Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 | // SPDX-License-Identifier: GPL-2.0-or-later /* * * Copyright (C) 2017 Zihao Yu */ #include <linux/elf.h> #include <linux/err.h> #include <linux/errno.h> #include <linux/hashtable.h> #include <linux/kernel.h> #include <linux/log2.h> #include <linux/moduleloader.h> #include <linux/sizes.h> #include <linux/pgtable.h> #include <asm/alternative.h> #include <asm/sections.h> struct used_bucket { struct list_head head; struct hlist_head *bucket; }; struct relocation_head { struct hlist_node node; struct list_head *rel_entry; void *location; }; struct relocation_entry { struct list_head head; Elf_Addr value; unsigned int type; }; struct relocation_handlers { int (*reloc_handler)(struct module *me, void *location, Elf_Addr v); int (*accumulate_handler)(struct module *me, void *location, long buffer); }; /* * The auipc+jalr instruction pair can reach any PC-relative offset * in the range [-2^31 - 2^11, 2^31 - 2^11) */ static bool riscv_insn_valid_32bit_offset(ptrdiff_t val) { #ifdef CONFIG_32BIT return true; #else return (-(1L << 31) - (1L << 11)) <= val && val < ((1L << 31) - (1L << 11)); #endif } static int riscv_insn_rmw(void *location, u32 keep, u32 set) { __le16 *parcel = location; u32 insn = (u32)le16_to_cpu(parcel[0]) | (u32)le16_to_cpu(parcel[1]) << 16; insn &= keep; insn |= set; parcel[0] = cpu_to_le16(insn); parcel[1] = cpu_to_le16(insn >> 16); return 0; } static int riscv_insn_rvc_rmw(void *location, u16 keep, u16 set) { __le16 *parcel = location; u16 insn = le16_to_cpu(*parcel); insn &= keep; insn |= set; *parcel = cpu_to_le16(insn); return 0; } static int apply_r_riscv_32_rela(struct module *me, void *location, Elf_Addr v) { if (v != (u32)v) { pr_err("%s: value %016llx out of range for 32-bit field\n", me->name, (long long)v); return -EINVAL; } *(u32 *)location = v; return 0; } static int apply_r_riscv_64_rela(struct module *me, void *location, Elf_Addr v) { *(u64 *)location = v; return 0; } static int apply_r_riscv_branch_rela(struct module *me, void *location, Elf_Addr v) { ptrdiff_t offset = (void *)v - location; u32 imm12 = (offset & 0x1000) << (31 - 12); u32 imm11 = (offset & 0x800) >> (11 - 7); u32 imm10_5 = (offset & 0x7e0) << (30 - 10); u32 imm4_1 = (offset & 0x1e) << (11 - 4); return riscv_insn_rmw(location, 0x1fff07f, imm12 | imm11 | imm10_5 | imm4_1); } static int apply_r_riscv_jal_rela(struct module *me, void *location, Elf_Addr v) { ptrdiff_t offset = (void *)v - location; u32 imm20 = (offset & 0x100000) << (31 - 20); u32 imm19_12 = (offset & 0xff000); u32 imm11 = (offset & 0x800) << (20 - 11); u32 imm10_1 = (offset & 0x7fe) << (30 - 10); return riscv_insn_rmw(location, 0xfff, imm20 | imm19_12 | imm11 | imm10_1); } static int apply_r_riscv_rvc_branch_rela(struct module *me, void *location, Elf_Addr v) { ptrdiff_t offset = (void *)v - location; u16 imm8 = (offset & 0x100) << (12 - 8); u16 imm7_6 = (offset & 0xc0) >> (6 - 5); u16 imm5 = (offset & 0x20) >> (5 - 2); u16 imm4_3 = (offset & 0x18) << (12 - 5); u16 imm2_1 = (offset & 0x6) << (12 - 10); return riscv_insn_rvc_rmw(location, 0xe383, imm8 | imm7_6 | imm5 | imm4_3 | imm2_1); } static int apply_r_riscv_rvc_jump_rela(struct module *me, void *location, Elf_Addr v) { ptrdiff_t offset = (void *)v - location; u16 imm11 = (offset & 0x800) << (12 - 11); u16 imm10 = (offset & 0x400) >> (10 - 8); u16 imm9_8 = (offset & 0x300) << (12 - 11); u16 imm7 = (offset & 0x80) >> (7 - 6); u16 imm6 = (offset & 0x40) << (12 - 11); u16 imm5 = (offset & 0x20) >> (5 - 2); u16 imm4 = (offset & 0x10) << (12 - 5); u16 imm3_1 = (offset & 0xe) << (12 - 10); return riscv_insn_rvc_rmw(location, 0xe003, imm11 | imm10 | imm9_8 | imm7 | imm6 | imm5 | imm4 | imm3_1); } static int apply_r_riscv_pcrel_hi20_rela(struct module *me, void *location, Elf_Addr v) { ptrdiff_t offset = (void *)v - location; if (!riscv_insn_valid_32bit_offset(offset)) { pr_err( "%s: target %016llx can not be addressed by the 32-bit offset from PC = %p\n", me->name, (long long)v, location); return -EINVAL; } return riscv_insn_rmw(location, 0xfff, (offset + 0x800) & 0xfffff000); } static int apply_r_riscv_pcrel_lo12_i_rela(struct module *me, void *location, Elf_Addr v) { /* * v is the lo12 value to fill. It is calculated before calling this * handler. */ return riscv_insn_rmw(location, 0xfffff, (v & 0xfff) << 20); } static int apply_r_riscv_pcrel_lo12_s_rela(struct module *me, void *location, Elf_Addr v) { /* * v is the lo12 value to fill. It is calculated before calling this * handler. */ u32 imm11_5 = (v & 0xfe0) << (31 - 11); u32 imm4_0 = (v & 0x1f) << (11 - 4); return riscv_insn_rmw(location, 0x1fff07f, imm11_5 | imm4_0); } static int apply_r_riscv_hi20_rela(struct module *me, void *location, Elf_Addr v) { if (IS_ENABLED(CONFIG_CMODEL_MEDLOW)) { pr_err( "%s: target %016llx can not be addressed by the 32-bit offset from PC = %p\n", me->name, (long long)v, location); return -EINVAL; } return riscv_insn_rmw(location, 0xfff, ((s32)v + 0x800) & 0xfffff000); } static int apply_r_riscv_lo12_i_rela(struct module *me, void *location, Elf_Addr v) { /* Skip medlow checking because of filtering by HI20 already */ s32 hi20 = ((s32)v + 0x800) & 0xfffff000; s32 lo12 = ((s32)v - hi20); return riscv_insn_rmw(location, 0xfffff, (lo12 & 0xfff) << 20); } static int apply_r_riscv_lo12_s_rela(struct module *me, void *location, Elf_Addr v) { /* Skip medlow checking because of filtering by HI20 already */ s32 hi20 = ((s32)v + 0x800) & 0xfffff000; s32 lo12 = ((s32)v - hi20); u32 imm11_5 = (lo12 & 0xfe0) << (31 - 11); u32 imm4_0 = (lo12 & 0x1f) << (11 - 4); return riscv_insn_rmw(location, 0x1fff07f, imm11_5 | imm4_0); } static int apply_r_riscv_got_hi20_rela(struct module *me, void *location, Elf_Addr v) { ptrdiff_t offset = (void *)v - location; /* Always emit the got entry */ if (IS_ENABLED(CONFIG_MODULE_SECTIONS)) { offset = (void *)module_emit_got_entry(me, v) - location; } else { pr_err( "%s: can not generate the GOT entry for symbol = %016llx from PC = %p\n", me->name, (long long)v, location); return -EINVAL; } return riscv_insn_rmw(location, 0xfff, (offset + 0x800) & 0xfffff000); } static int apply_r_riscv_call_plt_rela(struct module *me, void *location, Elf_Addr v) { ptrdiff_t offset = (void *)v - location; u32 hi20, lo12; if (!riscv_insn_valid_32bit_offset(offset)) { /* Only emit the plt entry if offset over 32-bit range */ if (IS_ENABLED(CONFIG_MODULE_SECTIONS)) { offset = (void *)module_emit_plt_entry(me, v) - location; } else { pr_err( "%s: target %016llx can not be addressed by the 32-bit offset from PC = %p\n", me->name, (long long)v, location); return -EINVAL; } } hi20 = (offset + 0x800) & 0xfffff000; lo12 = (offset - hi20) & 0xfff; riscv_insn_rmw(location, 0xfff, hi20); return riscv_insn_rmw(location + 4, 0xfffff, lo12 << 20); } static int apply_r_riscv_call_rela(struct module *me, void *location, Elf_Addr v) { ptrdiff_t offset = (void *)v - location; u32 hi20, lo12; if (!riscv_insn_valid_32bit_offset(offset)) { pr_err( "%s: target %016llx can not be addressed by the 32-bit offset from PC = %p\n", me->name, (long long)v, location); return -EINVAL; } hi20 = (offset + 0x800) & 0xfffff000; lo12 = (offset - hi20) & 0xfff; riscv_insn_rmw(location, 0xfff, hi20); return riscv_insn_rmw(location + 4, 0xfffff, lo12 << 20); } static int apply_r_riscv_relax_rela(struct module *me, void *location, Elf_Addr v) { return 0; } static int apply_r_riscv_align_rela(struct module *me, void *location, Elf_Addr v) { pr_err( "%s: The unexpected relocation type 'R_RISCV_ALIGN' from PC = %p\n", me->name, location); return -EINVAL; } static int apply_r_riscv_add8_rela(struct module *me, void *location, Elf_Addr v) { *(u8 *)location += (u8)v; return 0; } static int apply_r_riscv_add16_rela(struct module *me, void *location, Elf_Addr v) { *(u16 *)location += (u16)v; return 0; } static int apply_r_riscv_add32_rela(struct module *me, void *location, Elf_Addr v) { *(u32 *)location += (u32)v; return 0; } static int apply_r_riscv_add64_rela(struct module *me, void *location, Elf_Addr v) { *(u64 *)location += (u64)v; return 0; } static int apply_r_riscv_sub8_rela(struct module *me, void *location, Elf_Addr v) { *(u8 *)location -= (u8)v; return 0; } static int apply_r_riscv_sub16_rela(struct module *me, void *location, Elf_Addr v) { *(u16 *)location -= (u16)v; return 0; } static int apply_r_riscv_sub32_rela(struct module *me, void *location, Elf_Addr v) { *(u32 *)location -= (u32)v; return 0; } static int apply_r_riscv_sub64_rela(struct module *me, void *location, Elf_Addr v) { *(u64 *)location -= (u64)v; return 0; } static int dynamic_linking_not_supported(struct module *me, void *location, Elf_Addr v) { pr_err("%s: Dynamic linking not supported in kernel modules PC = %p\n", me->name, location); return -EINVAL; } static int tls_not_supported(struct module *me, void *location, Elf_Addr v) { pr_err("%s: Thread local storage not supported in kernel modules PC = %p\n", me->name, location); return -EINVAL; } static int apply_r_riscv_sub6_rela(struct module *me, void *location, Elf_Addr v) { u8 *byte = location; u8 value = v; *byte = (*byte - (value & 0x3f)) & 0x3f; return 0; } static int apply_r_riscv_set6_rela(struct module *me, void *location, Elf_Addr v) { u8 *byte = location; u8 value = v; *byte = (*byte & 0xc0) | (value & 0x3f); return 0; } static int apply_r_riscv_set8_rela(struct module *me, void *location, Elf_Addr v) { *(u8 *)location = (u8)v; return 0; } static int apply_r_riscv_set16_rela(struct module *me, void *location, Elf_Addr v) { *(u16 *)location = (u16)v; return 0; } static int apply_r_riscv_set32_rela(struct module *me, void *location, Elf_Addr v) { *(u32 *)location = (u32)v; return 0; } static int apply_r_riscv_32_pcrel_rela(struct module *me, void *location, Elf_Addr v) { *(u32 *)location = v - (uintptr_t)location; return 0; } static int apply_r_riscv_plt32_rela(struct module *me, void *location, Elf_Addr v) { ptrdiff_t offset = (void *)v - location; if (!riscv_insn_valid_32bit_offset(offset)) { /* Only emit the plt entry if offset over 32-bit range */ if (IS_ENABLED(CONFIG_MODULE_SECTIONS)) { offset = (void *)module_emit_plt_entry(me, v) - location; } else { pr_err("%s: target %016llx can not be addressed by the 32-bit offset from PC = %p\n", me->name, (long long)v, location); return -EINVAL; } } *(u32 *)location = (u32)offset; return 0; } static int apply_r_riscv_set_uleb128(struct module *me, void *location, Elf_Addr v) { *(long *)location = v; return 0; } static int apply_r_riscv_sub_uleb128(struct module *me, void *location, Elf_Addr v) { *(long *)location -= v; return 0; } static int apply_6_bit_accumulation(struct module *me, void *location, long buffer) { u8 *byte = location; u8 value = buffer; if (buffer > 0x3f) { pr_err("%s: value %ld out of range for 6-bit relocation.