Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 | // SPDX-License-Identifier: GPL-2.0 /* * linux/arch/parisc/kernel/time.c * * Copyright (C) 1991, 1992, 1995 Linus Torvalds * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org) * * 1994-07-02 Alan Modra * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime * 1998-12-20 Updated NTP code according to technical memorandum Jan '96 * "A Kernel Model for Precision Timekeeping" by Dave Mills */ #include <linux/errno.h> #include <linux/module.h> #include <linux/rtc.h> #include <linux/sched.h> #include <linux/sched/clock.h> #include <linux/sched_clock.h> #include <linux/kernel.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/time.h> #include <linux/init.h> #include <linux/smp.h> #include <linux/profile.h> #include <linux/clocksource.h> #include <linux/platform_device.h> #include <linux/ftrace.h> #include <linux/uaccess.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/page.h> #include <asm/param.h> #include <asm/pdc.h> #include <asm/led.h> #include <linux/timex.h> int time_keeper_id __read_mostly; /* CPU used for timekeeping. */ static unsigned long clocktick __ro_after_init; /* timer cycles per tick */ /* * We keep time on PA-RISC Linux by using the Interval Timer which is * a pair of registers; one is read-only and one is write-only; both * accessed through CR16. The read-only register is 32 or 64 bits wide, * and increments by 1 every CPU clock tick. The architecture only * guarantees us a rate between 0.5 and 2, but all implementations use a * rate of 1. The write-only register is 32-bits wide. When the lowest * 32 bits of the read-only register compare equal to the write-only * register, it raises a maskable external interrupt. Each processor has * an Interval Timer of its own and they are not synchronised. * * We want to generate an interrupt every 1/HZ seconds. So we program * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data * is programmed with the intended time of the next tick. We can be * held off for an arbitrarily long period of time by interrupts being * disabled, so we may miss one or more ticks. */ irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id) { unsigned long now; unsigned long next_tick; unsigned long ticks_elapsed = 0; unsigned int cpu = smp_processor_id(); struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu); /* gcc can optimize for "read-only" case with a local clocktick */ unsigned long cpt = clocktick; /* Initialize next_tick to the old expected tick time. */ next_tick = cpuinfo->it_value; /* Calculate how many ticks have elapsed. */ now = mfctl(16); do { ++ticks_elapsed; next_tick += cpt; } while (next_tick - now > cpt); /* Store (in CR16 cycles) up to when we are accounting right now. */ cpuinfo->it_value = next_tick; /* Go do system house keeping. */ if (IS_ENABLED(CONFIG_SMP) && (cpu != time_keeper_id)) ticks_elapsed = 0; legacy_timer_tick(ticks_elapsed); /* Skip clockticks on purpose if we know we would miss those. * The new CR16 must be "later" than current CR16 otherwise * itimer would not fire until CR16 wrapped - e.g 4 seconds * later on a 1Ghz processor. We'll account for the missed * ticks on the next timer interrupt. * We want IT to fire modulo clocktick even if we miss/skip some. * But those interrupts don't in fact get delivered that regularly. * * "next_tick - now" will always give the difference regardless * if one or the other wrapped. If "now" is "bigger" we'll end up * with a very large unsigned number. */ now = mfctl(16); while (next_tick - now > cpt) next_tick += cpt; /* Program the IT when to deliver the next interrupt. * Only bottom 32-bits of next_tick are writable in CR16! * Timer interrupt will be delivered at least a few hundred cycles * after the IT fires, so if we are too close (<= 8000 cycles) to the * next cycle, simply skip it. */ if (next_tick - now <= 8000) next_tick += cpt; mtctl(next_tick, 16); return IRQ_HANDLED; } unsigned long profile_pc(struct pt_regs *regs) { unsigned long pc = instruction_pointer(regs); if (regs->gr[0] & PSW_N) pc -= 4; #ifdef CONFIG_SMP if (in_lock_functions(pc)) pc = regs->gr[2]; #endif return pc; } EXPORT_SYMBOL(profile_pc); /* clock source code */ static u64 notrace read_cr16(struct clocksource *cs) { return get_cycles(); } static struct clocksource clocksource_cr16 = { .name = "cr16", .rating = 300, .read = read_cr16, .mask = CLOCKSOURCE_MASK(BITS_PER_LONG), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; void start_cpu_itimer(void) { unsigned int cpu = smp_processor_id(); unsigned long next_tick = mfctl(16) + clocktick; mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */ per_cpu(cpu_data, cpu).it_value = next_tick; } #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC) static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm) { struct pdc_tod tod_data; memset(tm, 0, sizeof(*tm)); if (pdc_tod_read(&tod_data) < 0) return -EOPNOTSUPP; /* we treat tod_sec as unsigned, so this can work until year 2106 */ rtc_time64_to_tm(tod_data.tod_sec, tm); return 0; } static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm) { time64_t secs = rtc_tm_to_time64(tm); int ret; /* hppa has Y2K38 problem: pdc_tod_set() takes an u32 value! */ ret = pdc_tod_set(secs, 0); if (ret != 0) { pr_warn("pdc_tod_set(%lld) returned error %d\n", secs, ret); if (ret == PDC_INVALID_ARG) return -EINVAL; return -EOPNOTSUPP; } return 0; } static const struct rtc_class_ops rtc_generic_ops = { .read_time = rtc_generic_get_time, .set_time = rtc_generic_set_time, }; static int __init rtc_init(void) { struct platform_device *pdev; pdev = platform_device_register_data(NULL, "rtc-generic", -1, &rtc_generic_ops, sizeof(rtc_generic_ops)); return PTR_ERR_OR_ZERO(pdev); } device_initcall(rtc_init); #endif void read_persistent_clock64(struct timespec64 *ts) { static struct pdc_tod tod_data; if (pdc_tod_read(&tod_data) == 0) { ts->tv_sec = tod_data.tod_sec; ts->tv_nsec = tod_data.tod_usec * 1000; } else { printk(KERN_ERR "Error reading tod clock\n"); ts->tv_sec = 0; ts->tv_nsec = 0; } } static u64 notrace read_cr16_sched_clock(void) { return get_cycles(); } /* * timer interrupt and sched_clock() initialization */ void __init time_init(void) { unsigned long cr16_hz; clocktick = (100 * PAGE0->mem_10msec) / HZ; start_cpu_itimer(); /* get CPU 0 started */ cr16_hz = 100 * PAGE0->mem_10msec; /* Hz */ /* register as sched_clock source */ sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz); } static int __init init_cr16_clocksource(void) { /* * The cr16 interval timers are not synchronized across CPUs. */ if (num_online_cpus() > 1 && !running_on_qemu) { clocksource_cr16.name = "cr16_unstable"; clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE; clocksource_cr16.rating = 0; } /* register at clocksource framework */ clocksource_register_hz(&clocksource_cr16, 100 * PAGE0->mem_10msec); return 0; } device_initcall(init_cr16_clocksource); |