Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 | .. SPDX-License-Identifier: GPL-2.0 ==================== The /proc Filesystem ==================== ===================== ======================================= ================ /proc/sys Terrehon Bowden <terrehon@pacbell.net>, October 7 1999 Bodo Bauer <bb@ricochet.net> 2.4.x update Jorge Nerin <comandante@zaralinux.com> November 14 2000 move /proc/sys Shen Feng <shen@cn.fujitsu.com> April 1 2009 fixes/update part 1.1 Stefani Seibold <stefani@seibold.net> June 9 2009 ===================== ======================================= ================ .. Table of Contents 0 Preface 0.1 Introduction/Credits 0.2 Legal Stuff 1 Collecting System Information 1.1 Process-Specific Subdirectories 1.2 Kernel data 1.3 IDE devices in /proc/ide 1.4 Networking info in /proc/net 1.5 SCSI info 1.6 Parallel port info in /proc/parport 1.7 TTY info in /proc/tty 1.8 Miscellaneous kernel statistics in /proc/stat 1.9 Ext4 file system parameters 2 Modifying System Parameters 3 Per-Process Parameters 3.1 /proc/<pid>/oom_adj & /proc/<pid>/oom_score_adj - Adjust the oom-killer score 3.2 /proc/<pid>/oom_score - Display current oom-killer score 3.3 /proc/<pid>/io - Display the IO accounting fields 3.4 /proc/<pid>/coredump_filter - Core dump filtering settings 3.5 /proc/<pid>/mountinfo - Information about mounts 3.6 /proc/<pid>/comm & /proc/<pid>/task/<tid>/comm 3.7 /proc/<pid>/task/<tid>/children - Information about task children 3.8 /proc/<pid>/fdinfo/<fd> - Information about opened file 3.9 /proc/<pid>/map_files - Information about memory mapped files 3.10 /proc/<pid>/timerslack_ns - Task timerslack value 3.11 /proc/<pid>/patch_state - Livepatch patch operation state 3.12 /proc/<pid>/arch_status - Task architecture specific information 4 Configuring procfs 4.1 Mount options 5 Filesystem behavior Preface ======= 0.1 Introduction/Credits ------------------------ This documentation is part of a soon (or so we hope) to be released book on the SuSE Linux distribution. As there is no complete documentation for the /proc file system and we've used many freely available sources to write these chapters, it seems only fair to give the work back to the Linux community. This work is based on the 2.2.* kernel version and the upcoming 2.4.*. I'm afraid it's still far from complete, but we hope it will be useful. As far as we know, it is the first 'all-in-one' document about the /proc file system. It is focused on the Intel x86 hardware, so if you are looking for PPC, ARM, SPARC, AXP, etc., features, you probably won't find what you are looking for. It also only covers IPv4 networking, not IPv6 nor other protocols - sorry. But additions and patches are welcome and will be added to this document if you mail them to Bodo. We'd like to thank Alan Cox, Rik van Riel, and Alexey Kuznetsov and a lot of other people for help compiling this documentation. We'd also like to extend a special thank you to Andi Kleen for documentation, which we relied on heavily to create this document, as well as the additional information he provided. Thanks to everybody else who contributed source or docs to the Linux kernel and helped create a great piece of software... :) If you have any comments, corrections or additions, please don't hesitate to contact Bodo Bauer at bb@ricochet.net. We'll be happy to add them to this document. The latest version of this document is available online at http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html If the above direction does not works for you, you could try the kernel mailing list at linux-kernel@vger.kernel.org and/or try to reach me at comandante@zaralinux.com. 0.2 Legal Stuff --------------- We don't guarantee the correctness of this document, and if you come to us complaining about how you screwed up your system because of incorrect documentation, we won't feel responsible... Chapter 1: Collecting System Information ======================================== In This Chapter --------------- * Investigating the properties of the pseudo file system /proc and its ability to provide information on the running Linux system * Examining /proc's structure * Uncovering various information about the kernel and the processes running on the system ------------------------------------------------------------------------------ The proc file system acts as an interface to internal data structures in the kernel. It can be used to obtain information about the system and to change certain kernel parameters at runtime (sysctl). First, we'll take a look at the read-only parts of /proc. In Chapter 2, we show you how you can use /proc/sys to change settings. 1.1 Process-Specific Subdirectories ----------------------------------- The directory /proc contains (among other things) one subdirectory for each process running on the system, which is named after the process ID (PID). The link 'self' points to the process reading the file system. Each process subdirectory has the entries listed in Table 1-1. Note that an open file descriptor to /proc/<pid> or to any of its contained files or subdirectories does not prevent <pid> being reused for some other process in the event that <pid> exits. Operations on open /proc/<pid> file descriptors corresponding to dead processes never act on any new process that the kernel may, through chance, have also assigned the process ID <pid>. Instead, operations on these FDs usually fail with ESRCH. .. table:: Table 1-1: Process specific entries in /proc ============= =============================================================== File Content ============= =============================================================== clear_refs Clears page referenced bits shown in smaps output cmdline Command line arguments cpu Current and last cpu in which it was executed (2.4)(smp) cwd Link to the current working directory environ Values of environment variables exe Link to the executable of this process fd Directory, which contains all file descriptors maps Memory maps to executables and library files (2.4) mem Memory held by this process root Link to the root directory of this process stat Process status statm Process memory status information status Process status in human readable form wchan Present with CONFIG_KALLSYMS=y: it shows the kernel function symbol the task is blocked in - or "0" if not blocked. pagemap Page table stack Report full stack trace, enable via CONFIG_STACKTRACE smaps An extension based on maps, showing the memory consumption of each mapping and flags associated with it smaps_rollup Accumulated smaps stats for all mappings of the process. This can be derived from smaps, but is faster and more convenient numa_maps An extension based on maps, showing the memory locality and binding policy as well as mem usage (in pages) of each mapping. ============= =============================================================== For example, to get the status information of a process, all you have to do is read the file /proc/PID/status:: >cat /proc/self/status Name: cat State: R (running) Tgid: 5452 Pid: 5452 PPid: 743 TracerPid: 0 (2.4) Uid: 501 501 501 501 Gid: 100 100 100 100 FDSize: 256 Groups: 100 14 16 VmPeak: 5004 kB VmSize: 5004 kB VmLck: 0 kB VmHWM: 476 kB VmRSS: 476 kB RssAnon: 352 kB RssFile: 120 kB RssShmem: 4 kB VmData: 156 kB VmStk: 88 kB VmExe: 68 kB VmLib: 1412 kB VmPTE: 20 kb VmSwap: 0 kB HugetlbPages: 0 kB CoreDumping: 0 THP_enabled: 1 Threads: 1 SigQ: 0/28578 SigPnd: 0000000000000000 ShdPnd: 0000000000000000 SigBlk: 0000000000000000 SigIgn: 0000000000000000 SigCgt: 0000000000000000 CapInh: 00000000fffffeff CapPrm: 0000000000000000 CapEff: 0000000000000000 CapBnd: ffffffffffffffff CapAmb: 0000000000000000 NoNewPrivs: 0 Seccomp: 0 Speculation_Store_Bypass: thread vulnerable SpeculationIndirectBranch: conditional enabled voluntary_ctxt_switches: 0 nonvoluntary_ctxt_switches: 1 This shows you nearly the same information you would get if you viewed it with the ps command. In fact, ps uses the proc file system to obtain its information. But you get a more detailed view of the process by reading the file /proc/PID/status. It fields are described in table 1-2. The statm file contains more detailed information about the process memory usage. Its seven fields are explained in Table 1-3. The stat file contains detailed information about the process itself. Its fields are explained in Table 1-4. (for SMP CONFIG users) For making accounting scalable, RSS related information are handled in an asynchronous manner and the value may not be very precise. To see a precise snapshot of a moment, you can see /proc/<pid>/smaps file and scan page table. It's slow but very precise. .. table:: Table 1-2: Contents of the status files (as of 4.19) ========================== =================================================== Field Content ========================== =================================================== Name filename of the executable Umask file mode creation mask State state (R is running, S is sleeping, D is sleeping in an uninterruptible wait, Z is zombie, T is traced or stopped) Tgid thread group ID Ngid NUMA group ID (0 if none) Pid process id PPid process id of the parent process TracerPid PID of process tracing this process (0 if not) Uid Real, effective, saved set, and file system UIDs Gid Real, effective, saved set, and file system GIDs FDSize number of file descriptor slots currently allocated Groups supplementary group list NStgid descendant namespace thread group ID hierarchy NSpid descendant namespace process ID hierarchy NSpgid descendant namespace process group ID hierarchy NSsid descendant namespace session ID hierarchy VmPeak peak virtual memory size VmSize total program size VmLck locked memory size VmPin pinned memory size VmHWM peak resident set size ("high water mark") VmRSS size of memory portions. It contains the three following parts (VmRSS = RssAnon + RssFile + RssShmem) RssAnon size of resident anonymous memory RssFile size of resident file