Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
 * Copyright (C) 2003-2014, 2018-2023 Intel Corporation
 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
 * Copyright (C) 2016-2017 Intel Deutschland GmbH
 */
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/gfp.h>

#include "iwl-prph.h"
#include "iwl-io.h"
#include "internal.h"
#include "iwl-op-mode.h"
#include "iwl-context-info-gen3.h"

/******************************************************************************
 *
 * RX path functions
 *
 ******************************************************************************/

/*
 * Rx theory of operation
 *
 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
 * each of which point to Receive Buffers to be filled by the NIC.  These get
 * used not only for Rx frames, but for any command response or notification
 * from the NIC.  The driver and NIC manage the Rx buffers by means
 * of indexes into the circular buffer.
 *
 * Rx Queue Indexes
 * The host/firmware share two index registers for managing the Rx buffers.
 *
 * The READ index maps to the first position that the firmware may be writing
 * to -- the driver can read up to (but not including) this position and get
 * good data.
 * The READ index is managed by the firmware once the card is enabled.
 *
 * The WRITE index maps to the last position the driver has read from -- the
 * position preceding WRITE is the last slot the firmware can place a packet.
 *
 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
 * WRITE = READ.
 *
 * During initialization, the host sets up the READ queue position to the first
 * INDEX position, and WRITE to the last (READ - 1 wrapped)
 *
 * When the firmware places a packet in a buffer, it will advance the READ index
 * and fire the RX interrupt.  The driver can then query the READ index and
 * process as many packets as possible, moving the WRITE index forward as it
 * resets the Rx queue buffers with new memory.
 *
 * The management in the driver is as follows:
 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
 *   When the interrupt handler is called, the request is processed.
 *   The page is either stolen - transferred to the upper layer
 *   or reused - added immediately to the iwl->rxq->rx_free list.
 * + When the page is stolen - the driver updates the matching queue's used
 *   count, detaches the RBD and transfers it to the queue used list.
 *   When there are two used RBDs - they are transferred to the allocator empty
 *   list. Work is then scheduled for the allocator to start allocating
 *   eight buffers.
 *   When there are another 6 used RBDs - they are transferred to the allocator
 *   empty list and the driver tries to claim the pre-allocated buffers and
 *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
 *   until ready.
 *   When there are 8+ buffers in the free list - either from allocation or from
 *   8 reused unstolen pages - restock is called to update the FW and indexes.
 * + In order to make sure the allocator always has RBDs to use for allocation
 *   the allocator has initial pool in the size of num_queues*(8-2) - the
 *   maximum missing RBDs per allocation request (request posted with 2
 *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
 *   The queues supplies the recycle of the rest of the RBDs.
 * + A received packet is processed and handed to the kernel network stack,
 *   detached from the iwl->rxq.  The driver 'processed' index is updated.
 * + If there are no allocated buffers in iwl->rxq->rx_free,
 *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
 *   If there were enough free buffers and RX_STALLED is set it is cleared.
 *
 *
 * Driver sequence:
 *
 * iwl_rxq_alloc()            Allocates rx_free
 * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
 *                            iwl_pcie_rxq_restock.
 *                            Used only during initialization.
 * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
 *                            queue, updates firmware pointers, and updates
 *                            the WRITE index.
 * iwl_pcie_rx_allocator()     Background work for allocating pages.
 *
 * -- enable interrupts --
 * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
 *                            READ INDEX, detaching the SKB from the pool.
 *                            Moves the packet buffer from queue to rx_used.
 *                            Posts and claims requests to the allocator.
 *                            Calls iwl_pcie_rxq_restock to refill any empty
 *                            slots.
 *
 * RBD life-cycle:
 *
 * Init:
 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
 *
 * Regular Receive interrupt:
 * Page Stolen:
 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
 * Page not Stolen:
 * rxq.queue -> rxq.rx_free -> rxq.queue
 * ...
 *
 */

/*
 * iwl_rxq_space - Return number of free slots available in queue.
 */
static int iwl_rxq_space(const struct iwl_rxq *rxq)
{
	/* Make sure rx queue size is a power of 2 */
	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));

	/*
	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
	 * between empty and completely full queues.
	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
	 * defined for negative dividends.
	 */
	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
}

/*
 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
 */
static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
{
	return cpu_to_le32((u32)(dma_addr >> 8));
}

/*
 * iwl_pcie_rx_stop - stops the Rx DMA
 */
int iwl_pcie_rx_stop(struct iwl_trans *trans)
{
	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
		/* TODO: remove this once fw does it */
		iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
		return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
					      RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
	} else if (trans->trans_cfg->mq_rx_supported) {
		iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
					   RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
	} else {
		iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
		return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
					   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
					   1000);
	}
}

/*
 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
 */
static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
				    struct iwl_rxq *rxq)
{
	u32 reg;

	lockdep_assert_held(&rxq->lock);

	/*
	 * explicitly wake up the NIC if:
	 * 1. shadow registers aren't enabled
	 * 2. there is a chance that the NIC is asleep
	 */
	if (!trans->trans_cfg->base_params->shadow_reg_enable &&
	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);

		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
				       reg);
			iwl_set_bit(trans, CSR_GP_CNTRL,
				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
			rxq->need_update = true;
			return;
		}
	}

	rxq->write_actual = round_down(rxq->write, 8);
	if (!trans->trans_cfg->mq_rx_supported)
		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
	else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
		iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual |
			    HBUS_TARG_WRPTR_RX_Q(rxq->id));
	else
		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
			    rxq->write_actual);
}

static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	int i;

	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

		if (!rxq->need_update)
			continue;
		spin_lock_bh(&rxq->lock);
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
		rxq->need_update = false;
		spin_unlock_bh(&rxq->lock);
	}
}

static void iwl_pcie_restock_bd(struct iwl_trans *trans,
				struct iwl_rxq *rxq,
				struct iwl_rx_mem_buffer *rxb)
{
	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
		struct iwl_rx_transfer_desc *bd = rxq->bd;

		BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));

		bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
		bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
	} else {
		__le64 *bd = rxq->bd;

		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
	}

	IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
		     (u32)rxb->vid, rxq->id, rxq->write);
}

/*
 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
 */
static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
				  struct iwl_rxq *rxq)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rx_mem_buffer *rxb;

	/*
	 * If the device isn't enabled - no need to try to add buffers...
	 * This can happen when we stop the device and still have an interrupt
	 * pending. We stop the APM before we sync the interrupts because we
	 * have to (see comment there). On the other hand, since the APM is
	 * stopped, we cannot access the HW (in particular not prph).
	 * So don't try to restock if the APM has been already stopped.
	 */
	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
		return;

	spin_lock_bh(&rxq->lock);
	while (rxq->free_count) {
		/* Get next free Rx buffer, remove from free list */
		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);
		rxb->invalid = false;
		/* some low bits are expected to be unset (depending on hw) */
		WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
		/* Point to Rx buffer via next RBD in circular buffer */
		iwl_pcie_restock_bd(trans, rxq, rxb);
		rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
		rxq->free_count--;
	}
	spin_unlock_bh(&rxq->lock);

	/*
	 * If we've added more space for the firmware to place data, tell it.
	 * Increment device's write pointer in multiples of 8.
	 */
	if (rxq->write_actual != (rxq->write & ~0x7)) {
		spin_lock_bh(&rxq->lock);
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
		spin_unlock_bh(&rxq->lock);
	}
}

/*
 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
 */
static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
				  struct iwl_rxq *rxq)
{
	struct iwl_rx_mem_buffer *rxb;

	/*
	 * If the device isn't enabled - not need to try to add buffers...
	 * This can happen when we stop the device and still have an interrupt
	 * pending. We stop the APM before we sync the interrupts because we
	 * have to (see comment there). On the other hand, since the APM is
	 * stopped, we cannot access the HW (in particular not prph).
	 * So don't try to restock if the APM has been already stopped.
	 */
	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
		return;

	spin_lock_bh(&rxq->lock);
	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
		__le32 *bd = (__le32 *)rxq->bd;
		/* The overwritten rxb must be a used one */
		rxb = rxq->queue[rxq->write];
		BUG_ON(rxb && rxb->page);

