Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 | /* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs */ #include <linux/kallsyms.h> #include <linux/kprobes.h> #include <linux/uaccess.h> #include <linux/utsname.h> #include <linux/hardirq.h> #include <linux/kdebug.h> #include <linux/module.h> #include <linux/ptrace.h> #include <linux/sched/debug.h> #include <linux/sched/task_stack.h> #include <linux/ftrace.h> #include <linux/kexec.h> #include <linux/bug.h> #include <linux/nmi.h> #include <linux/sysfs.h> #include <linux/kasan.h> #include <asm/cpu_entry_area.h> #include <asm/stacktrace.h> #include <asm/unwind.h> int panic_on_unrecovered_nmi; int panic_on_io_nmi; static int die_counter; static struct pt_regs exec_summary_regs; bool noinstr in_task_stack(unsigned long *stack, struct task_struct *task, struct stack_info *info) { unsigned long *begin = task_stack_page(task); unsigned long *end = task_stack_page(task) + THREAD_SIZE; if (stack < begin || stack >= end) return false; info->type = STACK_TYPE_TASK; info->begin = begin; info->end = end; info->next_sp = NULL; return true; } /* Called from get_stack_info_noinstr - so must be noinstr too */ bool noinstr in_entry_stack(unsigned long *stack, struct stack_info *info) { struct entry_stack *ss = cpu_entry_stack(smp_processor_id()); void *begin = ss; void *end = ss + 1; if ((void *)stack < begin || (void *)stack >= end) return false; info->type = STACK_TYPE_ENTRY; info->begin = begin; info->end = end; info->next_sp = NULL; return true; } static void printk_stack_address(unsigned long address, int reliable, const char *log_lvl) { touch_nmi_watchdog(); printk("%s %s%pBb\n", log_lvl, reliable ? "" : "? ", (void *)address); } static int copy_code(struct pt_regs *regs, u8 *buf, unsigned long src, unsigned int nbytes) { if (!user_mode(regs)) return copy_from_kernel_nofault(buf, (u8 *)src, nbytes); /* The user space code from other tasks cannot be accessed. */ if (regs != task_pt_regs(current)) return -EPERM; /* * Even if named copy_from_user_nmi() this can be invoked from * other contexts and will not try to resolve a pagefault, which is * the correct thing to do here as this code can be called from any * context. */ return copy_from_user_nmi(buf, (void __user *)src, nbytes); } /* * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus: * * In case where we don't have the exact kernel image (which, if we did, we can * simply disassemble and navigate to the RIP), the purpose of the bigger * prologue is to have more context and to be able to correlate the code from * the different toolchains better. * * In addition, it helps in recreating the register allocation of the failing * kernel and thus make sense of the register dump. * * What is more, the additional complication of a variable length insn arch like * x86 warrants having longer byte sequence before rIP so that the disassembler * can "sync" up properly and find instruction boundaries when decoding the * opcode bytes. * * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random * guesstimate in attempt to achieve all of the above. */ void show_opcodes(struct pt_regs *regs, const char *loglvl) { #define PROLOGUE_SIZE 42 #define EPILOGUE_SIZE 21 #define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE) u8 opcodes[OPCODE_BUFSIZE]; unsigned long prologue = regs->ip - PROLOGUE_SIZE; switch (copy_code(regs, opcodes, prologue, sizeof(opcodes))) { case 0: printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %" __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes, opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1); break; case -EPERM: /* No access to the user space stack of other tasks. Ignore. */ break; default: printk("%sCode: Unable to access opcode bytes at 0x%lx.