mappings RssShmem size of resident shmem memory (includes SysV shm, mapping of tmpfs and shared anonymous mappings) VmData size of private data segments VmStk size of stack segments VmExe size of text segment VmLib size of shared library code VmPTE size of page table entries VmSwap amount of swap used by anonymous private data (shmem swap usage is not included) HugetlbPages size of hugetlb memory portions CoreDumping process's memory is currently being dumped (killing the process may lead to a corrupted core) THP_enabled process is allowed to use THP (returns 0 when PR_SET_THP_DISABLE is set on the process Threads number of threads SigQ number of signals queued/max. number for queue SigPnd bitmap of pending signals for the thread ShdPnd bitmap of shared pending signals for the process SigBlk bitmap of blocked signals SigIgn bitmap of ignored signals SigCgt bitmap of caught signals CapInh bitmap of inheritable capabilities CapPrm bitmap of permitted capabilities CapEff bitmap of effective capabilities CapBnd bitmap of capabilities bounding set CapAmb bitmap of ambient capabilities NoNewPrivs no_new_privs, like prctl(PR_GET_NO_NEW_PRIV, ...) Seccomp seccomp mode, like prctl(PR_GET_SECCOMP, ...) Speculation_Store_Bypass speculative store bypass mitigation status SpeculationIndirectBranch indirect branch speculation mode Cpus_allowed mask of CPUs on which this process may run Cpus_allowed_list Same as previous, but in "list format" Mems_allowed mask of memory nodes allowed to this process Mems_allowed_list Same as previous, but in "list format" voluntary_ctxt_switches number of voluntary context switches nonvoluntary_ctxt_switches number of non voluntary context switches ========================== =================================================== .. table:: Table 1-3: Contents of the statm files (as of 2.6.8-rc3) ======== =============================== ============================== Field Content ======== =============================== ============================== size total program size (pages) (same as VmSize in status) resident size of memory portions (pages) (same as VmRSS in status) shared number of pages that are shared (i.e. backed by a file, same as RssFile+RssShmem in status) trs number of pages that are 'code' (not including libs; broken, includes data segment) lrs number of pages of library (always 0 on 2.6) drs number of pages of data/stack (including libs; broken, includes library text) dt number of dirty pages (always 0 on 2.6) ======== =============================== ============================== .. table:: Table 1-4: Contents of the stat files (as of 2.6.30-rc7) ============= =============================================================== Field Content ============= =============================================================== pid process id tcomm filename of the executable state state (R is running, S is sleeping, D is sleeping in an uninterruptible wait, Z is zombie, T is traced or stopped) ppid process id of the parent process pgrp pgrp of the process sid session id tty_nr tty the process uses tty_pgrp pgrp of the tty flags task flags min_flt number of minor faults cmin_flt number of minor faults with child's maj_flt number of major faults cmaj_flt number of major faults with child's utime user mode jiffies stime kernel mode jiffies cutime user mode jiffies with child's cstime kernel mode jiffies with child's priority priority level nice nice level num_threads number of threads it_real_value (obsolete, always 0) start_time time the process started after system boot vsize virtual memory size rss resident set memory size rsslim current limit in bytes on the rss start_code address above which program text can run end_code address below which program text can run start_stack address of the start of the main process stack esp current value of ESP eip current value of EIP pending bitmap of pending signals blocked bitmap of blocked signals sigign bitmap of ignored signals sigcatch bitmap of caught signals 0 (place holder, used to be the wchan address, use /proc/PID/wchan instead) 0 (place holder) 0 (place holder) exit_signal signal to send to parent thread on exit task_cpu which CPU the task is scheduled on rt_priority realtime priority policy scheduling policy (man sched_setscheduler) blkio_ticks time spent waiting for block IO gtime guest time of the task in jiffies cgtime guest time of the task children in jiffies start_data address above which program data+bss is placed end_data address below which program data+bss is placed start_brk address above which program heap can be expanded with brk() arg_start address above which program command line is placed arg_end address below which program command line is placed env_start address above which program environment is placed env_end address below which program environment is placed exit_code the thread's exit_code in the form reported by the waitpid system call ============= =============================================================== The /proc/PID/maps file contains the currently mapped memory regions and their access permissions. The format is:: address perms offset dev inode pathname 08048000-08049000 r-xp 00000000 03:00 8312 /opt/test 08049000-0804a000 rw-p 00001000 03:00 8312 /opt/test 0804a000-0806b000 rw-p 00000000 00:00 0 [heap] a7cb1000-a7cb2000 ---p 00000000 00:00 0 a7cb2000-a7eb2000 rw-p 00000000 00:00 0 a7eb2000-a7eb3000 ---p 00000000 00:00 0 a7eb3000-a7ed5000 rw-p 00000000 00:00 0 a7ed5000-a8008000 r-xp 00000000 03:00 4222 /lib/libc.so.6 a8008000-a800a000 r--p 00133000 03:00 4222 /lib/libc.so.6 a800a000-a800b000 rw-p 00135000 03:00 4222 /lib/libc.so.6 a800b000-a800e000 rw-p 00000000 00:00 0 a800e000-a8022000 r-xp 00000000 03:00 14462 /lib/libpthread.so.0 a8022000-a8023000 r--p 00013000 03:00 14462 /lib/libpthread.so.0 a8023000-a8024000 rw-p 00014000 03:00 14462 /lib/libpthread.so.0 a8024000-a8027000 rw-p 00000000 00:00 0 a8027000-a8043000 r-xp 00000000 03:00 8317 /lib/ld-linux.so.2 a8043000-a8044000 r--p 0001b000 03:00 8317 /lib/ld-linux.so.2 a8044000-a8045000 rw-p 0001c000 03:00 8317 /lib/ld-linux.so.2 aff35000-aff4a000 rw-p 00000000 00:00 0 [stack] ffffe000-fffff000 r-xp 00000000 00:00 0 [vdso] where "address" is the address space in the process that it occupies, "perms" is a set of permissions:: r = read w = write x = execute s = shared p = private (copy on write) "offset" is the offset into the mapping, "dev" is the device (major:minor), and "inode" is the inode on that device. 0 indicates that no inode is associated with the memory region, as the case would be with BSS (uninitialized data). The "pathname" shows the name associated file for this mapping. If the mapping is not associated with a file: ============= ==================================== [heap] the heap of the program [stack] the stack of the main process [vdso] the "virtual dynamic shared object", the kernel system call handler [anon:<name>] an anonymous mapping that has been named by userspace ============= ==================================== or if empty, the mapping is anonymous. The /proc/PID/smaps is an extension based on maps, showing the memory consumption for each of the process's mappings. For each mapping (aka Virtual Memory Area, or VMA) there is a series of lines such as the following:: 08048000-080bc000 r-xp 00000000 03:02 13130 /bin/bash Size: 1084 kB KernelPageSize: 4 kB MMUPageSize: 4 kB Rss: 892 kB Pss: 374 kB Pss_Dirty: 0 kB Shared_Clean: 892 kB Shared_Dirty: 0 kB Private_Clean: 0 kB Private_Dirty: 0 kB Referenced: 892 kB Anonymous: 0 kB LazyFree: 0 kB AnonHugePages: 0 kB ShmemPmdMapped: 0 kB Shared_Hugetlb: 0 kB Private_Hugetlb: 0 kB Swap: 0 kB SwapPss: 0 kB KernelPageSize: 4 kB MMUPageSize: 4 kB Locked: 0 kB THPeligible: 0 VmFlags: rd ex mr mw me dw The first of these lines shows the same information as is displayed for the mapping in /proc/PID/maps. Following lines show the size of the mapping (size); the size of each page allocated when backing a VMA (KernelPageSize), which is usually the same as the size in the page table entries; the page size used by the MMU when backing a VMA (in most cases, the same as KernelPageSize); the amount of the mapping that is currently resident in RAM (RSS); the process' proportional share of this mapping (PSS); and the number of clean and dirty shared and private pages in the mapping. The "proportional set size" (PSS) of a process is the count of pages it has in memory, where each page is divided by the number of processes sharing it. So if a process has 1000 pages all to itself, and 1000 shared with one other process, its PSS will be 1500. "Pss_Dirty" is the portion of PSS which consists of dirty pages. ("Pss_Clean" is not included, but it can be calculated by subtracting "Pss_Dirty" from "Pss".) Note that even a page which is part of a MAP_SHARED mapping, but has only a single pte mapped, i.e. is currently used by only one process, is accounted as private and not as shared. "Referenced" indicates the amount of memory currently marked as referenced or accessed. "Anonymous" shows the amount of memory that does not belong to any file. Even a mapping associated with a file may contain anonymous pages: when MAP_PRIVATE and a page is modified, the file page is replaced by a private anonymous copy. "LazyFree" shows the amount of memory which is marked by madvise(MADV_FREE). The memory isn't freed immediately with madvise(). It's freed in memory pressure if the memory is clean. Please note that the printed value might be lower than the real value due to optimizations used in the current implementation. If this is not desirable please file a bug report. "AnonHugePages" shows the ammount of memory backed by transparent hugepage. "ShmemPmdMapped" shows the ammount of shared (shmem/tmpfs) memory backed by huge pages. "Shared_Hugetlb" and "Private_Hugetlb" show the ammounts of memory backed by hugetlbfs page which is *not* counted in "RSS" or "PSS" field for historical reasons. And these are not included in {Shared,Private}_{Clean,Dirty} field. "Swap" shows how much would-be-anonymous memory is also used, but out on swap. For shmem mappings, "Swap" includes also the size of the mapped (and not replaced by copy-on-write) part of the underlying shmem object out on swap. "SwapPss" shows proportional swap share of this mapping. Unlike "Swap", this does not take into account swapped out page of underlying shmem objects. "Locked" indicates whether the mapping is locked in memory or not. "THPeligible" indicates whether the mapping is eligible for allocating THP pages as well as the THP is PMD mappable or not - 1 if true, 0 otherwise. It just shows the current status. "VmFlags" field deserves a separate description. This member represents the kernel flags associated with the particular virtual memory area in two letter encoded manner. The codes are the following: == ======================================= rd readable wr writeable ex executable sh shared mr may read mw may write me may execute ms may share gd stack segment growns down pf pure PFN range dw disabled write to the mapped file lo pages are locked in memory io memory mapped I/O area sr sequential read advise provided rr random read advise provided dc do not copy area on fork de do not expand area on remapping ac area is accountable nr swap space is not reserved for the area ht area uses huge tlb pages sf synchronous page fault ar architecture specific flag wf wipe on fork dd do not include area into core dump sd soft dirty flag mm mixed map area hg huge page advise flag nh no huge page advise flag mg mergable advise flag bt arm64 BTI guarded page mt arm64 MTE allocation tags are enabled um userfaultfd missing tracking uw userfaultfd wr-protect tracking == ======================================= Note that there is no guarantee that every flag and associated mnemonic will be present in all further kernel releases. Things get changed, the flags may be vanished or the reverse -- new added. Interpretation of their meaning might change in future as well. So each consumer of these flags has to follow each specific kernel version for the exact semantic. This file is only present if the CONFIG_MMU kernel configuration option is enabled. Note: reading /proc/PID/maps or /proc/PID/smaps is inherently racy (consistent output can be achieved only in the single read call). This typically manifests when doing partial reads of these files while the memory map is being modified. Despite the races, we do provide the following guarantees: 1) The mapped addresses never go backwards, which implies no two regions will ever overlap. 2) If there is something at a given vaddr during the entirety of the life of the smaps/maps walk, there will be some output for it. The /proc/PID/smaps_rollup file includes the same fields as /proc/PID/smaps, but their values are the sums of the corresponding values for all mappings of the process. Additionally, it contains these fields: - Pss_Anon - Pss_File - Pss_Shmem They represent the proportional shares of anonymous, file, and shmem pages, as described for smaps above. These fields are omitted in smaps since each mapping identifies the type (anon, file, or shmem) of all pages it contains. Thus all information in smaps_rollup can be derived from smaps, but at a significantly higher cost. The /proc/PID/clear_refs is used to reset the PG_Referenced and ACCESSED/YOUNG bits on both physical and virtual pages associated with a process, and the soft-dirty bit on pte (see Documentation/admin-guide/mm/soft-dirty.rst for details). To clear the bits for all the pages associated with the process:: > echo 1 > /proc/PID/clear_refs To clear the bits for the anonymous pages associated with the process:: > echo 2 > /proc/PID/clear_refs To clear the bits for the file mapped pages associated with the process:: > echo 3 > /proc/PID/clear_refs To clear the soft-dirty bit:: > echo 4 > /proc/PID/clear_refs To reset the peak resident set size ("high water mark") to the process's current value:: > echo 5 > /proc/PID/clear_refs Any other value written to /proc/PID/clear_refs will have no effect. The /proc/pid/pagemap gives the PFN, which can be used to find the pageflags using /proc/kpageflags and number of times a page is mapped using /proc/kpagecount. For detailed explanation, see Documentation/admin-guide/mm/pagemap.rst. The /proc/pid/numa_maps is an extension based on maps, showing the memory locality and binding policy, as well as the memory usage (in pages) of each mapping. The output follows a general format where mapping details get summarized separated by blank spaces, one mapping per each file line:: address policy mapping details 00400000 default file=/usr/local/bin/app mapped=1 active=0 N3=1 kernelpagesize_kB=4 00600000 default file=/usr/local/bin/app anon=1 dirty=1 N3=1 kernelpagesize_kB=4 3206000000 default file=/lib64/ld-2.12.so mapped=26 mapmax=6 N0=24 N3=2 kernelpagesize_kB=4 320621f000 default file=/lib64/ld-2.12.so anon=1 dirty=1 N3=1 kernelpagesize_kB=4 3206220000 default file=/lib64/ld-2.12.so anon=1 dirty=1 N3=1 kernelpagesize_kB=4 3206221000 default anon=1 dirty=1 N3=1 kernelpagesize_kB=4 3206800000 default file=/lib64/libc-2.12.so mapped=59 mapmax=21 active=55 N0=41 N3=18 kernelpagesize_kB=4 320698b000 default file=/lib64/libc-2.12.so 3206b8a000 default file=/lib64/libc-2.12.so anon=2 dirty=2 N3=2 kernelpagesize_kB=4 3206b8e000 default file=/lib64/libc-2.12.so anon=1 dirty=1 N3=1 kernelpagesize_kB=4 3206b8f000 default anon=3 dirty=3 active=1 N3=3 kernelpagesize_kB=4 7f4dc10a2000 default anon=3 dirty=3 N3=3 kernelpagesize_kB=4 7f4dc10b4000 default anon=2 dirty=2 active=1 N3=2 kernelpagesize_kB=4 7f4dc1200000 default file=/anon_hugepage\040(deleted) huge anon=1 dirty=1 N3=1 kernelpagesize_kB=2048 7fff335f0000 default stack anon=3 dirty=3 N3=3 kernelpagesize_kB=4 7fff3369d000 default mapped=1 mapmax=35 active=0 N3=1 kernelpagesize_kB=4 Where: "address" is the starting address for the mapping; "policy" reports the NUMA memory policy set for the mapping (see Documentation/admin-guide/mm/numa_memory_policy.rst); "mapping details" summarizes mapping data such as mapping type, page usage counters, node locality page counters (N0 == node0, N1 == node1, ...) and the kernel page size, in KB, that is backing the mapping up. 1.2 Kernel data --------------- Similar to the process entries, the kernel data files give information about the running kernel. The files used to obtain this information are contained in /proc and are listed in Table 1-5. Not all of these will be present in your system. It depends on the kernel configuration and the loaded modules, which files are there, and which are missing. .. table:: Table 1-5: Kernel info in /proc ============ =============================================================== File Content ============ =============================================================== apm Advanced power management info buddyinfo Kernel memory allocator information (see text) (2.5) bus Directory containing bus specific information cmdline Kernel command line cpuinfo Info about the CPU devices Available devices (block and character) dma Used DMS channels filesystems Supported filesystems driver Various drivers grouped here, currently rtc (2.4) execdomains Execdomains, related to security (2.4) fb Frame Buffer devices (2.4) fs File system parameters, currently nfs/exports (2.4) ide Directory containing info about the IDE subsystem interrupts Interrupt usage iomem Memory map (2.4) ioports I/O port usage irq Masks for irq to cpu affinity (2.4)(smp?) isapnp ISA PnP (Plug&Play) Info (2.4) kcore Kernel core image (can be ELF or A.OUT(deprecated in 2.4)) kmsg Kernel messages ksyms Kernel symbol table loadavg Load average of last 1, 5 & 15 minutes; number of processes currently runnable (running or on ready queue); total number of processes in system; last pid created. All fields are separated by one space except "number of processes currently runnable" and "total number of processes in system", which are separated by a slash ('/'). Example: 0.61 0.61 0.55 3/828 22084 locks Kernel locks meminfo Memory info misc Miscellaneous modules List of loaded modules mounts Mounted filesystems net Networking info (see text) pagetypeinfo Additional page allocator information (see text) (2.5) partitions Table of partitions known to the system pci Deprecated info of PCI bus (new way -> /proc/bus/pci/, decoupled by lspci (2.4) rtc Real time clock scsi SCSI info (see text) slabinfo Slab pool info softirqs softirq usage stat Overall statistics swaps Swap space utilization sys See chapter 2 sysvipc Info of SysVIPC Resources (msg, sem, shm) (2.4) tty Info of tty drivers uptime Wall clock since boot, combined idle time of all cpus version Kernel version video bttv info of video resources (2.4) vmallocinfo Show vmalloced areas ============ =============================================================== You can, for example, check which interrupts are currently in use and what they are used for by looking in the file /proc/interrupts:: > cat /proc/interrupts CPU0 0: 8728810 XT-PIC timer 1: 895 XT-PIC keyboard 2: 0 XT-PIC cascade 3: 531695 XT-PIC aha152x 4: 2014133 XT-PIC serial 5: 44401 XT-PIC pcnet_cs 8: 2 XT-PIC rtc 11: 8 XT-PIC i82365 12: 182918 XT-PIC PS/2 Mouse 13: 1 XT-PIC fpu 14: 1232265 XT-PIC ide0 15: 7 XT-PIC ide1 NMI: 0 In 2.4.