		/* Get next free Rx buffer, remove from free list */
		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);
		rxb->invalid = false;

		/* Point to Rx buffer via next RBD in circular buffer */
		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
		rxq->queue[rxq->write] = rxb;
		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
		rxq->free_count--;
	}
	spin_unlock_bh(&rxq->lock);

	/* If we've added more space for the firmware to place data, tell it.
	 * Increment device's write pointer in multiples of 8. */
	if (rxq->write_actual != (rxq->write & ~0x7)) {
		spin_lock_bh(&rxq->lock);
		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
		spin_unlock_bh(&rxq->lock);
	}
}

/*
 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
 *
 * If there are slots in the RX queue that need to be restocked,
 * and we have free pre-allocated buffers, fill the ranks as much
 * as we can, pulling from rx_free.
 *
 * This moves the 'write' index forward to catch up with 'processed', and
 * also updates the memory address in the firmware to reference the new
 * target buffer.
 */
static
void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
{
	if (trans->trans_cfg->mq_rx_supported)
		iwl_pcie_rxmq_restock(trans, rxq);
	else
		iwl_pcie_rxsq_restock(trans, rxq);
}

/*
 * iwl_pcie_rx_alloc_page - allocates and returns a page.
 *
 */
static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
					   u32 *offset, gfp_t priority)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
	unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
	struct page *page;
	gfp_t gfp_mask = priority;

	if (trans_pcie->rx_page_order > 0)
		gfp_mask |= __GFP_COMP;

	if (trans_pcie->alloc_page) {
		spin_lock_bh(&trans_pcie->alloc_page_lock);
		/* recheck */
		if (trans_pcie->alloc_page) {
			*offset = trans_pcie->alloc_page_used;
			page = trans_pcie->alloc_page;
			trans_pcie->alloc_page_used += rbsize;
			if (trans_pcie->alloc_page_used >= allocsize)
				trans_pcie->alloc_page = NULL;
			else
				get_page(page);
			spin_unlock_bh(&trans_pcie->alloc_page_lock);
			return page;
		}
		spin_unlock_bh(&trans_pcie->alloc_page_lock);
	}

	/* Alloc a new receive buffer */
	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
	if (!page) {
		if (net_ratelimit())
			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
				       trans_pcie->rx_page_order);
		/*
		 * Issue an error if we don't have enough pre-allocated
		  * buffers.
		 */
		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
			IWL_CRIT(trans,
				 "Failed to alloc_pages\n");
		return NULL;
	}

	if (2 * rbsize <= allocsize) {
		spin_lock_bh(&trans_pcie->alloc_page_lock);
		if (!trans_pcie->alloc_page) {
			get_page(page);
			trans_pcie->alloc_page = page;
			trans_pcie->alloc_page_used = rbsize;
		}
		spin_unlock_bh(&trans_pcie->alloc_page_lock);
	}

	*offset = 0;
	return page;
}

/*
 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
 *
 * A used RBD is an Rx buffer that has been given to the stack. To use it again
 * a page must be allocated and the RBD must point to the page. This function
 * doesn't change the HW pointer but handles the list of pages that is used by
 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
 * allocated buffers.
 */
void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
			    struct iwl_rxq *rxq)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rx_mem_buffer *rxb;
	struct page *page;

	while (1) {
		unsigned int offset;

		spin_lock_bh(&rxq->lock);
		if (list_empty(&rxq->rx_used)) {
			spin_unlock_bh(&rxq->lock);
			return;
		}
		spin_unlock_bh(&rxq->lock);

		page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
		if (!page)
			return;

		spin_lock_bh(&rxq->lock);

		if (list_empty(&rxq->rx_used)) {
			spin_unlock_bh(&rxq->lock);
			__free_pages(page, trans_pcie->rx_page_order);
			return;
		}
		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
				       list);
		list_del(&rxb->list);
		spin_unlock_bh(&rxq->lock);

		BUG_ON(rxb->page);
		rxb->page = page;
		rxb->offset = offset;
		/* Get physical address of the RB */
		rxb->page_dma =
			dma_map_page(trans->dev, page, rxb->offset,
				     trans_pcie->rx_buf_bytes,
				     DMA_FROM_DEVICE);
		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
			rxb->page = NULL;
			spin_lock_bh(&rxq->lock);
			list_add(&rxb->list, &rxq->rx_used);
			spin_unlock_bh(&rxq->lock);
			__free_pages(page, trans_pcie->rx_page_order);
			return;
		}

		spin_lock_bh(&rxq->lock);

		list_add_tail(&rxb->list, &rxq->rx_free);
		rxq->free_count++;

		spin_unlock_bh(&rxq->lock);
	}
}

void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	int i;

	if (!trans_pcie->rx_pool)
		return;

	for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
		if (!trans_pcie->rx_pool[i].page)
			continue;
		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
			       trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
		__free_pages(trans_pcie->rx_pool[i].page,
			     trans_pcie->rx_page_order);
		trans_pcie->rx_pool[i].page = NULL;
	}
}

/*
 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
 *
 * Allocates for each received request 8 pages
 * Called as a scheduled work item.
 */
static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
	struct list_head local_empty;
	int pending = atomic_read(&rba->req_pending);

	IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);

	/* If we were scheduled - there is at least one request */
	spin_lock_bh(&rba->lock);
	/* swap out the rba->rbd_empty to a local list */
	list_replace_init(&rba->rbd_empty, &local_empty);
	spin_unlock_bh(&rba->lock);

	while (pending) {
		int i;
		LIST_HEAD(local_allocated);
		gfp_t gfp_mask = GFP_KERNEL;

		/* Do not post a warning if there are only a few requests */
		if (pending < RX_PENDING_WATERMARK)
			gfp_mask |= __GFP_NOWARN;

		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
			struct iwl_rx_mem_buffer *rxb;
			struct page *page;

			/* List should never be empty - each reused RBD is
			 * returned to the list, and initial pool covers any
			 * possible gap between the time the page is allocated
			 * to the time the RBD is added.
			 */
			BUG_ON(list_empty(&local_empty));
			/* Get the first rxb from the rbd list */
			rxb = list_first_entry(&local_empty,
					       struct iwl_rx_mem_buffer, list);
			BUG_ON(rxb->page);

			/* Alloc a new receive buffer */
			page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
						      gfp_mask);
			if (!page)
				continue;
			rxb->page = page;

			/* Get physical address of the RB */
			rxb->page_dma = dma_map_page(trans->dev, page,
						     rxb->offset,
						     trans_pcie->rx_buf_bytes,
						     DMA_FROM_DEVICE);
			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
				rxb->page = NULL;
				__free_pages(page, trans_pcie->rx_page_order);
				continue;
			}

			/* move the allocated entry to the out list */
			list_move(&rxb->list, &local_allocated);
			i++;
		}

		atomic_dec(&rba->req_pending);
		pending--;

		if (!pending) {
			pending = atomic_read(&rba->req_pending);
			if (pending)
				IWL_DEBUG_TPT(trans,
					      "Got more pending allocation requests = %d\n",
					      pending);
		}

		spin_lock_bh(&rba->lock);
		/* add the allocated rbds to the allocator allocated list */
		list_splice_tail(&local_allocated, &rba->rbd_allocated);
		/* get more empty RBDs for current pending requests */
		list_splice_tail_init(&rba->rbd_empty, &local_empty);
		spin_unlock_bh(&rba->lock);

		atomic_inc(&rba->req_ready);

	}

	spin_lock_bh(&rba->lock);
	/* return unused rbds to the allocator empty list */
	list_splice_tail(&local_empty, &rba->rbd_empty);
	spin_unlock_bh(&rba->lock);

	IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
}

/*
 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
.*
.* Called by queue when the queue posted allocation request and
 * has freed 8 RBDs in order to restock itself.
 * This function directly moves the allocated RBs to the queue's ownership
 * and updates the relevant counters.
 */
static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
				      struct iwl_rxq *rxq)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
	int i;

	lockdep_assert_held(&rxq->lock);

	/*
	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
	 * function will return early, as there are no ready requests.
	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
	 * req_ready > 0, i.e. - there are ready requests and the function
	 * hands one request to the caller.
	 */
	if (atomic_dec_if_positive(&rba->req_ready) < 0)
		return;

	spin_lock(&rba->lock);
	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
		/* Get next free Rx buffer, remove it from free list */
		struct iwl_rx_mem_buffer *rxb =
			list_first_entry(&rba->rbd_allocated,
					 struct iwl_rx_mem_buffer, list);

		list_move(&rxb->list, &rxq->rx_free);
	}
	spin_unlock(&rba->lock);

	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
	rxq->free_count += RX_CLAIM_REQ_ALLOC;
}

void iwl_pcie_rx_allocator_work(struct work_struct *data)
{
	struct iwl_rb_allocator *rba_p =
		container_of(data, struct iwl_rb_allocator, rx_alloc);
	struct iwl_trans_pcie *trans_pcie =
		container_of(rba_p, struct iwl_trans_pcie, rba);

	iwl_pcie_rx_allocator(trans_pcie->trans);
}

static int iwl_pcie_free_bd_size(struct iwl_trans *trans)
{
	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
		return sizeof(struct iwl_rx_transfer_desc);

	return trans->trans_cfg->mq_rx_supported ?
			sizeof(__le64) : sizeof(__le32);
}

static int iwl_pcie_used_bd_size(struct iwl_trans *trans)
{
	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
		return sizeof(struct iwl_rx_completion_desc_bz);

	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
		return sizeof(struct iwl_rx_completion_desc);

	return sizeof(__le32);
}

static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
				  struct iwl_rxq *rxq)
{
	int free_size = iwl_pcie_free_bd_size(trans);

	if (rxq->bd)
		dma_free_coherent(trans->dev,
				  free_size * rxq->queue_size,
				  rxq->bd, rxq->bd_dma);
	rxq->bd_dma = 0;
	rxq->bd = NULL;

	rxq->rb_stts_dma = 0;
	rxq->rb_stts = NULL;

	if (rxq->used_bd)
		dma_free_coherent(trans->dev,
				  iwl_pcie_used_bd_size(trans) *
					rxq->queue_size,
				  rxq->used_bd, rxq->used_bd_dma);
	rxq->used_bd_dma = 0;
	rxq->used_bd = NULL;
}

static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
				  struct iwl_rxq *rxq)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct device *dev = trans->dev;
	int i;
	int free_size;
	bool use_rx_td = (trans->trans_cfg->device_family >=
			  IWL_DEVICE_FAMILY_AX210);
	size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
			      sizeof(struct iwl_rb_status);

	spin_lock_init(&rxq->lock);
	if (trans->trans_cfg->mq_rx_supported)
		rxq->queue_size = trans->cfg->num_rbds;
	else
		rxq->queue_size = RX_QUEUE_SIZE;

	free_size = iwl_pcie_free_bd_size(trans);

	/*
	 * Allocate the circular buffer of Read Buffer Descriptors
	 * (RBDs)
	 */
	rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
				     &rxq->bd_dma, GFP_KERNEL);
	if (!rxq->bd)
		goto err;

	if (trans->trans_cfg->mq_rx_supported) {
		rxq->used_bd = dma_alloc_coherent(dev,
						  iwl_pcie_used_bd_size(trans) *
							rxq->queue_size,
						  &rxq->used_bd_dma,
						  GFP_KERNEL);
		if (!rxq->used_bd)
			goto err;
	}

	rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
	rxq->rb_stts_dma =
		trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;

	return 0;

err:
	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

		iwl_pcie_free_rxq_dma(trans, rxq);
	}

	return -ENOMEM;
}

static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
	int i, ret;
	size_t rb_stts_size = trans->trans_cfg->device_family >=
				IWL_DEVICE_FAMILY_AX210 ?
			      sizeof(__le16) : sizeof(struct iwl_rb_status);

	if (WARN_ON(trans_pcie->rxq))
		return -EINVAL;

	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
				  GFP_KERNEL);
	trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
				      sizeof(trans_pcie->rx_pool[0]),
				      GFP_KERNEL);
	trans_pcie->global_table =
		kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
			sizeof(trans_pcie->global_table[0]),
			GFP_KERNEL);
	if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
	    !trans_pcie->global_table) {
		ret = -ENOMEM;
		goto err;
	}

	spin_lock_init(&rba->lock);

	/*
	 * Allocate the driver's pointer to receive buffer status.
	 * Allocate for all queues continuously (HW requirement).
	 */
	trans_pcie->base_rb_stts =
			dma_alloc_coherent(trans->dev,
					   rb_stts_size * trans->num_rx_queues,
					   &trans_pcie->base_rb_stts_dma,
					   GFP_KERNEL);
	if (!trans_pcie->base_rb_stts) {
		ret = -ENOMEM;
		goto err;
	}

	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

		rxq->id = i;
		ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
		if (ret)
			goto err;
	}
	return 0;

err:
	if (trans_pcie->base_rb_stts) {
		dma_free_coherent(trans->dev,
				  rb_stts_size * trans->num_rx_queues,
				  trans_pcie->base_rb_stts,
				  trans_pcie->base_rb_stts_dma);
		trans_pcie->base_rb_stts = NULL;
		trans_pcie->base_rb_stts_dma = 0;
	}
	kfree(trans_pcie->rx_pool);
	trans_pcie->rx_pool = NULL;
	kfree(trans_pcie->global_table);
	trans_pcie->global_table = NULL;
	kfree(trans_pcie->rxq);
	trans_pcie->rxq = NULL;

	return ret;
}

static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 rb_size;
	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */

	switch (trans_pcie->rx_buf_size) {
	case IWL_AMSDU_4K:
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
		break;
	case IWL_AMSDU_8K:
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
		break;
	case IWL_AMSDU_12K:
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
		break;
	default:
		WARN_ON(1);
		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
	}

	if (!iwl_trans_grab_nic_access(trans))
		return;

	/* Stop Rx DMA */
	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
	/* reset and flush pointers */
	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);

	/* Reset driver's Rx queue write index */
	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);

	/* Tell device where to find RBD circular buffer in DRAM */
	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
		    (u32)(rxq->bd_dma >> 8));

	/* Tell device where in DRAM to update its Rx status */
	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
		    rxq->rb_stts_dma >> 4);

	/* Enable Rx DMA
	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
	 *      the credit mechanism in 5000 HW RX FIFO
	 * Direct rx interrupts to hosts
	 * Rx buffer size 4 or 8k or 12k
	 * RB timeout 0x10
	 * 256 RBDs
	 */
	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
		    rb_size |
		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));

	iwl_trans_release_nic_access(trans);

	/* Set interrupt coalescing timer to default (2048 usecs) */
	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);

	/* W/A for interrupt coalescing bug in 7260 and 3160 */
	if (trans->cfg->host_interrupt_operation_mode)
		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
}

static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 rb_size, enabled = 0;
	int i;

	switch (trans_pcie->rx_buf_size) {
	case IWL_AMSDU_2K:
		rb_size = RFH_RXF_DMA_RB_SIZE_2K;
		break;
	case IWL_AMSDU_4K:
		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
		break;
	case IWL_AMSDU_8K:
		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
		break;
	case IWL_AMSDU_12K:
		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
		break;
	default:
		WARN_ON(1);
		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
	}

	if (!iwl_trans_grab_nic_access(trans))
		return;