\n", me->name, buffer); return -EINVAL; } *byte = (*byte & 0xc0) | (value & 0x3f); return 0; } static int apply_8_bit_accumulation(struct module *me, void *location, long buffer) { if (buffer > U8_MAX) { pr_err("%s: value %ld out of range for 8-bit relocation.\n", me->name, buffer); return -EINVAL; } *(u8 *)location = (u8)buffer; return 0; } static int apply_16_bit_accumulation(struct module *me, void *location, long buffer) { if (buffer > U16_MAX) { pr_err("%s: value %ld out of range for 16-bit relocation.\n", me->name, buffer); return -EINVAL; } *(u16 *)location = (u16)buffer; return 0; } static int apply_32_bit_accumulation(struct module *me, void *location, long buffer) { if (buffer > U32_MAX) { pr_err("%s: value %ld out of range for 32-bit relocation.\n", me->name, buffer); return -EINVAL; } *(u32 *)location = (u32)buffer; return 0; } static int apply_64_bit_accumulation(struct module *me, void *location, long buffer) { *(u64 *)location = (u64)buffer; return 0; } static int apply_uleb128_accumulation(struct module *me, void *location, long buffer) { /* * ULEB128 is a variable length encoding. Encode the buffer into * the ULEB128 data format. */ u8 *p = location; while (buffer != 0) { u8 value = buffer & 0x7f; buffer >>= 7; value |= (!!buffer) << 7; *p++ = value; } return 0; } /* * Relocations defined in the riscv-elf-psabi-doc. * This handles static linking only. */ static const struct relocation_handlers reloc_handlers[] = { [R_RISCV_32] = { .reloc_handler = apply_r_riscv_32_rela }, [R_RISCV_64] = { .reloc_handler = apply_r_riscv_64_rela }, [R_RISCV_RELATIVE] = { .reloc_handler = dynamic_linking_not_supported }, [R_RISCV_COPY] = { .reloc_handler = dynamic_linking_not_supported }, [R_RISCV_JUMP_SLOT] = { .reloc_handler = dynamic_linking_not_supported }, [R_RISCV_TLS_DTPMOD32] = { .reloc_handler = dynamic_linking_not_supported }, [R_RISCV_TLS_DTPMOD64] = { .reloc_handler = dynamic_linking_not_supported }, [R_RISCV_TLS_DTPREL32] = { .reloc_handler = dynamic_linking_not_supported }, [R_RISCV_TLS_DTPREL64] = { .reloc_handler = dynamic_linking_not_supported }, [R_RISCV_TLS_TPREL32] = { .reloc_handler = dynamic_linking_not_supported }, [R_RISCV_TLS_TPREL64] = { .reloc_handler = dynamic_linking_not_supported }, /* 12-15 undefined */ [R_RISCV_BRANCH] = { .reloc_handler = apply_r_riscv_branch_rela }, [R_RISCV_JAL] = { .reloc_handler = apply_r_riscv_jal_rela }, [R_RISCV_CALL] = { .reloc_handler = apply_r_riscv_call_rela }, [R_RISCV_CALL_PLT] = { .reloc_handler = apply_r_riscv_call_plt_rela }, [R_RISCV_GOT_HI20] = { .reloc_handler = apply_r_riscv_got_hi20_rela }, [R_RISCV_TLS_GOT_HI20] = { .reloc_handler = tls_not_supported }, [R_RISCV_TLS_GD_HI20] = { .reloc_handler = tls_not_supported }, [R_RISCV_PCREL_HI20] = { .reloc_handler = apply_r_riscv_pcrel_hi20_rela }, [R_RISCV_PCREL_LO12_I] = { .reloc_handler = apply_r_riscv_pcrel_lo12_i_rela }, [R_RISCV_PCREL_LO12_S] = { .reloc_handler = apply_r_riscv_pcrel_lo12_s_rela }, [R_RISCV_HI20] = { .reloc_handler = apply_r_riscv_hi20_rela }, [R_RISCV_LO12_I] = { .reloc_handler = apply_r_riscv_lo12_i_rela }, [R_RISCV_LO12_S] = { .reloc_handler = apply_r_riscv_lo12_s_rela }, [R_RISCV_TPREL_HI20] = { .reloc_handler = tls_not_supported }, [R_RISCV_TPREL_LO12_I] = { .reloc_handler = tls_not_supported }, [R_RISCV_TPREL_LO12_S] = { .reloc_handler = tls_not_supported }, [R_RISCV_TPREL_ADD] = { .reloc_handler = tls_not_supported }, [R_RISCV_ADD8] = { .reloc_handler = apply_r_riscv_add8_rela, .accumulate_handler = apply_8_bit_accumulation }, [R_RISCV_ADD16] = { .reloc_handler = apply_r_riscv_add16_rela, .accumulate_handler = apply_16_bit_accumulation }, [R_RISCV_ADD32] = { .reloc_handler = apply_r_riscv_add32_rela, .accumulate_handler = apply_32_bit_accumulation }, [R_RISCV_ADD64] = { .reloc_handler = apply_r_riscv_add64_rela, .accumulate_handler = apply_64_bit_accumulation }, [R_RISCV_SUB8] = { .reloc_handler = apply_r_riscv_sub8_rela, .accumulate_handler = apply_8_bit_accumulation }, [R_RISCV_SUB16] = { .reloc_handler = apply_r_riscv_sub16_rela, .accumulate_handler = apply_16_bit_accumulation }, [R_RISCV_SUB32] = { .reloc_handler = apply_r_riscv_sub32_rela, .accumulate_handler = apply_32_bit_accumulation }, [R_RISCV_SUB64] = { .reloc_handler = apply_r_riscv_sub64_rela, .accumulate_handler = apply_64_bit_accumulation }, /* 41-42 reserved for future standard use */ [R_RISCV_ALIGN] = { .reloc_handler = apply_r_riscv_align_rela }, [R_RISCV_RVC_BRANCH] = { .reloc_handler = apply_r_riscv_rvc_branch_rela }, [R_RISCV_RVC_JUMP] = { .reloc_handler = apply_r_riscv_rvc_jump_rela }, /* 46-50 reserved for future standard use */ [R_RISCV_RELAX] = { .reloc_handler = apply_r_riscv_relax_rela }, [R_RISCV_SUB6] = { .reloc_handler = apply_r_riscv_sub6_rela, .accumulate_handler = apply_6_bit_accumulation }, [R_RISCV_SET6] = { .reloc_handler = apply_r_riscv_set6_rela, .accumulate_handler = apply_6_bit_accumulation }, [R_RISCV_SET8] = { .reloc_handler = apply_r_riscv_set8_rela, .accumulate_handler = apply_8_bit_accumulation }, [R_RISCV_SET16] = { .reloc_handler = apply_r_riscv_set16_rela, .accumulate_handler = apply_16_bit_accumulation }, [R_RISCV_SET32] = { .reloc_handler = apply_r_riscv_set32_rela, .accumulate_handler = apply_32_bit_accumulation }, [R_RISCV_32_PCREL] = { .reloc_handler = apply_r_riscv_32_pcrel_rela }, [R_RISCV_IRELATIVE] = { .reloc_handler = dynamic_linking_not_supported }, [R_RISCV_PLT32] = { .reloc_handler = apply_r_riscv_plt32_rela }, [R_RISCV_SET_ULEB128] = { .reloc_handler = apply_r_riscv_set_uleb128, .accumulate_handler = apply_uleb128_accumulation }, [R_RISCV_SUB_ULEB128] = { .reloc_handler = apply_r_riscv_sub_uleb128, .accumulate_handler = apply_uleb128_accumulation }, /* 62-191 reserved for future standard use */ /* 192-255 nonstandard ABI extensions */ }; static void process_accumulated_relocations(struct module *me, struct hlist_head **relocation_hashtable, struct list_head *used_buckets_list) { /* * Only ADD/SUB/SET/ULEB128 should end up here. * * Each bucket may have more than one relocation location. All * relocations for a location are stored in a list in a bucket. * * Relocations are applied to a temp variable before being stored to the * provided location to check for overflow. This also allows ULEB128 to * properly decide how many entries are needed before storing to * location. The final value is stored into location using the handler * for the last relocation to an address. * * Three layers of indexing: * - Each of the buckets in use * - Groups of relocations in each bucket by location