Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 | // SPDX-License-Identifier: GPL-2.0-or-later /* KVM paravirtual clock driver. A clocksource implementation Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc. */ #include <linux/clocksource.h> #include <linux/kvm_para.h> #include <asm/pvclock.h> #include <asm/msr.h> #include <asm/apic.h> #include <linux/percpu.h> #include <linux/hardirq.h> #include <linux/cpuhotplug.h> #include <linux/sched.h> #include <linux/sched/clock.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/set_memory.h> #include <linux/cc_platform.h> #include <asm/hypervisor.h> #include <asm/x86_init.h> #include <asm/kvmclock.h> static int kvmclock __initdata = 1; static int kvmclock_vsyscall __initdata = 1; static int msr_kvm_system_time __ro_after_init; static int msr_kvm_wall_clock __ro_after_init; static u64 kvm_sched_clock_offset __ro_after_init; static int __init parse_no_kvmclock(char *arg) { kvmclock = 0; return 0; } early_param("no-kvmclock", parse_no_kvmclock); static int __init parse_no_kvmclock_vsyscall(char *arg) { kvmclock_vsyscall = 0; return 0; } early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall); /* Aligned to page sizes to match what's mapped via vsyscalls to userspace */ #define HVC_BOOT_ARRAY_SIZE \ (PAGE_SIZE / sizeof(struct pvclock_vsyscall_time_info)) static struct pvclock_vsyscall_time_info hv_clock_boot[HVC_BOOT_ARRAY_SIZE] __bss_decrypted __aligned(PAGE_SIZE); static struct pvclock_wall_clock wall_clock __bss_decrypted; static struct pvclock_vsyscall_time_info *hvclock_mem; DEFINE_PER_CPU(struct pvclock_vsyscall_time_info *, hv_clock_per_cpu); EXPORT_PER_CPU_SYMBOL_GPL(hv_clock_per_cpu); /* * The wallclock is the time of day when we booted. Since then, some time may * have elapsed since the hypervisor wrote the data. So we try to account for * that with system time */ static void kvm_get_wallclock(struct timespec64 *now) { wrmsrl(msr_kvm_wall_clock, slow_virt_to_phys(&wall_clock)); preempt_disable(); pvclock_read_wallclock(&wall_clock, this_cpu_pvti(), now); preempt_enable(); } static int kvm_set_wallclock(const struct timespec64 *now) { return -ENODEV; } static u64 kvm_clock_read(void) { u64 ret; preempt_disable_notrace(); ret = pvclock_clocksource_read_nowd(this_cpu_pvti()); preempt_enable_notrace(); return ret; } static u64 kvm_clock_get_cycles(struct clocksource *cs) { return kvm_clock_read(); } static noinstr u64 kvm_sched_clock_read(void) { return pvclock_clocksource_read_nowd(this_cpu_pvti()) - kvm_sched_clock_offset; } static inline void kvm_sched_clock_init(bool stable) { if (!stable) clear_sched_clock_stable(); kvm_sched_clock_offset = kvm_clock_read(); paravirt_set_sched_clock(kvm_sched_clock_read); pr_info("kvm-clock: using sched offset of %llu cycles", kvm_sched_clock_offset); BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) > sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time)); } /* * If we don't do that, there is the possibility that the guest * will calibrate under heavy load - thus, getting a lower lpj - * and execute the delays themselves without load. This is wrong, * because no delay loop can finish beforehand. * Any heuristics is subject to fail, because ultimately, a large * poll of guests can be running and trouble each other. So we preset * lpj here */ static unsigned long kvm_get_tsc_khz(void) { setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ); return pvclock_tsc_khz(this_cpu_pvti()); } static void __init kvm_get_preset_lpj(void) { unsigned long khz; u64 lpj; khz = kvm_get_tsc_khz(); lpj = ((u64)khz * 1000); do_div(lpj, HZ); preset_lpj = lpj; } bool kvm_check_and_clear_guest_paused(void) { struct pvclock_vsyscall_time_info *src = this_cpu_hvclock(); bool ret = false; if (!src) return ret; if ((src->pvti.flags & PVCLOCK_GUEST_STOPPED) != 0) { src->pvti.flags &= ~PVCLOCK_GUEST_STOPPED; pvclock_touch_watchdogs(); ret = true; } return ret; } static int kvm_cs_enable(struct clocksource *cs) { vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK); return 0; } static struct clocksource kvm_clock = { .name = "kvm-clock", .read = kvm_clock_get_cycles, .rating = 400, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, .id = CSID_X86_KVM_CLK, .enable = kvm_cs_enable, }; static void kvm_register_clock(char *txt) { struct pvclock_vsyscall_time_info *src = this_cpu_hvclock(); u64 pa; if (!src) return; pa = slow_virt_to_phys(&src->pvti) | 0x01ULL; wrmsrl(msr_kvm_system_time, pa); pr_debug("kvm-clock: cpu %d, msr %llx, %s", smp_processor_id(), pa, txt); } static void kvm_save_sched_clock_state(void) { } static void kvm_restore_sched_clock_state(void) { kvm_register_clock("primary cpu clock, resume"); } #ifdef CONFIG_X86_LOCAL_APIC static void kvm_setup_secondary_clock(void) { kvm_register_clock("secondary cpu clock"); } #endif void kvmclock_disable(void) { if (msr_kvm_system_time) native_write_msr(msr_kvm_system_time, 0, 0); } static void __init kvmclock_init_mem(void) { unsigned long ncpus; unsigned int order; struct page *p; int r; if (HVC_BOOT_ARRAY_SIZE >= num_possible_cpus()) return; ncpus = num_possible_cpus() - HVC_BOOT_ARRAY_SIZE; order = get_order(ncpus * sizeof(*hvclock_mem)); p = alloc_pages(GFP_KERNEL, order); if (!p) { pr_warn("%s: failed to alloc %d pages", __func__, (1U << order)); return; } hvclock_mem = page_address(p); /* * hvclock is shared between the guest and the hypervisor, must * be mapped decrypted. */ if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { r = set_memory_decrypted((unsigned long) hvclock_mem, 1UL << order); if (r) { __free_pages(p, order); hvclock_mem = NULL; pr_warn("kvmclock: set_memory_decrypted() failed. Disabling\n"); return; } } memset(hvclock_mem, 0, PAGE_SIZE << order); } static int __init kvm_setup_vsyscall_timeinfo(void) { if (!kvm_para_available() || !kvmclock || nopv) return 0; kvmclock_init_mem(); #ifdef CONFIG_X86_64 if (per_cpu(hv_clock_per_cpu, 0) && kvmclock_vsyscall) { u8 flags; flags = pvclock_read_flags(&hv_clock_boot[0].pvti); if (!(flags & PVCLOCK_TSC_STABLE_BIT)) return 0; kvm_clock.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK; } #endif return 0; } early_initcall(kvm_setup_vsyscall_timeinfo); static int kvmclock_setup_percpu(unsigned int cpu) { struct pvclock_vsyscall_time_info *p = per_cpu(hv_clock_per_cpu, cpu); /* * The per cpu area setup replicates CPU0 data to all cpu * pointers. So carefully check. CPU0 has been set up in init * already. */ if (!cpu || (p && p != per_cpu(hv_clock_per_cpu, 0))) return 0; /* Use the static page for the first CPUs, allocate otherwise */ if (cpu < HVC_BOOT_ARRAY_SIZE) p = &hv_clock_boot[cpu]; else if (hvclock_mem) p = hvclock_mem + cpu - HVC_BOOT_ARRAY_SIZE; else return -ENOMEM; per_cpu(hv_clock_per_cpu, cpu) = p; return p ? 0 : -ENOMEM; } void __init kvmclock_init(void) { u8 flags; if (!kvm_para_available() || !kvmclock) return; if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) { msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW; msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW; } else if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) { msr_kvm_system_time = MSR_KVM_SYSTEM_TIME; msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK; } else { return; } if (cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "kvmclock:setup_percpu", kvmclock_setup_percpu, NULL) < 0) { return; } pr_info("kvm-clock: Using msrs %x and %x", msr_kvm_system_time, msr_kvm_wall_clock); this_cpu_write(hv_clock_per_cpu, &hv_clock_boot[0]); kvm_register_clock("primary cpu clock"); pvclock_set_pvti_cpu0_va(hv_clock_boot); if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT)) pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT); flags = pvclock_read_flags(&hv_clock_boot[0].pvti); kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT); x86_platform.calibrate_tsc = kvm_get_tsc_khz; x86_platform.calibrate_cpu = kvm_get_tsc_khz; x86_platform.get_wallclock = kvm_get_wallclock; x86_platform.set_wallclock = kvm_set_wallclock; #ifdef CONFIG_X86_LOCAL_APIC x86_cpuinit.early_percpu_clock_init = kvm_setup_secondary_clock; #endif x86_platform.save_sched_clock_state = kvm_save_sched_clock_state; x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state; kvm_get_preset_lpj(); /* * X86_FEATURE_NONSTOP_TSC is TSC runs at constant rate * with P/T states and does not stop in deep C-states. * * Invariant TSC exposed by host means kvmclock is not necessary: * can use TSC as clocksource. * */ if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && boot_cpu_has(X86_FEATURE_NONSTOP_TSC) && !check_tsc_unstable()) kvm_clock.rating = 299; clocksource_register_hz(&kvm_clock, NSEC_PER_SEC); pv_info.name = "KVM"; } |