	/* Stop Rx DMA */
	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
	/* disable free amd used rx queue operation */
	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);

	for (i = 0; i < trans->num_rx_queues; i++) {
		/* Tell device where to find RBD free table in DRAM */
		iwl_write_prph64_no_grab(trans,
					 RFH_Q_FRBDCB_BA_LSB(i),
					 trans_pcie->rxq[i].bd_dma);
		/* Tell device where to find RBD used table in DRAM */
		iwl_write_prph64_no_grab(trans,
					 RFH_Q_URBDCB_BA_LSB(i),
					 trans_pcie->rxq[i].used_bd_dma);
		/* Tell device where in DRAM to update its Rx status */
		iwl_write_prph64_no_grab(trans,
					 RFH_Q_URBD_STTS_WPTR_LSB(i),
					 trans_pcie->rxq[i].rb_stts_dma);
		/* Reset device indice tables */
		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);

		enabled |= BIT(i) | BIT(i + 16);
	}

	/*
	 * Enable Rx DMA
	 * Rx buffer size 4 or 8k or 12k
	 * Min RB size 4 or 8
	 * Drop frames that exceed RB size
	 * 512 RBDs
	 */
	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
			       RFH_DMA_EN_ENABLE_VAL | rb_size |
			       RFH_RXF_DMA_MIN_RB_4_8 |
			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
			       RFH_RXF_DMA_RBDCB_SIZE_512);

	/*
	 * Activate DMA snooping.
	 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
	 * Default queue is 0
	 */
	iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
			       RFH_GEN_CFG_RFH_DMA_SNOOP |
			       RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
			       RFH_GEN_CFG_SERVICE_DMA_SNOOP |
			       RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
					       trans->trans_cfg->integrated ?
					       RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
					       RFH_GEN_CFG_RB_CHUNK_SIZE_128));
	/* Enable the relevant rx queues */
	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);

	iwl_trans_release_nic_access(trans);

	/* Set interrupt coalescing timer to default (2048 usecs) */
	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
}

void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
{
	lockdep_assert_held(&rxq->lock);

	INIT_LIST_HEAD(&rxq->rx_free);
	INIT_LIST_HEAD(&rxq->rx_used);
	rxq->free_count = 0;
	rxq->used_count = 0;
}

static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget);

static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget)
{
	struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
	struct iwl_trans_pcie *trans_pcie;
	struct iwl_trans *trans;
	int ret;

	trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
	trans = trans_pcie->trans;

	ret = iwl_pcie_rx_handle(trans, rxq->id, budget);

	IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n",
		      rxq->id, ret, budget);

	if (ret < budget) {
		spin_lock(&trans_pcie->irq_lock);
		if (test_bit(STATUS_INT_ENABLED, &trans->status))
			_iwl_enable_interrupts(trans);
		spin_unlock(&trans_pcie->irq_lock);

		napi_complete_done(&rxq->napi, ret);
	}

	return ret;
}

static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget)
{
	struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
	struct iwl_trans_pcie *trans_pcie;
	struct iwl_trans *trans;
	int ret;

	trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
	trans = trans_pcie->trans;

	ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
	IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret,
		      budget);

	if (ret < budget) {
		int irq_line = rxq->id;

		/* FIRST_RSS is shared with line 0 */
		if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS &&
		    rxq->id == 1)
			irq_line = 0;

		spin_lock(&trans_pcie->irq_lock);
		iwl_pcie_clear_irq(trans, irq_line);
		spin_unlock(&trans_pcie->irq_lock);

		napi_complete_done(&rxq->napi, ret);
	}

	return ret;
}

void iwl_pcie_rx_napi_sync(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	int i;

	if (unlikely(!trans_pcie->rxq))
		return;

	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

		if (rxq && rxq->napi.poll)
			napi_synchronize(&rxq->napi);
	}
}

static int _iwl_pcie_rx_init(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rxq *def_rxq;
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
	int i, err, queue_size, allocator_pool_size, num_alloc;

	if (!trans_pcie->rxq) {
		err = iwl_pcie_rx_alloc(trans);
		if (err)
			return err;
	}
	def_rxq = trans_pcie->rxq;

	cancel_work_sync(&rba->rx_alloc);

	spin_lock_bh(&rba->lock);
	atomic_set(&rba->req_pending, 0);
	atomic_set(&rba->req_ready, 0);
	INIT_LIST_HEAD(&rba->rbd_allocated);
	INIT_LIST_HEAD(&rba->rbd_empty);
	spin_unlock_bh(&rba->lock);

	/* free all first - we overwrite everything here */
	iwl_pcie_free_rbs_pool(trans);

	for (i = 0; i < RX_QUEUE_SIZE; i++)
		def_rxq->queue[i] = NULL;

	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

		spin_lock_bh(&rxq->lock);
		/*
		 * Set read write pointer to reflect that we have processed
		 * and used all buffers, but have not restocked the Rx queue
		 * with fresh buffers
		 */
		rxq->read = 0;
		rxq->write = 0;
		rxq->write_actual = 0;
		memset(rxq->rb_stts, 0,
		       (trans->trans_cfg->device_family >=
			IWL_DEVICE_FAMILY_AX210) ?
		       sizeof(__le16) : sizeof(struct iwl_rb_status));

		iwl_pcie_rx_init_rxb_lists(rxq);

		spin_unlock_bh(&rxq->lock);

		if (!rxq->napi.poll) {
			int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll;

			if (trans_pcie->msix_enabled)
				poll = iwl_pcie_napi_poll_msix;

			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
				       poll);
			napi_enable(&rxq->napi);
		}

	}

	/* move the pool to the default queue and allocator ownerships */
	queue_size = trans->trans_cfg->mq_rx_supported ?
			trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
	allocator_pool_size = trans->num_rx_queues *
		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
	num_alloc = queue_size + allocator_pool_size;

	for (i = 0; i < num_alloc; i++) {
		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];

		if (i < allocator_pool_size)
			list_add(&rxb->list, &rba->rbd_empty);
		else
			list_add(&rxb->list, &def_rxq->rx_used);
		trans_pcie->global_table[i] = rxb;
		rxb->vid = (u16)(i + 1);
		rxb->invalid = true;
	}

	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);

	return 0;
}

int iwl_pcie_rx_init(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	int ret = _iwl_pcie_rx_init(trans);

	if (ret)
		return ret;

	if (trans->trans_cfg->mq_rx_supported)
		iwl_pcie_rx_mq_hw_init(trans);
	else
		iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);

	iwl_pcie_rxq_restock(trans, trans_pcie->rxq);

	spin_lock_bh(&trans_pcie->rxq->lock);
	iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
	spin_unlock_bh(&trans_pcie->rxq->lock);

	return 0;
}

int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
{
	/* Set interrupt coalescing timer to default (2048 usecs) */
	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);

	/*
	 * We don't configure the RFH.
	 * Restock will be done at alive, after firmware configured the RFH.
	 */
	return _iwl_pcie_rx_init(trans);
}

void iwl_pcie_rx_free(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;
	int i;
	size_t rb_stts_size = trans->trans_cfg->device_family >=
				IWL_DEVICE_FAMILY_AX210 ?
			      sizeof(__le16) : sizeof(struct iwl_rb_status);

	/*
	 * if rxq is NULL, it means that nothing has been allocated,
	 * exit now
	 */
	if (!trans_pcie->rxq) {
		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
		return;
	}

	cancel_work_sync(&rba->rx_alloc);

	iwl_pcie_free_rbs_pool(trans);

	if (trans_pcie->base_rb_stts) {
		dma_free_coherent(trans->dev,
				  rb_stts_size * trans->num_rx_queues,
				  trans_pcie->base_rb_stts,
				  trans_pcie->base_rb_stts_dma);
		trans_pcie->base_rb_stts = NULL;
		trans_pcie->base_rb_stts_dma = 0;
	}

	for (i = 0; i < trans->num_rx_queues; i++) {
		struct iwl_rxq *rxq = &trans_pcie->rxq[i];

		iwl_pcie_free_rxq_dma(trans, rxq);

		if (rxq->napi.poll) {
			napi_disable(&rxq->napi);
			netif_napi_del(&rxq->napi);
		}
	}
	kfree(trans_pcie->rx_pool);
	kfree(trans_pcie->global_table);
	kfree(trans_pcie->rxq);

	if (trans_pcie->alloc_page)
		__free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
}

static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
					  struct iwl_rb_allocator *rba)
{
	spin_lock(&rba->lock);
	list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
	spin_unlock(&rba->lock);
}