* a couple of lines where added to this file LOC & ERR (this time is the output of a SMP machine):: > cat /proc/interrupts CPU0 CPU1 0: 1243498 1214548 IO-APIC-edge timer 1: 8949 8958 IO-APIC-edge keyboard 2: 0 0 XT-PIC cascade 5: 11286 10161 IO-APIC-edge soundblaster 8: 1 0 IO-APIC-edge rtc 9: 27422 27407 IO-APIC-edge 3c503 12: 113645 113873 IO-APIC-edge PS/2 Mouse 13: 0 0 XT-PIC fpu 14: 22491 24012 IO-APIC-edge ide0 15: 2183 2415 IO-APIC-edge ide1 17: 30564 30414 IO-APIC-level eth0 18: 177 164 IO-APIC-level bttv NMI: 2457961 2457959 LOC: 2457882 2457881 ERR: 2155 NMI is incremented in this case because every timer interrupt generates a NMI (Non Maskable Interrupt) which is used by the NMI Watchdog to detect lockups. LOC is the local interrupt counter of the internal APIC of every CPU. ERR is incremented in the case of errors in the IO-APIC bus (the bus that connects the CPUs in a SMP system. This means that an error has been detected, the IO-APIC automatically retry the transmission, so it should not be a big problem, but you should read the SMP-FAQ. In 2.6.2* /proc/interrupts was expanded again. This time the goal was for /proc/interrupts to display every IRQ vector in use by the system, not just those considered 'most important'. The new vectors are: THR interrupt raised when a machine check threshold counter (typically counting ECC corrected errors of memory or cache) exceeds a configurable threshold. Only available on some systems. TRM a thermal event interrupt occurs when a temperature threshold has been exceeded for the CPU. This interrupt may also be generated when the temperature drops back to normal. SPU a spurious interrupt is some interrupt that was raised then lowered by some IO device before it could be fully processed by the APIC. Hence the APIC sees the interrupt but does not know what device it came from. For this case the APIC will generate the interrupt with a IRQ vector of 0xff. This might also be generated by chipset bugs. RES, CAL, TLB rescheduling, call and TLB flush interrupts are sent from one CPU to another per the needs of the OS. Typically, their statistics are used by kernel developers and interested users to determine the occurrence of interrupts of the given type. The above IRQ vectors are displayed only when relevant. For example, the threshold vector does not exist on x86_64 platforms. Others are suppressed when the system is a uniprocessor. As of this writing, only i386 and x86_64 platforms support the new IRQ vector displays. Of some interest is the introduction of the /proc/irq directory to 2.4. It could be used to set IRQ to CPU affinity. This means that you can "hook" an IRQ to only one CPU, or to exclude a CPU of handling IRQs. The contents of the irq subdir is one subdir for each IRQ, and two files; default_smp_affinity and prof_cpu_mask. For example:: > ls /proc/irq/ 0 10 12 14 16 18 2 4 6 8 prof_cpu_mask 1 11 13 15 17 19 3 5 7 9 default_smp_affinity > ls /proc/irq/0/ smp_affinity smp_affinity is a bitmask, in which you can specify which CPUs can handle the IRQ. You can set it by doing:: > echo 1 > /proc/irq/10/smp_affinity This means that only the first CPU will handle the IRQ, but you can also echo 5 which means that only the first and third CPU can handle the IRQ. The contents of each smp_affinity file is the same by default:: > cat /proc/irq/0/smp_affinity ffffffff There is an alternate interface, smp_affinity_list which allows specifying a CPU range instead of a bitmask:: > cat /proc/irq/0/smp_affinity_list 1024-1031 The default_smp_affinity mask applies to all non-active IRQs, which are the IRQs which have not yet been allocated/activated, and hence which lack a /proc/irq/[0-9]* directory. The node file on an SMP system shows the node to which the device using the IRQ reports itself as being attached. This hardware locality information does not include information about any possible driver locality preference. prof_cpu_mask specifies which CPUs are to be profiled by the system wide profiler. Default value is ffffffff (all CPUs if there are only 32 of them). The way IRQs are routed is handled by the IO-APIC, and it's Round Robin between all the CPUs which are allowed to handle it. As usual the kernel has more info than you and does a better job than you, so the defaults are the best choice for almost everyone. [Note this applies only to those IO-APIC's that support "Round Robin" interrupt distribution.] There are three more important subdirectories in /proc: net, scsi, and sys. The general rule is that the contents, or even the existence of these directories, depend on your kernel configuration. If SCSI is not enabled, the directory scsi may not exist. The same is true with the net, which is there only when networking support is present in the running kernel. The slabinfo file gives information about memory usage at the slab level. Linux uses slab pools for memory management above page level in version 2.2. Commonly used objects have their own slab pool (such as network buffers, directory cache, and so on). :: > cat /proc/buddyinfo Node 0, zone DMA 0 4 5 4 4 3 ... Node 0, zone Normal 1 0 0 1 101 8 ... Node 0, zone HighMem 2 0 0 1 1 0 ... External fragmentation is a problem under some workloads, and buddyinfo is a useful tool for helping diagnose these problems. Buddyinfo will give you a clue as to how big an area you can safely allocate, or why a previous allocation failed. Each column represents the number of pages of a certain order which are available. In this case, there are 0 chunks of 2^0*PAGE_SIZE available in ZONE_DMA, 4 chunks of 2^1*PAGE_SIZE in ZONE_DMA, 101 chunks of 2^4*PAGE_SIZE available in ZONE_NORMAL, etc... More information relevant to external fragmentation can be found in pagetypeinfo:: > cat /proc/pagetypeinfo Page block order: 9 Pages per block: 512 Free pages count per migrate type at order 0 1 2 3 4 5 6 7 8 9 10 Node 0, zone DMA, type Unmovable 0 0 0 1 1 1 1 1 1 1 0 Node 0, zone DMA, type Reclaimable 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone DMA, type Movable 1 1 2 1 2 1 1 0 1 0 2 Node 0, zone DMA, type Reserve 0 0 0 0 0 0 0 0 0 1 0 Node 0, zone DMA, type Isolate 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone DMA32, type Unmovable 103 54 77 1 1 1 11 8 7 1 9 Node 0, zone DMA32, type Reclaimable 0 0 2 1 0 0 0 0 1 0 0 Node 0, zone DMA32, type Movable 169 152 113 91 77 54 39 13 6 1 452 Node 0, zone DMA32, type Reserve 1 2 2 2 2 0 1 1 1 1 0 Node 0, zone DMA32, type Isolate 0 0 0 0 0 0 0 0 0 0 0 Number of blocks type Unmovable Reclaimable Movable Reserve Isolate Node 0, zone DMA 2 0 5 1 0 Node 0, zone DMA32 41 6 967 2 0 Fragmentation avoidance in the kernel works by grouping pages of different migrate types into the same contiguous regions of memory called page blocks. A page block is typically the size of the default hugepage size, e.g. 2MB on X86-64. By keeping pages grouped based on their ability to move, the kernel can reclaim pages within a page block to satisfy a high-order allocation. The pagetypinfo begins with information on the size of a page block. It then gives the same type of information as buddyinfo except broken down by migrate-type and finishes with details on how many page blocks of each type exist. If min_free_kbytes has been tuned correctly (recommendations made by hugeadm from libhugetlbfs https://github.com/libhugetlbfs/libhugetlbfs/), one can make an estimate of the likely number of huge pages that can be allocated at a given point in time. All the "Movable" blocks should be allocatable unless memory has been mlock()'d. Some of the Reclaimable blocks should also be allocatable although a lot of filesystem metadata may have to be reclaimed to achieve this. meminfo ~~~~~~~ Provides information about distribution and utilization of memory. This varies by architecture and compile options. Some of the counters reported here overlap. The memory reported by the non overlapping counters may not add up to the overall memory usage and the difference for some workloads can be substantial. In many cases there are other means to find out additional memory using subsystem specific interfaces, for instance /proc/net/sockstat for TCP memory allocations. Example output. You may not have all of these fields. :: > cat /proc/meminfo MemTotal: 32858820 kB MemFree: 21001236 kB MemAvailable: 27214312 kB Buffers: 581092 kB Cached: 5587612 kB SwapCached: 0 kB Active: 3237152 kB Inactive: 7586256 kB Active(anon): 94064 kB Inactive(anon): 4570616 kB Active(file): 3143088 kB Inactive(file): 3015640 kB Unevictable: 0 kB Mlocked: 0 kB SwapTotal: 0 kB SwapFree: 0 kB Zswap: 1904 kB Zswapped: 7792 kB Dirty: 12 kB Writeback: 0 kB AnonPages: 4654780 kB Mapped: 266244 kB Shmem: 9976 kB KReclaimable: 517708 kB Slab: 660044 kB SReclaimable: 517708 kB SUnreclaim: 142336 kB KernelStack: 11168 kB PageTables: 20540 kB SecPageTables: 0 kB NFS_Unstable: 0 kB Bounce: 0 kB WritebackTmp: 0 kB CommitLimit: 16429408 kB Committed_AS: 7715148 kB VmallocTotal: 34359738367 kB VmallocUsed: 40444 kB VmallocChunk: 0 kB Percpu: 29312 kB HardwareCorrupted: 0 kB AnonHugePages: 4149248 kB ShmemHugePages: 0 kB ShmemPmdMapped: 0 kB FileHugePages: 0 kB FilePmdMapped: 0 kB CmaTotal: 0 kB CmaFree: 0 kB HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 2048 kB Hugetlb: 0 kB DirectMap4k: 401152 kB DirectMap2M: 10008576 kB DirectMap1G: 24117248 kB MemTotal Total usable RAM (i.e. physical RAM minus a few reserved bits and the kernel binary code) MemFree Total free RAM. On highmem systems, the sum of LowFree+HighFree MemAvailable An estimate of how much memory is available for starting new applications, without swapping. Calculated from MemFree, SReclaimable, the size of the file LRU lists, and the low watermarks in each zone. The estimate takes into account that the system needs some page cache to function well, and that not all reclaimable slab will be reclaimable, due to items being in use. The impact of those factors will vary from system to system. Buffers Relatively temporary storage for raw disk blocks shouldn't get tremendously large (20MB or so) Cached In-memory cache for files read from the disk (the pagecache) as well as tmpfs & shmem. Doesn't include SwapCached. SwapCached Memory that once was swapped out, is swapped back in but still also is in the swapfile (if memory is needed it doesn't need to be swapped out AGAIN because it is already in the swapfile. This saves I/O) Active Memory that has been used more recently and usually not reclaimed unless absolutely necessary. Inactive Memory which has been less recently used. It is more eligible to be reclaimed for other purposes Unevictable Memory