigned long addr, pte_t *ptep);

#define ptep_modify_prot_commit ptep_modify_prot_commit
extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
				    unsigned long addr, pte_t *ptep,
				    pte_t old_pte, pte_t new_pte);

#ifdef CONFIG_ARM64_CONTPTE

/*
 * The contpte APIs are used to transparently manage the contiguous bit in ptes
 * where it is possible and makes sense to do so. The PTE_CONT bit is considered
 * a private implementation detail of the public ptep API (see below).
 */
extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
				pte_t *ptep, pte_t pte);
extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
				pte_t *ptep, pte_t pte);
extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
				pte_t *ptep, pte_t pte, unsigned int nr);
extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
				pte_t *ptep, unsigned int nr, int full);
extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
				unsigned long addr, pte_t *ptep,
				unsigned int nr, int full);
extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
				unsigned long addr, pte_t *ptep);
extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
				unsigned long addr, pte_t *ptep);
extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
				pte_t *ptep, unsigned int nr);
extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
				unsigned long addr, pte_t *ptep,
				pte_t entry, int dirty);
extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
				unsigned long addr, pte_t *ptep,
				unsigned int nr, cydp_t flags);

static __always_inline void contpte_try_fold(struct mm_struct *mm,
				unsigned long addr, pte_t *ptep, pte_t pte)
{
	/*
	 * Only bother trying if both the virtual and physical addresses are
	 * aligned and correspond to the last entry in a contig range. The core
	 * code mostly modifies ranges from low to high, so this is the likely
	 * the last modification in the contig range, so a good time to fold.
	 * We can't fold special mappings, because there is no associated folio.
	 */

	const unsigned long contmask = CONT_PTES - 1;
	bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;

	if (unlikely(valign)) {
		bool palign = (pte_pfn(pte) & contmask) == contmask;

		if (unlikely(palign &&
		    pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
			__contpte_try_fold(mm, addr, ptep, pte);
	}
}

static __always_inline void contpte_try_unfold(struct mm_struct *mm,
				unsigned long addr, pte_t *ptep, pte_t pte)
{
	if (unlikely(pte_valid_cont(pte)))
		__contpte_try_unfold(mm, addr, ptep, pte);
}

#define pte_batch_hint pte_batch_hint
static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
{
	if (!pte_valid_cont(pte))
		return 1;

	return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
}

/*
 * The below functions constitute the public API that arm64 presents to the
 * core-mm to manipulate PTE entries within their page tables (or at least this
 * is the subset of the API that arm64 needs to implement). These public
 * versions will automatically and transparently apply the contiguous bit where
 * it makes sense to do so. Therefore any users that are contig-aware (e.g.
 * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
 * private versions, which are prefixed with double underscore. All of these
 * APIs except for ptep_get_lockless() are expected to be called with the PTL
 * held. Although the contiguous bit is considered private to the
 * implementation, it is deliberately allowed to leak through the getters (e.g.
 * ptep_get()), back to core code. This is required so that pte_leaf_size() can
 * provide an accurate size for perf_get_pgtable_size(). But this leakage means
 * its possible a pte will be passed to a setter with the contiguous bit set, so
 * we explicitly clear the contiguous bit in those cases to prevent accidentally
 * setting it in the pgtable.
 */

#define ptep_get ptep_get
static inline pte_t ptep_get(pte_t *ptep)
{
	pte_t pte = __ptep_get(ptep);

	if (likely(!pte_valid_cont(pte)))
		return pte;

	return contpte_ptep_get(ptep, pte);
}

#define ptep_get_lockless ptep_get_lockless
static inline pte_t ptep_get_lockless(pte_t *ptep)
{
	pte_t pte = __ptep_get(ptep);

	if (likely(!pte_valid_cont(pte)))
		return pte;

	return contpte_ptep_get_lockless(ptep);
}

static inline void set_pte(pte_t *ptep, pte_t pte)
{
	/*
	 * We don't have the mm or vaddr so cannot unfold contig entries (since
	 * it requires tlb maintenance). set_pte() is not used in core code, so
	 * this should never even be called. Regardless do our best to service
	 * any call and emit a warning if there is any attempt to set a pte on
	 * top of an existing contig range.
	 */
	pte_t orig_pte = __ptep_get(ptep);