/*
 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
 *
 * Called when a RBD can be reused. The RBD is transferred to the allocator.
 * When there are 2 empty RBDs - a request for allocation is posted
 */
static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
				  struct iwl_rx_mem_buffer *rxb,
				  struct iwl_rxq *rxq, bool emergency)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rb_allocator *rba = &trans_pcie->rba;

	/* Move the RBD to the used list, will be moved to allocator in batches
	 * before claiming or posting a request*/
	list_add_tail(&rxb->list, &rxq->rx_used);

	if (unlikely(emergency))
		return;

	/* Count the allocator owned RBDs */
	rxq->used_count++;

	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
	 * after but we still need to post another request.
	 */
	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
		/* Move the 2 RBDs to the allocator ownership.
		 Allocator has another 6 from pool for the request completion*/
		iwl_pcie_rx_move_to_allocator(rxq, rba);

		atomic_inc(&rba->req_pending);
		queue_work(rba->alloc_wq, &rba->rx_alloc);
	}
}

static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
				struct iwl_rxq *rxq,
				struct iwl_rx_mem_buffer *rxb,
				bool emergency,
				int i)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id];
	bool page_stolen = false;
	int max_len = trans_pcie->rx_buf_bytes;
	u32 offset = 0;

	if (WARN_ON(!rxb))
		return;

	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);

	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
		struct iwl_rx_packet *pkt;
		bool reclaim;
		int len;
		struct iwl_rx_cmd_buffer rxcb = {
			._offset = rxb->offset + offset,
			._rx_page_order = trans_pcie->rx_page_order,
			._page = rxb->page,
			._page_stolen = false,
			.truesize = max_len,
		};

		pkt = rxb_addr(&rxcb);

		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
			IWL_DEBUG_RX(trans,
				     "Q %d: RB end marker at offset %d\n",
				     rxq->id, offset);
			break;
		}

		WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
			FH_RSCSR_RXQ_POS != rxq->id,
		     "frame on invalid queue - is on %d and indicates %d\n",
		     rxq->id,
		     (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
			FH_RSCSR_RXQ_POS);

		IWL_DEBUG_RX(trans,
			     "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
			     rxq->id, offset,
			     iwl_get_cmd_string(trans,
						WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)),
			     pkt->hdr.group_id, pkt->hdr.cmd,
			     le16_to_cpu(pkt->hdr.sequence));

		len = iwl_rx_packet_len(pkt);
		len += sizeof(u32); /* account for status word */

		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);

		/* check that what the device tells us made sense */
		if (len < sizeof(*pkt) || offset > max_len)
			break;

		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);

		/* Reclaim a command buffer only if this packet is a response
		 *   to a (driver-originated) command.
		 * If the packet (e.g. Rx frame) originated from uCode,
		 *   there is no command buffer to reclaim.
		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
		 *   but apparently a few don't get set; catch them here. */
		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
		if (reclaim && !pkt->hdr.group_id) {
			int i;

			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
				if (trans_pcie->no_reclaim_cmds[i] ==
							pkt->hdr.cmd) {
					reclaim = false;
					break;
				}
			}
		}

		if (rxq->id == trans_pcie->def_rx_queue)
			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
				       &rxcb);
		else
			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
					   &rxcb, rxq->id);

		/*
		 * After here, we should always check rxcb._page_stolen,
		 * if it is true then one of the handlers took the page.
		 */

		if (reclaim && txq) {
			u16 sequence = le16_to_cpu(pkt->hdr.sequence);
			int index = SEQ_TO_INDEX(sequence);
			int cmd_index = iwl_txq_get_cmd_index(txq, index);

			kfree_sensitive(txq->entries[cmd_index].free_buf);
			txq->entries[cmd_index].free_buf = NULL;

			/* Invoke any callbacks, transfer the buffer to caller,
			 * and fire off the (possibly) blocking
			 * iwl_trans_send_cmd()
			 * as we reclaim the driver command queue */
			if (!rxcb._page_stolen)
				iwl_pcie_hcmd_complete(trans, &rxcb);
			else
				IWL_WARN(trans, "Claim null rxb?\n");
		}

		page_stolen |= rxcb._page_stolen;
		if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
			break;
	}

	/* page was stolen from us -- free our reference */
	if (page_stolen) {
		__free_pages(rxb->page, trans_pcie->rx_page_order);
		rxb->page = NULL;
	}

	/* Reuse the page if possible. For notification packets and
	 * SKBs that fail to Rx correctly, add them back into the
	 * rx_free list for reuse later. */
	if (rxb->page != NULL) {
		rxb->page_dma =
			dma_map_page(trans->dev, rxb->page, rxb->offset,
				     trans_pcie->rx_buf_bytes,
				     DMA_FROM_DEVICE);
		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
			/*
			 * free the page(s) as well to not break
			 * the invariant that the items on the used
			 * list have no page(s)
			 */
			__free_pages(rxb->page, trans_pcie->rx_page_order);
			rxb->page = NULL;
			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
		} else {
			list_add_tail(&rxb->list, &rxq->rx_free);
			rxq->free_count++;
		}
	} else
		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
}

static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
						  struct iwl_rxq *rxq, int i,
						  bool *join)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rx_mem_buffer *rxb;
	u16 vid;

	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4);

	if (!trans->trans_cfg->mq_rx_supported) {
		rxb = rxq->queue[i];
		rxq->queue[i] = NULL;
		return rxb;
	}

	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) {
		struct iwl_rx_completion_desc_bz *cd = rxq->used_bd;

		vid = le16_to_cpu(cd[i].rbid);
		*join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
	} else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
		struct iwl_rx_completion_desc *cd = rxq->used_bd;

		vid = le16_to_cpu(cd[i].rbid);
		*join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
	} else {
		__le32 *cd = rxq->used_bd;

		vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */
	}

	if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
		goto out_err;

	rxb = trans_pcie->global_table[vid - 1];
	if (rxb->invalid)
		goto out_err;

	IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);

	rxb->invalid = true;

	return rxb;

out_err:
	WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
	iwl_force_nmi(trans);
	return NULL;
}

/*
 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
 */
static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct iwl_rxq *rxq;
	u32 r, i, count = 0, handled = 0;
	bool emergency = false;

	if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
		return budget;

	rxq = &trans_pcie->rxq[queue];

restart:
	spin_lock(&rxq->lock);
	/* uCode's read index (stored in shared DRAM) indicates the last Rx
	 * buffer that the driver may process (last buffer filled by ucode). */
	r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
	i = rxq->read;

	/* W/A 9000 device step A0 wrap-around bug */
	r &= (rxq->queue_size - 1);

	/* Rx interrupt, but nothing sent from uCode */
	if (i == r)
		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);

	while (i != r && ++handled < budget) {
		struct iwl_rb_allocator *rba = &trans_pcie->rba;
		struct iwl_rx_mem_buffer *rxb;
		/* number of RBDs still waiting for page allocation */
		u32 rb_pending_alloc =
			atomic_read(&trans_pcie->rba.req_pending) *
			RX_CLAIM_REQ_ALLOC;
		bool join = false;

		if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
			     !emergency)) {
			iwl_pcie_rx_move_to_allocator(rxq, rba);
			emergency = true;
			IWL_DEBUG_TPT(trans,
				      "RX path is in emergency. Pending allocations %d\n",
				      rb_pending_alloc);
		}