address * - Each relocation entry for a location address */ struct used_bucket *bucket_iter; struct used_bucket *bucket_iter_tmp; struct relocation_head *rel_head_iter; struct hlist_node *rel_head_iter_tmp; struct relocation_entry *rel_entry_iter; struct relocation_entry *rel_entry_iter_tmp; int curr_type; void *location; long buffer; list_for_each_entry_safe(bucket_iter, bucket_iter_tmp, used_buckets_list, head) { hlist_for_each_entry_safe(rel_head_iter, rel_head_iter_tmp, bucket_iter->bucket, node) { buffer = 0; location = rel_head_iter->location; list_for_each_entry_safe(rel_entry_iter, rel_entry_iter_tmp, rel_head_iter->rel_entry, head) { curr_type = rel_entry_iter->type; reloc_handlers[curr_type].reloc_handler( me, &buffer, rel_entry_iter->value); kfree(rel_entry_iter); } reloc_handlers[curr_type].accumulate_handler( me, location, buffer); kfree(rel_head_iter); } kfree(bucket_iter); } kfree(*relocation_hashtable); } static int add_relocation_to_accumulate(struct module *me, int type, void *location, unsigned int hashtable_bits, Elf_Addr v, struct hlist_head *relocation_hashtable, struct list_head *used_buckets_list) { struct relocation_entry *entry; struct relocation_head *rel_head; struct hlist_head *current_head; struct used_bucket *bucket; unsigned long hash; entry = kmalloc(sizeof(*entry), GFP_KERNEL); if (!entry) return -ENOMEM; INIT_LIST_HEAD(&entry->head); entry->type = type; entry->value = v; hash = hash_min((uintptr_t)location, hashtable_bits); current_head = &relocation_hashtable[hash]; /* * Search for the relocation_head for the relocations that happen at the * provided location */ bool found = false; struct relocation_head *rel_head_iter; hlist_for_each_entry(rel_head_iter, current_head, node) { if (rel_head_iter->location == location) { found = true; rel_head = rel_head_iter; break; } } /* * If there has not yet been any relocations at the provided location, * create a relocation_head for that location and populate it with this * relocation_entry. */ if (!found) { rel_head = kmalloc(sizeof(*rel_head), GFP_KERNEL); if (!rel_head) { kfree(entry); return -ENOMEM; } rel_head->rel_entry = kmalloc(sizeof(struct list_head), GFP_KERNEL); if (!rel_head->rel_entry) { kfree(entry); kfree(rel_head); return -ENOMEM; } INIT_LIST_HEAD(rel_head->rel_entry); rel_head->location = location; INIT_HLIST_NODE(&rel_head->node); if (!current_head->first) { bucket = kmalloc(sizeof(struct used_bucket), GFP_KERNEL); if (!bucket) { kfree(entry); kfree(rel_head->rel_entry); kfree(rel_head); return -ENOMEM; } INIT_LIST_HEAD(&bucket->head); bucket->bucket = current_head; list_add(&bucket->head, used_buckets_list); } hlist_add_head(&rel_head->node, current_head); } /* Add relocation to head of discovered rel_head */ list_add_tail(&entry->head, rel_head->rel_entry); return 0; } static unsigned int initialize_relocation_hashtable(unsigned int num_relocations, struct hlist_head **relocation_hashtable) { /* Can safely assume that bits is not greater than sizeof(long) */ unsigned long hashtable_size = roundup_pow_of_two(num_relocations); /* * When hashtable_size == 1, hashtable_bits == 0. * This is valid because the hashing algorithm returns 0 in this case. */ unsigned int hashtable_bits = ilog2(hashtable_size); /* * Double size of hashtable if num_relocations * 1.25 is greater than * hashtable_size. */ int should_double_size = ((num_relocations + (num_relocations >> 2)) > (hashtable_size)); hashtable_bits += should_double_size; hashtable_size <<= should_double_size; *relocation_hashtable = kmalloc_array(hashtable_size, sizeof(**relocation_hashtable), GFP_KERNEL); if (!