allocated for userspace which cannot be reclaimed, such as mlocked pages, ramfs backing pages, secret memfd pages etc. Mlocked Memory locked with mlock(). HighTotal, HighFree Highmem is all memory above ~860MB of physical memory. Highmem areas are for use by userspace programs, or for the pagecache. The kernel must use tricks to access this memory, making it slower to access than lowmem. LowTotal, LowFree Lowmem is memory which can be used for everything that highmem can be used for, but it is also available for the kernel's use for its own data structures. Among many other things, it is where everything from the Slab is allocated. Bad things happen when you're out of lowmem. SwapTotal total amount of swap space available SwapFree Memory which has been evicted from RAM, and is temporarily on the disk Zswap Memory consumed by the zswap backend (compressed size) Zswapped Amount of anonymous memory stored in zswap (original size) Dirty Memory which is waiting to get written back to the disk Writeback Memory which is actively being written back to the disk AnonPages Non-file backed pages mapped into userspace page tables Mapped files which have been mmaped, such as libraries Shmem Total memory used by shared memory (shmem) and tmpfs KReclaimable Kernel allocations that the kernel will attempt to reclaim under memory pressure. Includes SReclaimable (below), and other direct allocations with a shrinker. Slab in-kernel data structures cache SReclaimable Part of Slab, that might be reclaimed, such as caches SUnreclaim Part of Slab, that cannot be reclaimed on memory pressure KernelStack Memory consumed by the kernel stacks of all tasks PageTables Memory consumed by userspace page tables SecPageTables Memory consumed by secondary page tables, this currently currently includes KVM mmu allocations on x86 and arm64. NFS_Unstable Always zero. Previous counted pages which had been written to the server, but has not been committed to stable storage. Bounce Memory used for block device "bounce buffers" WritebackTmp Memory used by FUSE for temporary writeback buffers CommitLimit Based on the overcommit ratio ('vm.overcommit_ratio'), this is the total amount of memory currently available to be allocated on the system. This limit is only adhered to if strict overcommit accounting is enabled (mode 2 in 'vm.overcommit_memory'). The CommitLimit is calculated with the following formula:: CommitLimit = ([total RAM pages] - [total huge TLB pages]) * overcommit_ratio / 100 + [total swap pages] For example, on a system with 1G of physical RAM and 7G of swap with a `vm.overcommit_ratio` of 30 it would yield a CommitLimit of 7.3G. For more details, see the memory overcommit documentation in mm/overcommit-accounting. Committed_AS The amount of memory presently allocated on the system. The committed memory is a sum of all of the memory which has been allocated by processes, even if it has not been "used" by them as of yet. A process which malloc()'s 1G of memory, but only touches 300M of it will show up as using 1G. This 1G is memory which has been "committed" to by the VM and can be used at any time by the allocating application. With strict overcommit enabled on the system (mode 2 in 'vm.overcommit_memory'), allocations which would exceed the CommitLimit (detailed above) will not be permitted. This is useful if one needs to guarantee that processes will not fail due to lack of memory once that memory has been successfully allocated. VmallocTotal total size of vmalloc virtual address space VmallocUsed amount of vmalloc area which is used VmallocChunk largest contiguous block of vmalloc area which is free Percpu Memory allocated to the percpu allocator used to back percpu allocations. This stat excludes the cost of metadata. HardwareCorrupted The amount of RAM/memory in KB, the kernel identifies as corrupted. AnonHugePages Non-file backed huge pages mapped into userspace page tables ShmemHugePages Memory used by shared memory (shmem) and tmpfs allocated with huge pages ShmemPmdMapped Shared memory mapped into userspace with huge pages FileHugePages Memory used for filesystem data (page cache) allocated with huge pages FilePmdMapped Page cache mapped into userspace with huge pages CmaTotal Memory reserved for the Contiguous Memory Allocator (CMA) CmaFree Free remaining memory in the CMA reserves HugePages_Total, HugePages_Free, HugePages_Rsvd, HugePages_Surp, Hugepagesize, Hugetlb See Documentation/admin-guide/mm/hugetlbpage.rst. DirectMap4k, DirectMap2M, DirectMap1G Breakdown of page table sizes used in the kernel's identity mapping of RAM vmallocinfo ~~~~~~~~~~~ Provides information about vmalloced/vmaped areas. One line per area, containing the virtual address range of the area, size in bytes, caller information of the creator, and optional information depending on the kind of area: ========== =================================================== pages=nr number of pages phys=addr if a physical address was specified ioremap I/O mapping (ioremap() and friends) vmalloc vmalloc() area vmap vmap()ed pages user VM_USERMAP area vpages buffer for pages pointers was vmalloced (huge area) N<node>=nr (Only on NUMA kernels) Number of pages allocated on memory node <node> ========== =================================================== :: > cat /proc/vmallocinfo 0xffffc20000000000-0xffffc20000201000 2101248 alloc_large_system_hash+0x204 ... /0x2c0 pages=512 vmalloc N0=128 N1=128 N2=128 N3=128 0xffffc20000201000-0xffffc20000302000 1052672 alloc_large_system_hash+0x204 ... /0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64 0xffffc20000302000-0xffffc20000304000 8192 acpi_tb_verify_table+0x21/0x4f... phys=7fee8000 ioremap 0xffffc20000304000-0xffffc20000307000 12288 acpi_tb_verify_table+0x21/0x4f... phys=7fee7000 ioremap 0xffffc2000031d000-0xffffc2000031f000 8192 init_vdso_vars+0x112/0x210 0xffffc2000031f000-0xffffc2000032b000 49152 cramfs_uncompress_init+0x2e ... /0x80 pages=11 vmalloc N0=3 N1=3 N2=2 N3=3 0xffffc2000033a000-0xffffc2000033d000 12288 sys_swapon+0x640/0xac0 ... pages=2 vmalloc N1=2 0xffffc20000347000-0xffffc2000034c000 20480 xt_alloc_table_info+0xfe ... /0x130 [x_tables] pages=4 vmalloc N0=4 0xffffffffa0000000-0xffffffffa000f000 61440 sys_init_module+0xc27/0x1d00 ... pages=14 vmalloc N2=14 0xffffffffa000f000-0xffffffffa0014000 20480 sys_init_module+0xc27/0x1d00 ... pages=4 vmalloc N1=4 0xffffffffa0014000-0xffffffffa0017000 12288 sys_init_module+0xc27/0x1d00 ... pages=2 vmalloc N1=2 0xffffffffa0017000-0xffffffffa0022000 45056 sys_init_module+0xc27/0x1d00 ... pages=10 vmalloc N0=10 softirqs ~~~~~~~~ Provides counts of softirq handlers serviced since boot time, for each CPU. :: > cat /proc/softirqs CPU0 CPU1 CPU2 CPU3 HI: 0 0 0 0 TIMER: 27166 27120 27097 27034 NET_TX: 0 0 0 17 NET_RX: 42 0 0 39 BLOCK: 0 0 107 1121 TASKLET: 0 0 0 290 SCHED: 27035 26983 26971 26746 HRTIMER: 0 0 0 0 RCU: 1678 1769 2178 2250 1.3 Networking info in /proc/net -------------------------------- The subdirectory /proc/net follows the usual pattern. Table 1-8 shows the additional values you get for IP version 6 if you configure the kernel to support this. Table 1-9 lists the files and their meaning. .. table:: Table 1-8: IPv6 info in /proc/net ========== ===================================================== File Content ========== ===================================================== udp6 UDP sockets (IPv6) tcp6 TCP sockets (IPv6) raw6 Raw device statistics (IPv6) igmp6 IP multicast addresses, which this host joined (IPv6) if_inet6 List of IPv6 interface addresses ipv6_route Kernel routing table for IPv6 rt6_stats Global IPv6 routing tables statistics sockstat6 Socket statistics (IPv6) snmp6 Snmp data (IPv6) ========== ===================================================== .. table:: Table 1-9: Network info in /proc/net ============= ================================================================ File Content ============= ================================================================ arp Kernel ARP table dev network devices with statistics dev_mcast the Layer2 multicast groups a device is listening too (interface index, label, number of references, number of bound addresses). dev_stat network device status ip_fwchains Firewall chain linkage ip_fwnames Firewall chain names ip_masq Directory containing the masquerading tables ip_masquerade Major masquerading table netstat Network statistics raw raw device statistics route Kernel routing table rpc Directory containing rpc info rt_cache Routing cache snmp SNMP data sockstat Socket statistics tcp TCP sockets udp UDP sockets unix UNIX domain sockets wireless Wireless interface data (Wavelan etc) igmp IP multicast addresses, which this host joined psched Global packet scheduler parameters. netlink List of PF_NETLINK sockets ip_mr_vifs List of multicast virtual interfaces ip_mr_cache List of multicast routing cache ============= ================================================================ You can use this information to see which network devices are available in your system and how much traffic was routed over those devices:: > cat /proc/net/dev Inter-|Receive |[... face |bytes packets errs drop fifo frame compressed multicast|[... lo: 908188 5596 0 0 0 0 0 0 [... ppp0:15475140 20721 410 0 0 410 0 0 [... eth0: 614530 7085 0 0 0 0 0 1 [... ...] Transmit ...] bytes packets errs drop fifo colls carrier compressed ...] 908188 5596 0 0 0 0 0 0 ...] 1375103 17405 0 0 0 0 0 0 ...] 1703981 5535 0 0 0 3 0 0 In addition, each Channel Bond interface has its own directory. For example, the bond0 device will have a directory called /proc/net/bond0/. It will contain information that is specific to that bond, such as the current slaves of the bond, the link status of the slaves, and how many times the slaves link has failed. 