\n", loglvl, prologue); break; } } void show_ip(struct pt_regs *regs, const char *loglvl) { #ifdef CONFIG_X86_32 printk("%sEIP: %pS\n", loglvl, (void *)regs->ip); #else printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip); #endif show_opcodes(regs, loglvl); } void show_iret_regs(struct pt_regs *regs, const char *log_lvl) { show_ip(regs, log_lvl); printk("%sRSP: %04x:%016lx EFLAGS: %08lx", log_lvl, (int)regs->ss, regs->sp, regs->flags); } static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs, bool partial, const char *log_lvl) { /* * These on_stack() checks aren't strictly necessary: the unwind code * has already validated the 'regs' pointer. The checks are done for * ordering reasons: if the registers are on the next stack, we don't * want to print them out yet. Otherwise they'll be shown as part of * the wrong stack. Later, when show_trace_log_lvl() switches to the * next stack, this function will be called again with the same regs so * they can be printed in the right context. */ if (!partial && on_stack(info, regs, sizeof(*regs))) { __show_regs(regs, SHOW_REGS_SHORT, log_lvl); } else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET, IRET_FRAME_SIZE)) { /* * When an interrupt or exception occurs in entry code, the * full pt_regs might not have been saved yet. In that case * just print the iret frame. */ show_iret_regs(regs, log_lvl); } } /* * This function reads pointers from the stack and dereferences them. The * pointers may not have their KMSAN shadow set up properly, which may result * in false positive reports. Disable instrumentation to avoid those. */ __no_kmsan_checks static void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs, unsigned long *stack, const char *log_lvl) { struct unwind_state state; struct stack_info stack_info = {0}; unsigned long visit_mask = 0; int graph_idx = 0; bool partial = false; printk("%sCall Trace:\n", log_lvl); unwind_start(&state, task, regs, stack); regs = unwind_get_entry_regs(&state, &partial); /* * Iterate through the stacks, starting with the current stack pointer. * Each stack has a pointer to the next one. * * x86-64 can have several stacks: * - task stack * - interrupt stack * - HW exception stacks (double fault, nmi, debug, mce) * - entry stack * * x86-32 can have up to four stacks: * - task stack * - softirq stack * - hardirq stack * - entry stack */ for (stack = stack ?: get_stack_pointer(task, regs); stack; stack = stack_info.next_sp) { const char *stack_name; stack = PTR_ALIGN(stack, sizeof(long)); if (get_stack_info(stack, task, &stack_info, &visit_mask)) { /* * We weren't on a valid stack. It's possible that * we overflowed a valid stack into a guard page. * See if the next page up is valid so that we can * generate some kind of backtrace if this happens. */ stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack); if (get_stack_info(stack, task, &stack_info, &visit_mask)) break; } stack_name = stack_type_name(stack_info.type); if (stack_name) printk("%s <%s>\n", log_lvl, stack_name); if (regs) show_regs_if_on_stack(&stack_info, regs, partial, log_lvl); /* * Scan the stack, printing any text addresses we find. At the * same time, follow proper stack frames with the unwinder. * * Addresses found during the scan which are not reported by * the unwinder are considered to be additional clues which are * sometimes useful for debugging and are prefixed with '?'. * This also serves as a failsafe option in case the unwinder * goes off in the weeds. */ for (; stack < stack_info.end; stack++) { unsigned long real_addr; int reliable = 0; unsigned long addr = READ_ONCE_NOCHECK(*stack); unsigned long *ret_addr_p = unwind_get_return_address_ptr(&state); if (!__kernel_text_address(addr)) continue; /* * Don't print regs->ip again if it was already printed * by show_regs_if_on_stack(). */ if (regs && stack == ®s->ip) goto next; if (stack == ret_addr_p) reliable = 1; /* * When function graph tracing is enabled for a * function, its return address on the stack is * replaced with the address of an ftrace handler * (return_to_handler). In that case, before printing * the "real" address, we want to print the handler * address as an "unreliable" hint that function graph * tracing was involved. */ real_addr = ftrace_graph_ret_addr(task, &graph_idx, addr, stack); if (real_addr != addr) printk_stack_address(addr, 0, log_lvl); printk_stack_address(real_addr, reliable, log_lvl); if (!reliable) continue; next: /* * Get the next frame from the unwinder. No need to * check for an error: if anything goes wrong, the rest * of the addresses will just be printed as unreliable. */ unwind_next_frame(&state); /* if the frame has entry regs, print them */ regs = unwind_get_entry_regs(&state, &partial); if (regs) show_regs_if_on_stack(&stack_info, regs, partial, log_lvl); } if (stack_name) printk("%s </%s>\n", log_lvl, stack_name); } } void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl) { task = task ? : current; /* * Stack frames below this one aren't interesting. Don't show them * if we're printing for %current. */ if (!sp && task == current) sp = get_stack_pointer(current, NULL); show_trace_log_lvl(task, NULL, sp, loglvl); } void show_stack_regs(struct pt_regs *regs) { show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT); } static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED; static int die_owner = -1; static unsigned int die_nest_count; unsigned long oops_begin(void) { int cpu; unsigned long flags; oops_enter(); /* racy, but better than risking deadlock. */ raw_local_irq_save(flags); cpu = smp_processor_id(); if (!arch_spin_trylock(&die_lock)) { if (cpu == die_owner) /* nested oops. should stop eventually */; else arch_spin_lock(&die_lock); } die_nest_count++; die_owner = cpu; console_verbose(); bust_spinlocks(1); return flags; } NOKPROBE_SYMBOL(oops_begin); void __noreturn rewind_stack_and_make_dead(int signr); void oops_end(unsigned long flags, struct pt_regs *regs, int signr) { if (regs && kexec_should_crash(current)) crash_kexec(regs); bust_spinlocks(0); die_owner = -1; add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); die_nest_count--; if (!die_nest_count) /* Nest count reaches zero, release the lock. */ arch_spin_unlock(&die_lock); raw_local_irq_restore(flags); oops_exit(); /* Executive summary in case the oops scrolled away */ __show_regs(&exec_summary_regs, SHOW_REGS_ALL, KERN_DEFAULT); if (!signr) return; if (in_interrupt()) panic("Fatal exception in interrupt"); if (panic_on_oops) panic("Fatal exception"); /* * We're not going to return, but we might be on an IST stack or * have very little stack space left. Rewind the stack and kill * the task. * Before we rewind the stack, we have to tell KASAN that we're going to * reuse the task stack and that existing poisons are invalid. */ kasan_unpoison_task_stack(current); rewind_stack_and_make_dead(signr); } NOKPROBE_SYMBOL(oops_end); static void __die_header(const char *str, struct pt_regs *regs, long err) { const char *pr = ""; /* Save the regs of the first oops for the executive summary later. */ if (!die_counter) exec_summary_regs = *regs; if (IS_ENABLED(CONFIG_PREEMPTION)) pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT"; printk(KERN_DEFAULT "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter, pr, IS_ENABLED(CONFIG_SMP) ? " SMP" : "", debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "", IS_ENABLED(CONFIG_KASAN) ? " KASAN" : "", IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ? (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : ""); } NOKPROBE_SYMBOL(__die_header); static int __die_body(const char *str, struct pt_regs *regs, long err) { show_regs(regs); print_modules(); if (notify_die(DIE_OOPS, str, regs, err, current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP) return 1; return 0; } NOKPROBE_SYMBOL(__die_body); int __die(const char *str, struct pt_regs *regs, long err) { __die_header(str, regs, err); return __die_body(str, regs, err); } NOKPROBE_SYMBOL(__die); /* * This is gone through when something in the kernel has done something bad * and is about to be terminated: */ void die(const char *str, struct pt_regs *regs, long err) { unsigned long flags = oops_begin(); int sig = SIGSEGV; if (__die(str, regs, err)) sig = 0; oops_end(flags, regs, sig); } void die_addr(const char *str, struct pt_regs *regs, long err, long gp_addr) { unsigned long flags = oops_begin(); int sig = SIGSEGV; __die_header(str, regs, err); if (gp_addr) kasan_non_canonical_hook(gp_addr); if (__die_body(str, regs, err)) sig = 0; oops_end(flags, regs, sig); } void show_regs(struct pt_regs *regs) { enum show_regs_mode print_kernel_regs; show_regs_print_info(KERN_DEFAULT); print_kernel_regs = user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL; __show_regs(regs, print_kernel_regs, KERN_DEFAULT); /* * When in-kernel, we also print out the stack at the time of the fault.. */ if (!user_mode(regs)) show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT); } |