		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);

		rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
		if (!rxb)
			goto out;

		if (unlikely(join || rxq->next_rb_is_fragment)) {
			rxq->next_rb_is_fragment = join;
			/*
			 * We can only get a multi-RB in the following cases:
			 *  - firmware issue, sending a too big notification
			 *  - sniffer mode with a large A-MSDU
			 *  - large MTU frames (>2k)
			 * since the multi-RB functionality is limited to newer
			 * hardware that cannot put multiple entries into a
			 * single RB.
			 *
			 * Right now, the higher layers aren't set up to deal
			 * with that, so discard all of these.
			 */
			list_add_tail(&rxb->list, &rxq->rx_free);
			rxq->free_count++;
		} else {
			iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
		}

		i = (i + 1) & (rxq->queue_size - 1);

		/*
		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
		 * try to claim the pre-allocated buffers from the allocator.
		 * If not ready - will try to reclaim next time.
		 * There is no need to reschedule work - allocator exits only
		 * on success
		 */
		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
			iwl_pcie_rx_allocator_get(trans, rxq);

		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
			/* Add the remaining empty RBDs for allocator use */
			iwl_pcie_rx_move_to_allocator(rxq, rba);
		} else if (emergency) {
			count++;
			if (count == 8) {
				count = 0;
				if (rb_pending_alloc < rxq->queue_size / 3) {
					IWL_DEBUG_TPT(trans,
						      "RX path exited emergency. Pending allocations %d\n",
						      rb_pending_alloc);
					emergency = false;
				}

				rxq->read = i;
				spin_unlock(&rxq->lock);
				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
				iwl_pcie_rxq_restock(trans, rxq);
				goto restart;
			}
		}
	}
out:
	/* Backtrack one entry */
	rxq->read = i;
	spin_unlock(&rxq->lock);

	/*
	 * handle a case where in emergency there are some unallocated RBDs.
	 * those RBDs are in the used list, but are not tracked by the queue's
	 * used_count which counts allocator owned RBDs.
	 * unallocated emergency RBDs must be allocated on exit, otherwise
	 * when called again the function may not be in emergency mode and
	 * they will be handed to the allocator with no tracking in the RBD
	 * allocator counters, which will lead to them never being claimed back
	 * by the queue.
	 * by allocating them here, they are now in the queue free list, and
	 * will be restocked by the next call of iwl_pcie_rxq_restock.
	 */
	if (unlikely(emergency && count))
		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);

	iwl_pcie_rxq_restock(trans, rxq);

	return handled;
}

static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
{
	u8 queue = entry->entry;
	struct msix_entry *entries = entry - queue;

	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
}

/*
 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
 * This interrupt handler should be used with RSS queue only.
 */
irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
{
	struct msix_entry *entry = dev_id;
	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
	struct iwl_trans *trans = trans_pcie->trans;
	struct iwl_rxq *rxq;

	trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);

	if (WARN_ON(entry->entry >= trans->num_rx_queues))
		return IRQ_NONE;

	if (!trans_pcie->rxq) {
		if (net_ratelimit())
			IWL_ERR(trans,
				"[%d] Got MSI-X interrupt before we have Rx queues\n",
				entry->entry);
		return IRQ_NONE;
	}

	rxq = &trans_pcie->rxq[entry->entry];
	lock_map_acquire(&trans->sync_cmd_lockdep_map);
	IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry);

	local_bh_disable();
	if (napi_schedule_prep(&rxq->napi))
		__napi_schedule(&rxq->napi);
	else
		iwl_pcie_clear_irq(trans, entry->entry);
	local_bh_enable();

	lock_map_release(&trans->sync_cmd_lockdep_map);

	return IRQ_HANDLED;
}

/*
 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
 */
static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
{
	int i;

	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
	if (trans->cfg->internal_wimax_coex &&
	    !trans->cfg->apmg_not_supported &&
	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
			    APMG_PS_CTRL_VAL_RESET_REQ))) {
		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
		iwl_op_mode_wimax_active(trans->op_mode);
		wake_up(&trans->wait_command_queue);
		return;
	}

	for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
		if (!trans->txqs.txq[i])
			continue;
		del_timer(&trans->txqs.txq[i]->stuck_timer);
	}

	/* The STATUS_FW_ERROR bit is set in this function. This must happen
	 * before we wake up the command caller, to ensure a proper cleanup. */
	iwl_trans_fw_error(trans, false);

	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
	wake_up(&trans->wait_command_queue);
}

static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
{
	u32 inta;

	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);

	trace_iwlwifi_dev_irq(trans->dev);

	/* Discover which interrupts are active/pending */
	inta = iwl_read32(trans, CSR_INT);

	/* the thread will service interrupts and re-enable them */
	return inta;
}

/* a device (PCI-E) page is 4096 bytes long */
#define ICT_SHIFT	12
#define ICT_SIZE	(1 << ICT_SHIFT)
#define ICT_COUNT	(ICT_SIZE / sizeof(u32))

/* interrupt handler using ict table, with this interrupt driver will
 * stop using INTA register to get device's interrupt, reading this register
 * is expensive, device will write interrupts in ICT dram table, increment
 * index then will fire interrupt to driver, driver will OR all ICT table
 * entries from current index up to table entry with 0 value. the result is
 * the interrupt we need to service, driver will set the entries back to 0 and
 * set index.
 */
static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 inta;
	u32 val = 0;
	u32 read;

	trace_iwlwifi_dev_irq(trans->dev);

	/* Ignore interrupt if there's nothing in NIC to service.
	 * This may be due to IRQ shared with another device,
	 * or due to sporadic interrupts thrown from our NIC. */
	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
	if (!read)
		return 0;

	/*
	 * Collect all entries up to the first 0, starting from ict_index;
	 * note we already read at ict_index.
	 */
	do {
		val |= read;
		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
				trans_pcie->ict_index, read);
		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
		trans_pcie->ict_index =
			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));

		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
					   read);
	} while (read);

	/* We should not get this value, just ignore it. */
	if (val == 0xffffffff)
		val = 0;

	/*
	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
	 * (bit 15 before shifting it to 31) to clear when using interrupt
	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
	 * so we use them to decide on the real state of the Rx bit.
	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
	 */
	if (val & 0xC0000)
		val |= 0x8000;

	inta = (0xff & val) | ((0xff00 & val) << 16);
	return inta;
}

void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans, bool from_irq)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
	bool hw_rfkill, prev, report;

	mutex_lock(&trans_pcie->mutex);
	prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
	hw_rfkill = iwl_is_rfkill_set(trans);
	if (hw_rfkill) {
		set_bit(STATUS_RFKILL_OPMODE, &trans->status);
		set_bit(STATUS_RFKILL_HW, &trans->status);
	}
	if (trans_pcie->opmode_down)
		report = hw_rfkill;
	else
		report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);

	IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
		 hw_rfkill ? "disable radio" : "enable radio");

	isr_stats->rfkill++;

	if (prev != report)
		iwl_trans_pcie_rf_kill(trans, report, from_irq);
	mutex_unlock(&trans_pcie->mutex);

	if (hw_rfkill) {
		if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
				       &trans->status))
			IWL_DEBUG_RF_KILL(trans,
					  "Rfkill while SYNC HCMD in flight\n");
		wake_up(&trans->wait_command_queue);
	} else {
		clear_bit(STATUS_RFKILL_HW, &trans->status);
		if (trans_pcie->opmode_down)
			clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
	}
}

irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
{
	struct iwl_trans *trans = dev_id;
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
	u32 inta = 0;
	u32 handled = 0;
	bool polling = false;

	lock_map_acquire(&trans->sync_cmd_lockdep_map);

	spin_lock_bh(&trans_pcie->irq_lock);

	/* dram interrupt table not set yet,
	 * use legacy interrupt.
	 */
	if (likely(trans_pcie->use_ict))
		inta = iwl_pcie_int_cause_ict(trans);
	else
		inta = iwl_pcie_int_cause_non_ict(trans);

	if (iwl_have_debug_level(IWL_DL_ISR)) {
		IWL_DEBUG_ISR(trans,
			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
			      inta, trans_pcie->inta_mask,
			      iwl_read32(trans, CSR_INT_MASK),
			      iwl_read32(trans, CSR_FH_INT_STATUS));
		if (inta & (~trans_pcie->inta_mask))
			IWL_DEBUG_ISR(trans,
				      "We got a masked interrupt (0x%08x)\n",
				      inta & (~trans_pcie->inta_mask));
	}

	inta &= trans_pcie->inta_mask;