1.4 SCSI info ------------- If you have a SCSI host adapter in your system, you'll find a subdirectory named after the driver for this adapter in /proc/scsi. You'll also see a list of all recognized SCSI devices in /proc/scsi:: >cat /proc/scsi/scsi Attached devices: Host: scsi0 Channel: 00 Id: 00 Lun: 00 Vendor: IBM Model: DGHS09U Rev: 03E0 Type: Direct-Access ANSI SCSI revision: 03 Host: scsi0 Channel: 00 Id: 06 Lun: 00 Vendor: PIONEER Model: CD-ROM DR-U06S Rev: 1.04 Type: CD-ROM ANSI SCSI revision: 02 The directory named after the driver has one file for each adapter found in the system. These files contain information about the controller, including the used IRQ and the IO address range. The amount of information shown is dependent on the adapter you use. The example shows the output for an Adaptec AHA-2940 SCSI adapter:: > cat /proc/scsi/aic7xxx/0 Adaptec AIC7xxx driver version: 5.1.19/3.2.4 Compile Options: TCQ Enabled By Default : Disabled AIC7XXX_PROC_STATS : Disabled AIC7XXX_RESET_DELAY : 5 Adapter Configuration: SCSI Adapter: Adaptec AHA-294X Ultra SCSI host adapter Ultra Wide Controller PCI MMAPed I/O Base: 0xeb001000 Adapter SEEPROM Config: SEEPROM found and used. Adaptec SCSI BIOS: Enabled IRQ: 10 SCBs: Active 0, Max Active 2, Allocated 15, HW 16, Page 255 Interrupts: 160328 BIOS Control Word: 0x18b6 Adapter Control Word: 0x005b Extended Translation: Enabled Disconnect Enable Flags: 0xffff Ultra Enable Flags: 0x0001 Tag Queue Enable Flags: 0x0000 Ordered Queue Tag Flags: 0x0000 Default Tag Queue Depth: 8 Tagged Queue By Device array for aic7xxx host instance 0: {255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255} Actual queue depth per device for aic7xxx host instance 0: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} Statistics: (scsi0:0:0:0) Device using Wide/Sync transfers at 40.0 MByte/sec, offset 8 Transinfo settings: current(12/8/1/0), goal(12/8/1/0), user(12/15/1/0) Total transfers 160151 (74577 reads and 85574 writes) (scsi0:0:6:0) Device using Narrow/Sync transfers at 5.0 MByte/sec, offset 15 Transinfo settings: current(50/15/0/0), goal(50/15/0/0), user(50/15/0/0) Total transfers 0 (0 reads and 0 writes) 1.5 Parallel port info in /proc/parport --------------------------------------- The directory /proc/parport contains information about the parallel ports of your system. It has one subdirectory for each port, named after the port number (0,1,2,...). These directories contain the four files shown in Table 1-10. .. table:: Table 1-10: Files in /proc/parport ========= ==================================================================== File Content ========= ==================================================================== autoprobe Any IEEE-1284 device ID information that has been acquired. devices list of the device drivers using that port. A + will appear by the name of the device currently using the port (it might not appear against any). hardware Parallel port's base address, IRQ line and DMA channel. irq IRQ that parport is using for that port. This is in a separate file to allow you to alter it by writing a new value in (IRQ number or none). ========= ==================================================================== 1.6 TTY info in /proc/tty ------------------------- Information about the available and actually used tty's can be found in the directory /proc/tty. You'll find entries for drivers and line disciplines in this directory, as shown in Table 1-11. .. table:: Table 1-11: Files in /proc/tty ============= ============================================== File Content ============= ============================================== drivers list of drivers and their usage ldiscs registered line disciplines driver/serial usage statistic and status of single tty lines ============= ============================================== To see which tty's are currently in use, you can simply look into the file /proc/tty/drivers:: > cat /proc/tty/drivers pty_slave /dev/pts 136 0-255 pty:slave pty_master /dev/ptm 128 0-255 pty:master pty_slave /dev/ttyp 3 0-255 pty:slave pty_master /dev/pty 2 0-255 pty:master serial /dev/cua 5 64-67 serial:callout serial /dev/ttyS 4 64-67 serial /dev/tty0 /dev/tty0 4 0 system:vtmaster /dev/ptmx /dev/ptmx 5 2 system /dev/console /dev/console 5 1 system:console /dev/tty /dev/tty 5 0 system:/dev/tty unknown /dev/tty 4 1-63 console 1.7 Miscellaneous kernel statistics in /proc/stat ------------------------------------------------- Various pieces of information about kernel activity are available in the /proc/stat file. All of the numbers reported in this file are aggregates since the system first booted. For a quick look, simply cat the file:: > cat /proc/stat cpu 2255 34 2290 22625563 6290 127 456 0 0 0 cpu0 1132 34 1441 11311718 3675 127 438 0 0 0 cpu1 1123 0 849 11313845 2614 0 18 0 0 0 intr 114930548 113199788 3 0 5 263 0 4 [... lots more numbers ...] ctxt 1990473 btime 1062191376 processes 2915 procs_running 1 procs_blocked 0 softirq 183433 0 21755 12 39 1137 231 21459 2263 The very first "cpu" line aggregates the numbers in all of the other "cpuN" lines. These numbers identify the amount of time the CPU has spent performing different kinds of work. Time units are in USER_HZ (typically hundredths of a second). The meanings of the columns are as follows, from left to right: - user: normal processes executing in user mode - nice: niced processes executing in user mode - system: processes executing in kernel mode - idle: twiddling thumbs - iowait: In a word, iowait stands for waiting for I/O to complete. But there are several problems: 1. CPU will not wait for I/O to complete, iowait is the time that a task is waiting for I/O to complete. When CPU goes into idle state for outstanding task I/O, another task will be scheduled on this CPU. 2. In a multi-core CPU, the task waiting for I/O to complete is not running on any CPU, so the iowait of each CPU is difficult to calculate. 3. The value of iowait field in /proc/stat will decrease in certain conditions. So, the iowait is not reliable by reading from /proc/stat. - irq: servicing interrupts - softirq: servicing softirqs - steal: involuntary wait - guest: running a normal guest - guest_nice: running a niced guest The "intr" line gives counts of interrupts serviced since boot time, for each of the possible system interrupts. The first column is the total of all interrupts serviced including unnumbered architecture specific interrupts; each subsequent column is the total for that particular numbered interrupt. Unnumbered interrupts are not shown, only summed into the total. The "ctxt" line gives the total number of context switches across all CPUs. The "btime" line gives the time at which the system booted, in seconds since the Unix epoch. The "processes" line gives the number of processes and threads created, which includes (but is not limited to) those created by calls to the fork() and clone() system calls. The "procs_running" line gives the total number of threads that are running or ready to run (i.e., the total number of runnable threads). The "procs_blocked" line gives the number of processes currently blocked, waiting for I/O to complete. The "softirq" line gives counts of softirqs serviced since boot time, for each of the possible system softirqs. The first column is the total of all softirqs serviced; each subsequent column is the total for that particular softirq. 1.8 Ext4 file system parameters ------------------------------- Information about mounted ext4 file systems can be found in /proc/fs/ext4. Each mounted filesystem will have a directory in /proc/fs/ext4 based on its device name (i.e., /proc/fs/ext4/hdc or /proc/fs/ext4/dm-0). The files in each per-device directory are shown in Table 1-12, below. .. table:: Table 1-12: Files in /proc/fs/ext4/<devname> ============== ========================================================== File Content mb_groups details of multiblock allocator buddy cache of free blocks ============== ========================================================== 1.9 /proc/consoles ------------------- Shows registered system console lines. To see which character device lines are currently used for the system console /dev/console, you may simply look into the file /proc/consoles:: > cat /proc/consoles tty0 -WU (ECp) 4:7 ttyS0 -W- (Ep) 4:64 The columns are: +--------------------+-------------------------------------------------------+ | device | name of the device | +====================+=======================================================+ | operations | * R = can do read operations | | | * W = can do write operations | | | * U = can do unblank | +--------------------+-------------------------------------------------------+ | flags | * E = it is enabled | | | * C = it is preferred console | | | * B = it is primary boot console | | | * p = it is used for printk buffer | | | * b = it is not a TTY but a Braille device | | | * a = it is safe to use when cpu is offline | +--------------------+-------------------------------------------------------+ | major:minor | major and minor number of the device separated by a | | | colon | +--------------------+-------------------------------------------------------+ Summary ------- The /proc file system serves information about the running system. It not only allows access to process data but also allows you to request the kernel status by reading files in the hierarchy. The directory structure of /proc reflects the types of information and makes it easy, if not obvious, where to look for specific data. Chapter 2: Modifying System Parameters ====================================== In This Chapter --------------- * Modifying kernel parameters by writing into files found in /proc/sys * Exploring the files which modify certain parameters * Review of the /proc/sys file tree ------------------------------------------------------------------------------ A very interesting part of /proc is the directory /proc/sys. This is not only a source of information, it also allows you to change parameters within the kernel. Be very careful when attempting this. You can optimize your system, but you can also cause it to crash. Never alter kernel parameters on a production system. Set up a development machine and test to make sure that everything works the way you want it to. You may have no alternative but to reboot the machine once an error has been made. To change a value, simply echo the new value into the file. You need to be root to do this. You can create your own boot script to perform this every time your system boots. The files in /proc/sys can be used to fine tune and monitor miscellaneous and general things in the operation of the Linux kernel. Since some of the files can inadvertently disrupt your system, it is advisable to read both documentation and source before actually making adjustments. In any case, be very careful when writing to any of these files. The entries in /proc may change slightly between the 2.1.