Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 | // SPDX-License-Identifier: GPL-2.0-only /* * Based on arch/arm/mm/fault.c * * Copyright (C) 1995 Linus Torvalds * Copyright (C) 1995-2004 Russell King * Copyright (C) 2012 ARM Ltd. */ #include <linux/acpi.h> #include <linux/bitfield.h> #include <linux/extable.h> #include <linux/kfence.h> #include <linux/signal.h> #include <linux/mm.h> #include <linux/hardirq.h> #include <linux/init.h> #include <linux/kasan.h> #include <linux/kprobes.h> #include <linux/uaccess.h> #include <linux/page-flags.h> #include <linux/sched/signal.h> #include <linux/sched/debug.h> #include <linux/highmem.h> #include <linux/perf_event.h> #include <linux/preempt.h> #include <linux/hugetlb.h> #include <asm/acpi.h> #include <asm/bug.h> #include <asm/cmpxchg.h> #include <asm/cpufeature.h> #include <asm/efi.h> #include <asm/exception.h> #include <asm/daifflags.h> #include <asm/debug-monitors.h> #include <asm/esr.h> #include <asm/kprobes.h> #include <asm/mte.h> #include <asm/processor.h> #include <asm/sysreg.h> #include <asm/system_misc.h> #include <asm/tlbflush.h> #include <asm/traps.h> struct fault_info { int (*fn)(unsigned long far, unsigned long esr, struct pt_regs *regs); int sig; int code; const char *name; }; static const struct fault_info fault_info[]; static struct fault_info debug_fault_info[]; static inline const struct fault_info *esr_to_fault_info(unsigned long esr) { return fault_info + (esr & ESR_ELx_FSC); } static inline const struct fault_info *esr_to_debug_fault_info(unsigned long esr) { return debug_fault_info + DBG_ESR_EVT(esr); } static void data_abort_decode(unsigned long esr) { pr_alert("Data abort info:\n"); if (esr & ESR_ELx_ISV) { pr_alert(" Access size = %u byte(s)\n", 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT)); pr_alert(" SSE = %lu, SRT = %lu\n", (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT, (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT); pr_alert(" SF = %lu, AR = %lu\n", (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT, (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT); } else { pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK); } pr_alert(" CM = %lu, WnR = %lu\n", (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT, (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT); } static void mem_abort_decode(unsigned long esr) { pr_alert("Mem abort info:\n"); pr_alert(" ESR = 0x%016lx\n", esr); pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n", ESR_ELx_EC(esr), esr_get_class_string(esr), (esr & ESR_ELx_IL) ? 32 : 16); pr_alert(" SET = %lu, FnV = %lu\n", (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT, (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT); pr_alert(" EA = %lu, S1PTW = %lu\n", (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT, (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT); pr_alert(" FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC), esr_to_fault_info(esr)->name); if (esr_is_data_abort(esr)) data_abort_decode(esr); } static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm) { /* Either init_pg_dir or swapper_pg_dir */ if (mm == &init_mm) return __pa_symbol(mm->pgd); return (unsigned long)virt_to_phys(mm->pgd); } /* * Dump out the page tables associated with 'addr' in the currently active mm. */ static void show_pte(unsigned long addr) { struct mm_struct *mm; pgd_t *pgdp; pgd_t pgd; if (is_ttbr0_addr(addr)) { /* TTBR0 */ mm = current->active_mm; if (mm == &init_mm) { pr_alert("[%016lx] user address but active_mm is swapper\n", addr); return; } } else if (is_ttbr1_addr(addr)) { /* TTBR1 */ mm = &init_mm; } else { pr_alert("[%016lx] address between user and kernel address ranges\n", addr); return; } pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n", mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K, vabits_actual, mm_to_pgd_phys(mm)); pgdp = pgd_offset(mm, addr); pgd = READ_ONCE(*pgdp); pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd)); do { p4d_t *p4dp, p4d; pud_t *pudp, pud; pmd_t *pmdp, pmd; pte_t *ptep, pte; if (pgd_none(pgd) || pgd_bad(pgd)) break; p4dp = p4d_offset(pgdp, addr); p4d = READ_ONCE(*p4dp); pr_cont(", p4d=%016llx", p4d_val(p4d)); if (p4d_none(p4d) || p4d_bad(p4d)) break; pudp = pud_offset(p4dp, addr); pud = READ_ONCE(*pudp); pr_cont(", pud=%016llx", pud_val(pud)); if (pud_none(pud) || pud_bad(pud)) break; pmdp = pmd_offset(pudp, addr); pmd = READ_ONCE(*pmdp); pr_cont(", pmd=%016llx", pmd_val(pmd)); if (pmd_none(pmd) || pmd_bad(pmd)) break; ptep = pte_offset_map(pmdp, addr); pte = READ_ONCE(*ptep); pr_cont(", pte=%016llx", pte_val(pte)); pte_unmap(ptep); } while(0); pr_cont("\n"); } /* * This function sets the access flags (dirty, accessed), as well as write * permission, and only to a more permissive setting. * * It needs to cope with hardware update of