	/*
	 * Ignore interrupt if there's nothing in NIC to service.
	 * This may be due to IRQ shared with another device,
	 * or due to sporadic interrupts thrown from our NIC.
	 */
	if (unlikely(!inta)) {
		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
		/*
		 * Re-enable interrupts here since we don't
		 * have anything to service
		 */
		if (test_bit(STATUS_INT_ENABLED, &trans->status))
			_iwl_enable_interrupts(trans);
		spin_unlock_bh(&trans_pcie->irq_lock);
		lock_map_release(&trans->sync_cmd_lockdep_map);
		return IRQ_NONE;
	}

	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
		/*
		 * Hardware disappeared. It might have
		 * already raised an interrupt.
		 */
		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
		spin_unlock_bh(&trans_pcie->irq_lock);
		goto out;
	}

	/* Ack/clear/reset pending uCode interrupts.
	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
	 */
	/* There is a hardware bug in the interrupt mask function that some
	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
	 * they are disabled in the CSR_INT_MASK register. Furthermore the
	 * ICT interrupt handling mechanism has another bug that might cause
	 * these unmasked interrupts fail to be detected. We workaround the
	 * hardware bugs here by ACKing all the possible interrupts so that
	 * interrupt coalescing can still be achieved.
	 */
	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);

	if (iwl_have_debug_level(IWL_DL_ISR))
		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
			      inta, iwl_read32(trans, CSR_INT_MASK));

	spin_unlock_bh(&trans_pcie->irq_lock);

	/* Now service all interrupt bits discovered above. */
	if (inta & CSR_INT_BIT_HW_ERR) {
		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");

		/* Tell the device to stop sending interrupts */
		iwl_disable_interrupts(trans);

		isr_stats->hw++;
		iwl_pcie_irq_handle_error(trans);

		handled |= CSR_INT_BIT_HW_ERR;

		goto out;
	}

	/* NIC fires this, but we don't use it, redundant with WAKEUP */
	if (inta & CSR_INT_BIT_SCD) {
		IWL_DEBUG_ISR(trans,
			      "Scheduler finished to transmit the frame/frames.\n");
		isr_stats->sch++;
	}

	/* Alive notification via Rx interrupt will do the real work */
	if (inta & CSR_INT_BIT_ALIVE) {
		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
		isr_stats->alive++;
		if (trans->trans_cfg->gen2) {
			/*
			 * We can restock, since firmware configured
			 * the RFH
			 */
			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
		}

		handled |= CSR_INT_BIT_ALIVE;
	}

	/* Safely ignore these bits for debug checks below */
	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);

	/* HW RF KILL switch toggled */
	if (inta & CSR_INT_BIT_RF_KILL) {
		iwl_pcie_handle_rfkill_irq(trans, true);
		handled |= CSR_INT_BIT_RF_KILL;
	}

	/* Chip got too hot and stopped itself */
	if (inta & CSR_INT_BIT_CT_KILL) {
		IWL_ERR(trans, "Microcode CT kill error detected.\n");
		isr_stats->ctkill++;
		handled |= CSR_INT_BIT_CT_KILL;
	}

	/* Error detected by uCode */
	if (inta & CSR_INT_BIT_SW_ERR) {
		IWL_ERR(trans, "Microcode SW error detected. "
			" Restarting 0x%X.\n", inta);
		isr_stats->sw++;
		iwl_pcie_irq_handle_error(trans);
		handled |= CSR_INT_BIT_SW_ERR;
	}

	/* uCode wakes up after power-down sleep */
	if (inta & CSR_INT_BIT_WAKEUP) {
		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
		iwl_pcie_rxq_check_wrptr(trans);
		iwl_pcie_txq_check_wrptrs(trans);

		isr_stats->wakeup++;

		handled |= CSR_INT_BIT_WAKEUP;
	}

	/* All uCode command responses, including Tx command responses,
	 * Rx "responses" (frame-received notification), and other
	 * notifications from uCode come through here*/
	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
		    CSR_INT_BIT_RX_PERIODIC)) {
		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
			iwl_write32(trans, CSR_FH_INT_STATUS,
					CSR_FH_INT_RX_MASK);
		}
		if (inta & CSR_INT_BIT_RX_PERIODIC) {
			handled |= CSR_INT_BIT_RX_PERIODIC;
			iwl_write32(trans,
				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
		}
		/* Sending RX interrupt require many steps to be done in the
		 * device:
		 * 1- write interrupt to current index in ICT table.
		 * 2- dma RX frame.
		 * 3- update RX shared data to indicate last write index.
		 * 4- send interrupt.
		 * This could lead to RX race, driver could receive RX interrupt
		 * but the shared data changes does not reflect this;
		 * periodic interrupt will detect any dangling Rx activity.
		 */

		/* Disable periodic interrupt; we use it as just a one-shot. */
		iwl_write8(trans, CSR_INT_PERIODIC_REG,
			    CSR_INT_PERIODIC_DIS);

		/*
		 * Enable periodic interrupt in 8 msec only if we received
		 * real RX interrupt (instead of just periodic int), to catch
		 * any dangling Rx interrupt.  If it was just the periodic
		 * interrupt, there was no dangling Rx activity, and no need
		 * to extend the periodic interrupt; one-shot is enough.
		 */
		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
			iwl_write8(trans, CSR_INT_PERIODIC_REG,
				   CSR_INT_PERIODIC_ENA);

		isr_stats->rx++;

		local_bh_disable();
		if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
			polling = true;
			__napi_schedule(&trans_pcie->rxq[0].napi);
		}
		local_bh_enable();
	}

	/* This "Tx" DMA channel is used only for loading uCode */
	if (inta & CSR_INT_BIT_FH_TX) {
		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
		isr_stats->tx++;
		handled |= CSR_INT_BIT_FH_TX;
		/* Wake up uCode load routine, now that load is complete */
		trans_pcie->ucode_write_complete = true;
		wake_up(&trans_pcie->ucode_write_waitq);
		/* Wake up IMR write routine, now that write to SRAM is complete */
		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
			trans_pcie->imr_status = IMR_D2S_COMPLETED;
			wake_up(&trans_pcie->ucode_write_waitq);
		}
	}

	if (inta & ~handled) {
		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
		isr_stats->unhandled++;
	}

	if (inta & ~(trans_pcie->inta_mask)) {
		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
			 inta & ~trans_pcie->inta_mask);
	}

	if (!polling) {
		spin_lock_bh(&trans_pcie->irq_lock);
		/* only Re-enable all interrupt if disabled by irq */
		if (test_bit(STATUS_INT_ENABLED, &trans->status))
			_iwl_enable_interrupts(trans);
		/* we are loading the firmware, enable FH_TX interrupt only */
		else if (handled & CSR_INT_BIT_FH_TX)
			iwl_enable_fw_load_int(trans);
		/* Re-enable RF_KILL if it occurred */
		else if (handled & CSR_INT_BIT_RF_KILL)
			iwl_enable_rfkill_int(trans);
		/* Re-enable the ALIVE / Rx interrupt if it occurred */
		else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
			iwl_enable_fw_load_int_ctx_info(trans);
		spin_unlock_bh(&trans_pcie->irq_lock);
	}

out:
	lock_map_release(&trans->sync_cmd_lockdep_map);
	return IRQ_HANDLED;
}

/******************************************************************************
 *
 * ICT functions
 *
 ******************************************************************************/

/* Free dram table */
void iwl_pcie_free_ict(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);

	if (trans_pcie->ict_tbl) {
		dma_free_coherent(trans->dev, ICT_SIZE,
				  trans_pcie->ict_tbl,
				  trans_pcie->ict_tbl_dma);
		trans_pcie->ict_tbl = NULL;
		trans_pcie->ict_tbl_dma = 0;
	}
}