* and the 2.2 kernel, so if there is any doubt review the kernel documentation in the directory /usr/src/linux/Documentation. This chapter is heavily based on the documentation included in the pre 2.2 kernels, and became part of it in version 2.2.1 of the Linux kernel. Please see: Documentation/admin-guide/sysctl/ directory for descriptions of these entries. Summary ------- Certain aspects of kernel behavior can be modified at runtime, without the need to recompile the kernel, or even to reboot the system. The files in the /proc/sys tree can not only be read, but also modified. You can use the echo command to write value into these files, thereby changing the default settings of the kernel. Chapter 3: Per-process Parameters ================================= 3.1 /proc/<pid>/oom_adj & /proc/<pid>/oom_score_adj- Adjust the oom-killer score -------------------------------------------------------------------------------- These files can be used to adjust the badness heuristic used to select which process gets killed in out of memory (oom) conditions. The badness heuristic assigns a value to each candidate task ranging from 0 (never kill) to 1000 (always kill) to determine which process is targeted. The units are roughly a proportion along that range of allowed memory the process may allocate from based on an estimation of its current memory and swap use. For example, if a task is using all allowed memory, its badness score will be 1000. If it is using half of its allowed memory, its score will be 500. The amount of "allowed" memory depends on the context in which the oom killer was called. If it is due to the memory assigned to the allocating task's cpuset being exhausted, the allowed memory represents the set of mems assigned to that cpuset. If it is due to a mempolicy's node(s) being exhausted, the allowed memory represents the set of mempolicy nodes. If it is due to a memory limit (or swap limit) being reached, the allowed memory is that configured limit. Finally, if it is due to the entire system being out of memory, the allowed memory represents all allocatable resources. The value of /proc/<pid>/oom_score_adj is added to the badness score before it is used to determine which task to kill. Acceptable values range from -1000 (OOM_SCORE_ADJ_MIN) to +1000 (OOM_SCORE_ADJ_MAX). This allows userspace to polarize the preference for oom killing either by always preferring a certain task or completely disabling it. The lowest possible value, -1000, is equivalent to disabling oom killing entirely for that task since it will always report a badness score of 0. Consequently, it is very simple for userspace to define the amount of memory to consider for each task. Setting a /proc/<pid>/oom_score_adj value of +500, for example, is roughly equivalent to allowing the remainder of tasks sharing the same system, cpuset, mempolicy, or memory controller resources to use at least 50% more memory. A value of -500, on the other hand, would be roughly equivalent to discounting 50% of the task's allowed memory from being considered as scoring against the task. For backwards compatibility with previous kernels, /proc/<pid>/oom_adj may also be used to tune the badness score. Its acceptable values range from -16 (OOM_ADJUST_MIN) to +15 (OOM_ADJUST_MAX) and a special value of -17 (OOM_DISABLE) to disable oom killing entirely for that task. Its value is scaled linearly with /proc/<pid>/oom_score_adj. The value of /proc/<pid>/oom_score_adj may be reduced no lower than the last value set by a CAP_SYS_RESOURCE process. To reduce the value any lower requires CAP_SYS_RESOURCE. 3.2 /proc/<pid>/oom_score - Display current oom-killer score ------------------------------------------------------------- This file can be used to check the current score used by the oom-killer for any given <pid>. Use it together with /proc/<pid>/oom_score_adj to tune which process should be killed in an out-of-memory situation. Please note that the exported value includes oom_score_adj so it is effectively in range [0,2000]. 3.3 /proc/<pid>/io - Display the IO accounting fields ------------------------------------------------------- This file contains IO statistics for each running process. Example ~~~~~~~ :: test:/tmp # dd if=/dev/zero of=/tmp/test.dat & [1] 3828 test:/tmp # cat /proc/3828/io rchar: 323934931 wchar: 323929600 syscr: 632687 syscw: 632675 read_bytes: 0 write_bytes: 323932160 cancelled_write_bytes: 0 Description ~~~~~~~~~~~ rchar ^^^^^ I/O counter: chars read The number of bytes which this task has caused to be read from storage. This is simply the sum of bytes which this process passed to read() and pread(). It includes things like tty IO and it is unaffected by whether or not actual physical disk IO was required (the read might have been satisfied from pagecache). wchar ^^^^^ I/O counter: chars written The number of bytes which this task has caused, or shall cause to be written to disk. Similar caveats apply here as with rchar. syscr ^^^^^ I/O counter: read syscalls Attempt to count the number of read I/O operations, i.e. syscalls like read() and pread(). syscw ^^^^^ I/O counter: write syscalls Attempt to count the number of write I/O operations, i.e. syscalls like write() and pwrite(). read_bytes ^^^^^^^^^^ I/O counter: bytes read Attempt to count the number of bytes which this process really did cause to be fetched from the storage layer. Done at the submit_bio() level, so it is accurate for block-backed filesystems. <please add status regarding NFS and CIFS at a later time> write_bytes ^^^^^^^^^^^ I/O counter: bytes written Attempt to count the number of bytes which this process caused to be sent to the storage layer. This is done at page-dirtying time. cancelled_write_bytes ^^^^^^^^^^^^^^^^^^^^^ The big inaccuracy here is truncate. If a process writes 1MB to a file and then deletes the file, it will in fact perform no writeout. But it will have been accounted as having caused 1MB of write. In other words: The number of bytes which this process caused to not happen, by truncating pagecache. A task can cause "negative" IO too. If this task truncates some dirty pagecache, some IO which another task has been accounted for (in its write_bytes) will not be happening. We _could_ just subtract that from the truncating task's write_bytes, but there is information loss in doing that. .. Note:: At its current implementation state, this is a bit racy on 32-bit machines: if process A reads process B's /proc/pid/io while process B is updating one of those 64-bit counters, process A could see an intermediate result. More information about this can be found within the taskstats documentation in Documentation/accounting. 3.4 /proc/<pid>/coredump_filter - Core dump filtering settings --------------------------------------------------------------- When a process is dumped, all anonymous memory is written to a core file as long as the size of the core file isn't limited. But sometimes we don't want to dump some memory segments, for example, huge shared memory or DAX. Conversely, sometimes we want to save file-backed memory segments into a core file, not only the individual files. /proc/<pid>/coredump_filter allows you to customize which memory segments will be dumped when the <pid> process is dumped. coredump_filter is a bitmask of memory types. If a bit of the bitmask is set, memory segments of the corresponding memory type are dumped, otherwise they are not dumped. The following 9 memory types are supported: - (bit 0) anonymous private memory - (bit 1) anonymous shared memory - (bit 2) file-backed private memory - (bit 3) file-backed shared memory - (bit 4) ELF header pages in file-backed private memory areas (it is effective only if the bit 2 is cleared) - (bit 5) hugetlb private memory - (bit 6) hugetlb shared memory - (bit 7) DAX private memory - (bit 8) DAX shared memory Note that MMIO pages such as frame buffer are never dumped and vDSO pages are always dumped regardless of the bitmask status. Note that bits 0-4 don't affect hugetlb or DAX memory. hugetlb memory is only affected by bit 5-6, and DAX is only affected by bits 7-8. The default value of coredump_filter is 0x33; this means all anonymous memory segments, ELF header pages and hugetlb private memory are dumped. If you don't want to dump all shared memory segments attached to pid 1234, write 0x31 to the process's proc file:: $ echo 0x31 > /proc/1234/coredump_filter When a new process is created, the process inherits the bitmask status from its parent. It is useful to set up coredump_filter before the program runs. For example:: $ echo 0x7 > /proc/self/coredump_filter $ ./some_program 3.5 /proc/<pid>/mountinfo - Information about mounts -------------------------------------------------------- This file contains lines of the form:: 36 35 98:0 /mnt1 /mnt2 rw,noatime master:1 - ext3 /dev/root rw,errors=continue (1)(2)(3) (4) (5) (6) (n…m) (m+1)(m+2) (m+3) (m+4) (1) mount ID: unique identifier of the mount (may be reused after umount) (2) parent ID: ID of parent (or of self for the top of the mount tree) (3) major:minor: value of st_dev for files on filesystem (4) root: root of the mount within the filesystem (5) mount point: mount point