the accessed/dirty state by other * agents in the system and can safely skip the __sync_icache_dcache() call as, * like set_pte_at(), the PTE is never changed from no-exec to exec here. * * Returns whether or not the PTE actually changed. */ int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty) { pteval_t old_pteval, pteval; pte_t pte = READ_ONCE(*ptep); if (pte_same(pte, entry)) return 0; /* only preserve the access flags and write permission */ pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY; /* * Setting the flags must be done atomically to avoid racing with the * hardware update of the access/dirty state. The PTE_RDONLY bit must * be set to the most permissive (lowest value) of *ptep and entry * (calculated as: a & b == ~(~a | ~b)). */ pte_val(entry) ^= PTE_RDONLY; pteval = pte_val(pte); do { old_pteval = pteval; pteval ^= PTE_RDONLY; pteval |= pte_val(entry); pteval ^= PTE_RDONLY; pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); } while (pteval != old_pteval); /* Invalidate a stale read-only entry */ if (dirty) flush_tlb_page(vma, address); return 1; } static bool is_el1_instruction_abort(unsigned long esr) { return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR; } static bool is_el1_data_abort(unsigned long esr) { return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR; } static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr, struct pt_regs *regs) { unsigned long fsc_type = esr & ESR_ELx_FSC_TYPE; if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr)) return false; if (fsc_type == ESR_ELx_FSC_PERM) return true; if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan()) return fsc_type == ESR_ELx_FSC_FAULT && (regs->pstate & PSR_PAN_BIT); return false; } static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr, unsigned long esr, struct pt_regs *regs) { unsigned long flags; u64 par, dfsc; if (!is_el1_data_abort(esr) || (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT) return false; local_irq_save(flags); asm volatile("at s1e1r, %0" :: "r" (addr)); isb(); par = read_sysreg_par(); local_irq_restore(flags); /* * If we now have a valid translation, treat the translation fault as * spurious. */ if (!(par & SYS_PAR_EL1_F)) return true; /* * If we got a different type of fault from the AT instruction, * treat the translation fault as spurious. */ dfsc = FIELD_GET(SYS_PAR_EL1_FST, par); return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT; } static void die_kernel_fault(const char *msg, unsigned long addr, unsigned long esr, struct pt_regs *regs) { bust_spinlocks(1); pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg, addr); kasan_non_canonical_hook(addr); mem_abort_decode(esr); show_pte(addr); die("Oops", regs, esr); bust_spinlocks(0); make_task_dead(SIGKILL); } #ifdef CONFIG_KASAN_HW_TAGS static void report_tag_fault(unsigned long addr, unsigned long esr, struct pt_regs *regs) { /* * SAS bits aren't set for all faults reported in EL1, so we can't * find out access size. */ bool is_write = !!(esr & ESR_ELx_WNR); kasan_report(addr, 0, is_write, regs->pc); } #else /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */ static inline void report_tag_fault(unsigned long addr, unsigned long esr, struct pt_regs *regs) { } #endif static void do_tag_recovery(unsigned long addr, unsigned long esr, struct pt_regs *regs) { report_tag_fault(addr, esr, regs); /* * Disable MTE Tag Checking on the local CPU for the current EL. * It will be done lazily on the other CPUs when they will hit a * tag fault. */ sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK, SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE)); isb(); } static bool is_el1_mte_sync_tag_check_fault(unsigned long esr) { unsigned long fsc = esr & ESR_ELx_FSC; if (!is_el1_data_abort(esr)) return false; if (fsc == ESR_ELx_FSC_MTE) return true; return false; } static bool is_translation_fault(unsigned long esr) { return (esr & ESR_ELx_FSC_TYPE) == ESR_ELx_FSC_FAULT; } static void __do_kernel_fault(unsigned long addr, unsigned long esr, struct pt_regs *regs) { const char *msg; /* * Are we prepared to handle this kernel fault? * We are almost certainly not prepared to handle instruction faults. */ if (!is_el1_instruction_abort(esr) && fixup_exception(regs)) return; if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs), "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr)) return; if (is_el1_mte_sync_tag_check_fault(esr)) { do_tag_recovery(addr, esr, regs); return; } if (is_el1_permission_fault(addr, esr, regs)) { if (esr & ESR_ELx_WNR) msg = "write to read-only memory"; else if (is_el1_instruction_abort(esr)) msg = "execute from non-executable memory"; else msg = "read from unreadable memory"; } else if (addr < PAGE_SIZE) { msg = "NULL pointer dereference"; } else { if (is_translation_fault(esr) && kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs)) return; msg = "paging request"; } if (efi_runtime_fixup_exception(regs, msg)) return; die_kernel_fault(msg, addr, esr, regs); } static void set_thread_esr(unsigned long address, unsigned long esr) { current->thread.fault_address = address; /* * If the faulting address is in the kernel, we must sanitize the ESR. * From userspace's point of view, kernel-only mappings don't exist * at all, so we report them as level 0 translation faults. * (This is not quite the way that "no mapping there at all" behaves: * an alignment fault not caused by the memory type would take * precedence over translation fault for a real access to empty * space. Unfortunately we can't easily distinguish "alignment fault * not caused by memory type" from "alignment fault caused by memory * type", so we ignore this wrinkle and just return the translation * fault.) */ if (!is_ttbr0_addr(current->thread.fault_address)) { switch (ESR_ELx_EC(esr)) { case ESR_ELx_EC_DABT_LOW: /* * These bits provide only information about the * faulting instruction, which userspace knows already. * We explicitly clear bits which are architecturally * RES0 in case they are given meanings in future. * We always report the ESR as if the fault was taken * to EL1 and so ISV and the bits in ISS[23:14] are * clear. (In fact it always will be a fault to EL1.) */ esr &= ESR_ELx_EC_MASK | ESR_ELx_IL | ESR_ELx_CM | ESR_ELx_WNR; esr |= ESR_ELx_FSC_FAULT; break; case ESR_ELx_EC_IABT_LOW: /* * Claim a level 0 translation fault. * All other bits are architecturally RES0 for faults * reported with that DFSC value, so we clear them. */ esr &= ESR_ELx_EC_MASK | ESR_ELx_IL; esr |= ESR_ELx_FSC_FAULT; break; default: /* * This should never happen (entry.S only brings us * into this code for insn and data aborts from a lower * exception level). Fail safe by not providing an ESR * context record at all. */ WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr); esr = 0; break; } } current->thread.fault_code = esr; } static void do_bad_area(unsigned long far, unsigned long esr, struct pt_regs *regs) { unsigned long addr = untagged_addr(far); /* * If we are in kernel mode at this point, we have no context to * handle this fault with. */ if (user_mode(regs)) { const struct fault_info *inf = esr_to_fault_info(esr); set_thread_esr(addr, esr); arm64_force_sig_fault(inf->sig, inf->code, far, inf->name); } else { __do_kernel_fault(addr, esr, regs); } } #define VM_FAULT_BADMAP ((__force vm_fault_t)0x010000) #define VM_FAULT_BADACCESS ((__force vm_fault_t)0x020000) static vm_fault_t __do_page_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned int mm_flags, unsigned long vm_flags, struct pt_regs *regs) { /* * Ok, we have a good vm_area for this memory access, so we can handle * it. * Check that the permissions on the VMA allow for the fault which * occurred. */ if (!(vma->vm_flags & vm_flags)) return VM_FAULT_BADACCESS; return handle_mm_fault(vma, addr, mm_flags, regs); } static bool is_el0_instruction_abort(unsigned long esr) { return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW; } /* * Note: not valid for EL1 DC IVAC, but we never use that such that it * should fault. EL0 cannot issue DC IVAC (undef). */ static bool is_write_abort(unsigned long esr) { return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM); } static int __kprobes do_page_fault(unsigned long far, unsigned long esr, struct pt_regs *regs) { const struct fault_info *inf; struct mm_struct *mm = current->mm; vm_fault_t fault; unsigned long vm_flags; unsigned int mm_flags = FAULT_FLAG_DEFAULT; unsigned long addr = untagged_addr(far); struct vm_area_struct *vma; if (kprobe_page_fault(regs, esr)) return 0; /* * If we're in an interrupt or have no user context, we must not take * the fault. */ if (faulthandler_disabled() || !mm) goto no_context; if (user_mode(regs)) mm_flags |= FAULT_FLAG_USER; /* * vm_flags tells us what bits we must have in vma->vm_flags * for the fault to be benign, __do_page_fault() would check * vma->vm_flags & vm_flags and returns an error if the * intersection is empty */ if (is_el0_instruction_abort(esr)) { /* It was exec fault */ vm_flags = VM_EXEC; mm_flags |= FAULT_FLAG_INSTRUCTION; } else if (is_write_abort(esr)) { /* It was write fault */ vm_flags = VM_WRITE; mm_flags |= FAULT_FLAG_WRITE; } else { /* It was read fault */ vm_flags = VM_READ; /* Write implies read */ vm_flags |= VM_WRITE; /* If EPAN is absent then exec implies read */ if (!cpus_have_const_cap(ARM64_HAS_EPAN)) vm_flags |= VM_EXEC; } if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) { if (is_el1_instruction_abort(esr)) die_kernel_fault("execution of user memory", addr, esr, regs); if (!search_exception_tables(regs->pc)) die_kernel_fault("access to user memory outside uaccess routines", addr, esr, regs); } perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); retry: vma = lock_mm_and_find_vma(mm, addr, regs); if (unlikely(!vma)) { fault = VM_FAULT_BADMAP; goto done; } fault = __do_page_fault(mm, vma, addr, mm_flags, vm_flags, regs); /* Quick path to respond to signals */ if (fault_signal_pending(fault, regs)) { if (!user_mode(regs)) goto no_context; return 0; } /* The fault is fully completed (including releasing mmap lock) */ if (fault & VM_FAULT_COMPLETED) return 0; if (fault & VM_FAULT_RETRY) { mm_flags |= FAULT_FLAG_TRIED; goto retry; } mmap_read_unlock(mm); done: /* * Handle the "normal" (no error) case first. */ if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) return 0; /* * If we are in kernel mode at this point, we have no context to * handle this fault with. */ if (!user_mode(regs)) goto no_context; if (fault & VM_FAULT_OOM) { /* * We ran out of memory, call the OOM killer, and return to * userspace (which will retry the fault, or kill us if we got * oom-killed). */ pagefault_out_of_memory(); return 0; } inf = esr_to_fault_info(esr); set_thread_esr(addr, esr); if (fault & VM_FAULT_SIGBUS) { /* * We had some memory, but were unable to successfully fix up * this page fault. */ arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name); } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) { unsigned int lsb; lsb = PAGE_SHIFT; if (fault & VM_FAULT_HWPOISON_LARGE) lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name); } else { /* * Something tried to access memory that isn't in our memory * map. */ arm64_force_sig_fault(SIGSEGV, fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR, far, inf->name); } return 0; no_context: __do_kernel_fault(addr, esr, regs); return 0; } static int __kprobes do_translation_fault(unsigned long far, unsigned long esr, struct pt_regs *regs) { unsigned long addr = untagged_addr(far); if (is_ttbr0_addr(addr)) return do_page_fault(far, esr, regs); do_bad_area(far, esr, regs); return 0; } static int do_alignment_fault(unsigned long far, unsigned long esr, struct pt_regs *regs) { if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) && compat_user_mode(regs)) return do_compat_alignment_fixup(far, regs); do_bad_area(far, esr, regs); return 0; } static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs) { return 1; /* "fault" */ } static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs) { const struct fault_info *inf; unsigned long siaddr; inf = esr_to_fault_info(esr); if (user_mode(regs) && apei_claim_sea(regs) == 0) { /* * APEI claimed this as a firmware-first notification. * Some processing deferred to task_work before ret_to_user(). */ return 0; } if (esr & ESR_ELx_FnV) { siaddr = 0; } else { /* * The architecture specifies that the tag bits of FAR_EL1 are * UNKNOWN for synchronous external aborts. Mask them out now * so that userspace doesn't see them. */ siaddr = untagged_addr(far); } arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr); return 0; } static int do_tag_check_fault(unsigned long far, unsigned long esr, struct pt_regs *regs) { /* * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN * for tag check faults. Set them to corresponding bits in the untagged * address. */ far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK); do_bad_area(far, esr, regs); return 0; } static const struct fault_info fault_info[] = { { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" }, { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" }, { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" }, { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" }, { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" }, { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" }, { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" }, { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 8" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 12" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" }, { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" }, { do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 18" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 19" }, { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" }, { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" }, { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" }, { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" }, { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented { do_bad, SIGKILL, SI_KERNEL, "unknown 25" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 26" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 27" }, { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented { do_bad, SIGKILL, SI_KERNEL, "unknown 32" }, { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 34" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 35" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 36" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 37" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 38" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 39" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 40" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 41" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 42" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 43" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 44" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 45" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 46" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 47" }, { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" }, { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 50" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 51" }, { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" }, { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 54" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 55" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 56" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 57" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 58" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 59" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 60" }, { do_bad, SIGKILL, SI_KERNEL, "section domain fault" }, { do_bad, SIGKILL, SI_KERNEL, "page domain fault" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 63" }, }; void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs) { const struct fault_info *inf = esr_to_fault_info(esr); unsigned long addr = untagged_addr(far); if (!inf->fn(far, esr, regs)) return; if (!user_mode(regs)) die_kernel_fault(inf->name, addr, esr, regs); /* * At this point we have an unrecognized fault type whose tag bits may * have been defined as UNKNOWN. Therefore we only expose the untagged * address to the signal handler. */ arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr); } NOKPROBE_SYMBOL(do_mem_abort); void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs) { arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN, addr, esr); } NOKPROBE_SYMBOL(do_sp_pc_abort); int __init early_brk64(unsigned long addr, unsigned long esr, struct pt_regs *regs); /* * __refdata because early_brk64 is __init, but the reference to it is * clobbered at arch_initcall time. * See traps.c and debug-monitors.c:debug_traps_init(). */ static struct fault_info __refdata debug_fault_info[] = { { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" }, { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" }, { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 3" }, { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" }, { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" }, { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 7" }, }; void __init hook_debug_fault_code(int nr, int (*fn)(unsigned long, unsigned long, struct pt_regs *), int sig, int code, const char *name) { BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info)); debug_fault_info[nr].fn = fn; debug_fault_info[nr].sig = sig; debug_fault_info[nr].code = code; debug_fault_info[nr].name = name; } /* * In debug exception context, we explicitly disable preemption despite * having interrupts disabled. * This serves two purposes: it makes it much less likely that we would * accidentally schedule in exception context and it will force a warning * if we somehow manage to schedule by accident. */ static void debug_exception_enter(struct pt_regs *regs) { preempt_disable(); /* This code is a bit fragile. Test it. */ RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work"); } NOKPROBE_SYMBOL(debug_exception_enter); static void debug_exception_exit(struct pt_regs *regs) { preempt_enable_no_resched(); } NOKPROBE_SYMBOL(debug_exception_exit); void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr, struct pt_regs *regs) { const struct fault_info *inf = esr_to_debug_fault_info(esr); unsigned long pc = instruction_pointer(regs); debug_exception_enter(regs); if (user_mode(regs) && !is_ttbr0_addr(pc)) arm64_apply_bp_hardening(); if (inf->fn(addr_if_watchpoint, esr, regs)) { arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr); } debug_exception_exit(regs); } NOKPROBE_SYMBOL(do_debug_exception); /* * Used during anonymous page fault handling. */ struct page *alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma, unsigned long vaddr) { gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO; /* * If the page is mapped with PROT_MTE, initialise the tags at the * point of allocation and page zeroing as this is usually faster than * separate DC ZVA and STGM. */ if (vma->vm_flags & VM_MTE) flags |= __GFP_ZEROTAGS; return alloc_page_vma(flags, vma, vaddr); } void tag_clear_highpage(struct page *page) { mte_zero_clear_page_tags(page_address(page)); set_page_mte_tagged(page); } |