*relocation_hashtable) return 0; __hash_init(*relocation_hashtable, hashtable_size); return hashtable_bits; } int apply_relocate_add(Elf_Shdr *sechdrs, const char *strtab, unsigned int symindex, unsigned int relsec, struct module *me) { Elf_Rela *rel = (void *) sechdrs[relsec].sh_addr; int (*handler)(struct module *me, void *location, Elf_Addr v); Elf_Sym *sym; void *location; unsigned int i, type; unsigned int j_idx = 0; Elf_Addr v; int res; unsigned int num_relocations = sechdrs[relsec].sh_size / sizeof(*rel); struct hlist_head *relocation_hashtable; struct list_head used_buckets_list; unsigned int hashtable_bits; hashtable_bits = initialize_relocation_hashtable(num_relocations, &relocation_hashtable); if (!relocation_hashtable) return -ENOMEM; INIT_LIST_HEAD(&used_buckets_list); pr_debug("Applying relocate section %u to %u\n", relsec, sechdrs[relsec].sh_info); for (i = 0; i < num_relocations; i++) { /* This is where to make the change */ location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr + rel[i].r_offset; /* This is the symbol it is referring to */ sym = (Elf_Sym *)sechdrs[symindex].sh_addr + ELF_RISCV_R_SYM(rel[i].r_info); if (IS_ERR_VALUE(sym->st_value)) { /* Ignore unresolved weak symbol */ if (ELF_ST_BIND(sym->st_info) == STB_WEAK) continue; pr_warn("%s: Unknown symbol %s\n", me->name, strtab + sym->st_name); return -ENOENT; } type = ELF_RISCV_R_TYPE(rel[i].r_info); if (type < ARRAY_SIZE(reloc_handlers)) handler = reloc_handlers[type].reloc_handler; else handler = NULL; if (!handler) { pr_err("%s: Unknown relocation type %u\n", me->name, type); return -EINVAL; } v = sym->st_value + rel[i].r_addend; if (type == R_RISCV_PCREL_LO12_I || type == R_RISCV_PCREL_LO12_S) { unsigned int j = j_idx; bool found = false; do { unsigned long hi20_loc = sechdrs[sechdrs[relsec].sh_info].sh_addr + rel[j].r_offset; u32 hi20_type = ELF_RISCV_R_TYPE(rel[j].r_info); /* Find the corresponding HI20 relocation entry */ if (hi20_loc == sym->st_value && (hi20_type == R_RISCV_PCREL_HI20 || hi20_type == R_RISCV_GOT_HI20)) { s32 hi20, lo12; Elf_Sym *hi20_sym = (Elf_Sym *)sechdrs[symindex].sh_addr + ELF_RISCV_R_SYM(rel[j].r_info); unsigned long hi20_sym_val = hi20_sym->st_value + rel[j].r_addend; /* Calculate lo12 */ size_t offset = hi20_sym_val - hi20_loc; if (IS_ENABLED(CONFIG_MODULE_SECTIONS) && hi20_type == R_RISCV_GOT_HI20) { offset = module_emit_got_entry( me, hi20_sym_val); offset = offset - hi20_loc; } hi20 = (offset + 0x800) & 0xfffff000; lo12 = offset - hi20; v = lo12; found = true; break; } j++; if (j > sechdrs[relsec].sh_size / sizeof(*rel)) j = 0; } while (j_idx != j); if (!found) { pr_err( "%s: Can not find HI20 relocation information\n", me->name); return -EINVAL; } /* Record the previous j-loop end index */ j_idx = j; } if (reloc_handlers[type].accumulate_handler) res = add_relocation_to_accumulate(me, type, location, hashtable_bits, v, relocation_hashtable, &used_buckets_list); else res = handler(me, location, v); if (res) return res; } process_accumulated_relocations(me, &relocation_hashtable, &used_buckets_list); return 0; } int module_finalize(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs, struct module *me) { const Elf_Shdr *s; s = find_section(hdr, sechdrs, ".alternative"); if (s) apply_module_alternatives((void *)s->sh_addr, s->sh_size); return 0; } |