/*
 * allocate dram shared table, it is an aligned memory
 * block of ICT_SIZE.
 * also reset all data related to ICT table interrupt.
 */
int iwl_pcie_alloc_ict(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);

	trans_pcie->ict_tbl =
		dma_alloc_coherent(trans->dev, ICT_SIZE,
				   &trans_pcie->ict_tbl_dma, GFP_KERNEL);
	if (!trans_pcie->ict_tbl)
		return -ENOMEM;

	/* just an API sanity check ... it is guaranteed to be aligned */
	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
		iwl_pcie_free_ict(trans);
		return -EINVAL;
	}

	return 0;
}

/* Device is going up inform it about using ICT interrupt table,
 * also we need to tell the driver to start using ICT interrupt.
 */
void iwl_pcie_reset_ict(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
	u32 val;

	if (!trans_pcie->ict_tbl)
		return;

	spin_lock_bh(&trans_pcie->irq_lock);
	_iwl_disable_interrupts(trans);

	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);

	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;

	val |= CSR_DRAM_INT_TBL_ENABLE |
	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
	       CSR_DRAM_INIT_TBL_WRITE_POINTER;

	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);

	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
	trans_pcie->use_ict = true;
	trans_pcie->ict_index = 0;
	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
	_iwl_enable_interrupts(trans);
	spin_unlock_bh(&trans_pcie->irq_lock);
}

/* Device is going down disable ict interrupt usage */
void iwl_pcie_disable_ict(struct iwl_trans *trans)
{
	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);

	spin_lock_bh(&trans_pcie->irq_lock);
	trans_pcie->use_ict = false;
	spin_unlock_bh(&trans_pcie->irq_lock);
}

irqreturn_t iwl_pcie_isr(int irq, void *data)
{
	struct iwl_trans *trans = data;

	if (!trans)
		return IRQ_NONE;

	/* Disable (but don't clear!) interrupts here to avoid
	 * back-to-back ISRs and sporadic interrupts from our NIC.
	 * If we have something to service, the tasklet will re-enable ints.
	 * If we *don't* have something, we'll re-enable before leaving here.
	 */
	iwl_write32(trans, CSR_INT_MASK, 0x00000000);

	return IRQ_WAKE_THREAD;
}

irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
{
	struct msix_entry *entry = dev_id;
	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
	struct iwl_trans *trans = trans_pcie->trans;
	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
	u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE;
	u32 inta_fh, inta_hw;
	bool polling = false;
	bool sw_err;

	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
		inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0;

	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
		inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1;

	lock_map_acquire(&trans->sync_cmd_lockdep_map);

	spin_lock_bh(&trans_pcie->irq_lock);
	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
	/*
	 * Clear causes registers to avoid being handling the same cause.
	 */
	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk);
	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
	spin_unlock_bh(&trans_pcie->irq_lock);

	trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);

	if (unlikely(!(inta_fh | inta_hw))) {
		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
		lock_map_release(&trans->sync_cmd_lockdep_map);
		return IRQ_NONE;
	}

	if (iwl_have_debug_level(IWL_DL_ISR)) {
		IWL_DEBUG_ISR(trans,
			      "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
			      entry->entry, inta_fh, trans_pcie->fh_mask,
			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
		if (inta_fh & ~trans_pcie->fh_mask)
			IWL_DEBUG_ISR(trans,
				      "We got a masked interrupt (0x%08x)\n",
				      inta_fh & ~trans_pcie->fh_mask);
	}

	inta_fh &= trans_pcie->fh_mask;

	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
	    inta_fh & MSIX_FH_INT_CAUSES_Q0) {
		local_bh_disable();
		if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
			polling = true;
			__napi_schedule(&trans_pcie->rxq[0].napi);
		}
		local_bh_enable();
	}

	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
	    inta_fh & MSIX_FH_INT_CAUSES_Q1) {
		local_bh_disable();
		if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) {
			polling = true;
			__napi_schedule(&trans_pcie->rxq[1].napi);
		}
		local_bh_enable();
	}

	/* This "Tx" DMA channel is used only for loading uCode */
	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM &&
	    trans_pcie->imr_status == IMR_D2S_REQUESTED) {
		IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n");
		isr_stats->tx++;

		/* Wake up IMR routine once write to SRAM is complete */
		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
			trans_pcie->imr_status = IMR_D2S_COMPLETED;
			wake_up(&trans_pcie->ucode_write_waitq);
		}
	} else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
		isr_stats->tx++;
		/*
		 * Wake up uCode load routine,
		 * now that load is complete
		 */
		trans_pcie->ucode_write_complete = true;
		wake_up(&trans_pcie->ucode_write_waitq);

		/* Wake up IMR routine once write to SRAM is complete */
		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
			trans_pcie->imr_status = IMR_D2S_COMPLETED;
			wake_up(&trans_pcie->ucode_write_waitq);
		}
	}

	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
		sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ;
	else
		sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR;

	/* Error detected by uCode */
	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) {
		IWL_ERR(trans,
			"Microcode SW error detected. Restarting 0x%X.\n",
			inta_fh);
		isr_stats->sw++;
		/* during FW reset flow report errors from there */
		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
			trans_pcie->imr_status = IMR_D2S_ERROR;
			wake_up(&trans_pcie->imr_waitq);
		} else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) {
			trans_pcie->fw_reset_state = FW_RESET_ERROR;
			wake_up(&trans_pcie->fw_reset_waitq);
		} else {
			iwl_pcie_irq_handle_error(trans);
		}
	}

	/* After checking FH register check HW register */
	if (iwl_have_debug_level(IWL_DL_ISR)) {
		IWL_DEBUG_ISR(trans,
			      "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
			      entry->entry, inta_hw, trans_pcie->hw_mask,
			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
		if (inta_hw & ~trans_pcie->hw_mask)
			IWL_DEBUG_ISR(trans,
				      "We got a masked interrupt 0x%08x\n",
				      inta_hw & ~trans_pcie->hw_mask);
	}

	inta_hw &= trans_pcie->hw_mask;

	/* Alive notification via Rx interrupt will do the real work */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
		isr_stats->alive++;
		if (trans->trans_cfg->gen2) {
			/* We can restock, since firmware configured the RFH */
			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
		}
	}

	/*
	 * In some rare cases when the HW is in a bad state, we may
	 * get this interrupt too early, when prph_info is still NULL.
	 * So make sure that it's not NULL to prevent crashing.
	 */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) {
		u32 sleep_notif =
			le32_to_cpu(trans_pcie->prph_info->sleep_notif);
		if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
		    sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
			IWL_DEBUG_ISR(trans,
				      "Sx interrupt: sleep notification = 0x%x\n",
				      sleep_notif);
			trans_pcie->sx_complete = true;
			wake_up(&trans_pcie->sx_waitq);
		} else {
			/* uCode wakes up after power-down sleep */
			IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
			iwl_pcie_rxq_check_wrptr(trans);
			iwl_pcie_txq_check_wrptrs(trans);

			isr_stats->wakeup++;
		}
	}

	/* Chip got too hot and stopped itself */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
		IWL_ERR(trans, "Microcode CT kill error detected.\n");
		isr_stats->ctkill++;
	}

	/* HW RF KILL switch toggled */
	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
		iwl_pcie_handle_rfkill_irq(trans, true);

	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
		IWL_ERR(trans,
			"Hardware error detected. Restarting.\n");

		isr_stats->hw++;
		trans->dbg.hw_error = true;
		iwl_pcie_irq_handle_error(trans);
	}

	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) {
		IWL_DEBUG_ISR(trans, "Reset flow completed\n");
		trans_pcie->fw_reset_state = FW_RESET_OK;
		wake_up(&trans_pcie->fw_reset_waitq);
	}

	if (!polling)
		iwl_pcie_clear_irq(trans, entry->entry);

	lock_map_release(&trans->sync_cmd_lockdep_map);

	return IRQ_HANDLED;
}