	WARN_ON_ONCE(pte_valid_cont(orig_pte));
	__set_pte(ptep, pte_mknoncont(pte));
}

#define set_ptes set_ptes
static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
				pte_t *ptep, pte_t pte, unsigned int nr)
{
	pte = pte_mknoncont(pte);

	if (likely(nr == 1)) {
		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
		__set_ptes(mm, addr, ptep, pte, 1);
		contpte_try_fold(mm, addr, ptep, pte);
	} else {
		contpte_set_ptes(mm, addr, ptep, pte, nr);
	}
}

static inline void pte_clear(struct mm_struct *mm,
				unsigned long addr, pte_t *ptep)
{
	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
	__pte_clear(mm, addr, ptep);
}

#define clear_full_ptes clear_full_ptes
static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
				pte_t *ptep, unsigned int nr, int full)
{
	if (likely(nr == 1)) {
		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
		__clear_full_ptes(mm, addr, ptep, nr, full);
	} else {
		contpte_clear_full_ptes(mm, addr, ptep, nr, full);
	}
}

#define get_and_clear_full_ptes get_and_clear_full_ptes
static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
				unsigned long addr, pte_t *ptep,
				unsigned int nr, int full)
{
	pte_t pte;

	if (likely(nr == 1)) {
		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
		pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
	} else {
		pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
	}

	return pte;
}

#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
				unsigned long addr, pte_t *ptep)
{
	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
	return __ptep_get_and_clear(mm, addr, ptep);
}

#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
				unsigned long addr, pte_t *ptep)
{
	pte_t orig_pte = __ptep_get(ptep);

	if (likely(!pte_valid_cont(orig_pte)))
		return __ptep_test_and_clear_young(vma, addr, ptep);

	return contpte_ptep_test_and_clear_young(vma, addr, ptep);
}

#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
				unsigned long addr, pte_t *ptep)
{
	pte_t orig_pte = __ptep_get(ptep);

	if (likely(!pte_valid_cont(orig_pte)))
		return __ptep_clear_flush_young(vma, addr, ptep);

	return contpte_ptep_clear_flush_young(vma, addr, ptep);
}

#define wrprotect_ptes wrprotect_ptes
static __always_inline void wrprotect_ptes(struct mm_struct *mm,
				unsigned long addr, pte_t *ptep, unsigned int nr)
{
	if (likely(nr == 1)) {
		/*
		 * Optimization: wrprotect_ptes() can only be called for present
		 * ptes so we only need to check contig bit as condition for
		 * unfold, and we can remove the contig bit from the pte we read
		 * to avoid re-reading. This speeds up fork() which is sensitive
		 * for order-0 folios. Equivalent to contpte_try_unfold().
		 */
		pte_t orig_pte = __ptep_get(ptep);

		if (unlikely(pte_cont(orig_pte))) {
			__contpte_try_unfold(mm, addr, ptep, orig_pte);
			orig_pte = pte_mknoncont(orig_pte);
		}
		___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
	} else {
		contpte_wrprotect_ptes(mm, addr, ptep, nr);
	}
}

#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm,
				unsigned long addr, pte_t *ptep)
{
	wrprotect_ptes(mm, addr, ptep, 1);
}

#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
static inline int ptep_set_access_flags(struct vm_area_struct *vma,
				unsigned long addr, pte_t *ptep,
				pte_t entry, int dirty)
{
	pte_t orig_pte = __ptep_get(ptep);

	entry = pte_mknoncont(entry);

	if (likely(!pte_valid_cont(orig_pte)))
		return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);

	return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
}

#define clear_young_dirty_ptes clear_young_dirty_ptes
static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
					  unsigned long addr, pte_t *ptep,
					  unsigned int nr, cydp_t flags)
{
	if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
		__clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
	else
		contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
}

#else /* CONFIG_ARM64_CONTPTE */

#define ptep_get				__ptep_get
#define set_pte					__set_pte
#define set_ptes				__set_ptes
#define pte_clear				__pte_clear
#define clear_full_ptes				__clear_full_ptes
#define get_and_clear_full_ptes			__get_and_clear_full_ptes
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
#define ptep_get_and_clear			__ptep_get_and_clear
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define ptep_test_and_clear_young		__ptep_test_and_clear_young
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
#define ptep_clear_flush_young			__ptep_clear_flush_young
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
#define ptep_set_wrprotect			__ptep_set_wrprotect
#define wrprotect_ptes				__wrprotect_ptes
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
#define ptep_set_access_flags			__ptep_set_access_flags
#define clear_young_dirty_ptes			__clear_young_dirty_ptes

#endif /* CONFIG_ARM64_CONTPTE */

#endif /* !__ASSEMBLY__ */

#endif /* __ASM_PGTABLE_H */