relative to the process's root (6) mount options: per mount options (n…m) optional fields: zero or more fields of the form "tag[:value]" (m+1) separator: marks the end of the optional fields (m+2) filesystem type: name of filesystem of the form "type[.subtype]" (m+3) mount source: filesystem specific information or "none" (m+4) super options: per super block options Parsers should ignore all unrecognised optional fields. Currently the possible optional fields are: ================ ============================================================== shared:X mount is shared in peer group X master:X mount is slave to peer group X propagate_from:X mount is slave and receives propagation from peer group X [#]_ unbindable mount is unbindable ================ ============================================================== .. [#] X is the closest dominant peer group under the process's root. If X is the immediate master of the mount, or if there's no dominant peer group under the same root, then only the "master:X" field is present and not the "propagate_from:X" field. For more information on mount propagation see: Documentation/filesystems/sharedsubtree.rst 3.6 /proc/<pid>/comm & /proc/<pid>/task/<tid>/comm -------------------------------------------------------- These files provide a method to access a task's comm value. It also allows for a task to set its own or one of its thread siblings comm value. The comm value is limited in size compared to the cmdline value, so writing anything longer then the kernel's TASK_COMM_LEN (currently 16 chars) will result in a truncated comm value. 3.7 /proc/<pid>/task/<tid>/children - Information about task children ------------------------------------------------------------------------- This file provides a fast way to retrieve first level children pids of a task pointed by <pid>/<tid> pair. The format is a space separated stream of pids. Note the "first level" here -- if a child has its own children they will not be listed here; one needs to read /proc/<children-pid>/task/<tid>/children to obtain the descendants. Since this interface is intended to be fast and cheap it doesn't guarantee to provide precise results and some children might be skipped, especially if they've exited right after we printed their pids, so one needs to either stop or freeze processes being inspected if precise results are needed. 3.8 /proc/<pid>/fdinfo/<fd> - Information about opened file --------------------------------------------------------------- This file provides information associated with an opened file. The regular files have at least four fields -- 'pos', 'flags', 'mnt_id' and 'ino'. The 'pos' represents the current offset of the opened file in decimal form [see lseek(2) for details], 'flags' denotes the octal O_xxx mask the file has been created with [see open(2) for details] and 'mnt_id' represents mount ID of the file system containing the opened file [see 3.5 /proc/<pid>/mountinfo for details]. 'ino' represents the inode number of the file. A typical output is:: pos: 0 flags: 0100002 mnt_id: 19 ino: 63107 All locks associated with a file descriptor are shown in its fdinfo too:: lock: 1: FLOCK ADVISORY WRITE 359 00:13:11691 0 EOF The files such as eventfd, fsnotify, signalfd, epoll among the regular pos/flags pair provide additional information particular to the objects they represent. Eventfd files ~~~~~~~~~~~~~ :: pos: 0 flags: 04002 mnt_id: 9 ino: 63107 eventfd-count: 5a where 'eventfd-count' is hex value of a counter. Signalfd files ~~~~~~~~~~~~~~ :: pos: 0 flags: 04002 mnt_id: 9 ino: 63107 sigmask: 0000000000000200 where 'sigmask' is hex value of the signal mask associated with a file. Epoll files ~~~~~~~~~~~ :: pos: 0 flags: 02 mnt_id: 9 ino: 63107 tfd: 5 events: 1d data: ffffffffffffffff pos:0 ino:61af sdev:7 where 'tfd' is a target file descriptor number in decimal form, 'events' is events mask being watched and the 'data' is data associated with a target [see epoll(7) for more details]. The 'pos' is current offset of the target file in decimal form [see lseek(2)], 'ino' and 'sdev' are inode and device numbers where target file resides, all in hex format. Fsnotify files ~~~~~~~~~~~~~~ For inotify files the format is the following:: pos: 0 flags: 02000000 mnt_id: 9 ino: 63107 inotify wd:3 ino:9e7e sdev:800013 mask:800afce ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:7e9e0000640d1b6d where 'wd' is a watch descriptor in decimal form, i.e. a target file descriptor number, 'ino' and 'sdev' are inode and device where the target file resides and the 'mask' is the mask of events, all in hex form [see inotify(7) for more details]. If the kernel was built with exportfs support, the path to the target file is encoded as a file handle. The file handle is provided by three fields 'fhandle-bytes', 'fhandle-type' and 'f_handle', all in hex format. If the kernel is built without exportfs support the file handle won't be printed out. If there is no inotify mark attached yet the 'inotify' line will be omitted. For fanotify files the format is:: pos: 0 flags: 02 mnt_id: 9 ino: 63107 fanotify flags:10 event-flags:0 fanotify mnt_id:12 mflags:40 mask:38 ignored_mask:40000003 fanotify ino:4f969 sdev:800013 mflags:0 mask:3b ignored_mask:40000000 fhandle-bytes:8 fhandle-type:1 f_handle:69f90400c275b5b4 where fanotify 'flags' and 'event-flags' are values used in fanotify_init call, 'mnt_id' is the mount point identifier, 'mflags' is the value of flags associated with mark which are tracked separately from events mask. 'ino' and 'sdev' are target inode and device, 'mask' is the events mask and 'ignored_mask' is the mask of events which are to be ignored. All are in hex format. Incorporation of 'mflags', 'mask' and 'ignored_mask' provide information about flags and mask used in fanotify_mark call [see fsnotify manpage for details]. While the first three lines are mandatory and always printed, the rest is optional and may be omitted if no marks created yet. Timerfd files ~~~~~~~~~~~~~ :: pos: 0 flags: 02 mnt_id: 9 ino: 63107 clockid: 0 ticks: 0 settime flags: 01 it_value: (0, 49406829) it_interval: (1, 0) where 'clockid' is the clock type and 'ticks' is the number of the timer expirations that have occurred [see timerfd_create(2) for details]. 'settime flags' are flags in octal form been used to setup the timer [see timerfd_settime(2) for details]. 'it_value' is remaining time until the timer expiration. 'it_interval' is the interval for the timer. Note the timer might be set up with TIMER_ABSTIME option which will be shown in 'settime flags', but 'it_value' still exhibits timer's remaining time. DMA Buffer files ~~~~~~~~~~~~~~~~ :: pos: 0 flags: 04002 mnt_id: 9 ino: 63107 size: 32768 count: 2 exp_name: system-heap where 'size' is the size of the DMA buffer in bytes. 'count' is the file count of the DMA buffer file. 'exp_name' is the name of the DMA buffer exporter. 3.9 /proc/<pid>/map_files - Information about memory mapped files --------------------------------------------------------------------- This directory contains symbolic links which represent memory mapped files the process is maintaining. Example output:: | lr-------- 1 root root 64 Jan 27 11:24 333c600000-333c620000 -> /usr/lib64/ld-2.18.so | lr-------- 1 root root 64 Jan 27 11:24 333c81f000-333c820000 -> /usr/lib64/ld-2.18.so | lr-------- 1 root root 64 Jan 27 11:24 333c820000-333c821000 -> /usr/lib64/ld-2.18.so | ... | lr-------- 1 root root 64 Jan 27 11:24 35d0421000-35d0422000 -> /usr/lib64/libselinux.so.1 | lr-------- 1 root root 64 Jan 27 11:24 400000-41a000 -> /usr/bin/ls The name of a link represents the virtual memory bounds of a mapping, i.e. vm_area_struct::vm_start-vm_area_struct::vm_end. The main purpose of the map_files is to retrieve a set of memory mapped files in a fast way instead of parsing /proc/<pid>/maps or /proc/<pid>/smaps, both of which contain many more records. At the same time one can open(2) mappings from the listings of two processes and comparing their inode numbers to figure out which anonymous memory areas are actually shared. 3.10 /proc/<pid>/timerslack_ns - Task timerslack value --------------------------------------------------------- This file provides the value of the task's timerslack value in nanoseconds. This value specifies an amount of time that normal timers may be deferred in order to coalesce timers and avoid unnecessary wakeups. This allows a task's interactivity vs power consumption tradeoff to be adjusted. Writing 0 to the file will set the task's timerslack to the default value. Valid values are from 0 - ULLONG_MAX An application setting the value must have PTRACE_MODE_ATTACH_FSCREDS level permissions on the task specified to change its timerslack_ns value. 3.11 /proc/<pid>/patch_state - Livepatch patch operation state ----------------------------------------------------------------- When CONFIG_LIVEPATCH is enabled, this file displays the value of the patch state for the task. A value of '-1' indicates that no patch is in transition. A value of '0' indicates that a patch is in transition and the task is unpatched. If the patch is being enabled, then the task hasn't been patched yet. If the patch is being disabled, then the task has already been unpatched. A value of '1' indicates that a patch is in transition and the task is patched. If the patch is being enabled, then the task has already been patched. If the patch is being disabled, then the task hasn't been unpatched yet. 3.12 /proc/<pid>/arch_status - task architecture specific status ------------------------------------------------------------------- When CONFIG_PROC_PID_ARCH_STATUS is enabled, this file displays the architecture specific status of the task. Example ~~~~~~~ :: $ cat /proc/6753/arch_status AVX512_elapsed_ms: 8 Description ~~~~~~~~~~~ x86 specific entries ~~~~~~~~~~~~~~~~~~~~~ AVX512_elapsed_ms ^^^^^^^^^^^^^^^^^^ If AVX512 is supported on the machine, this entry shows the milliseconds elapsed since the last time AVX512 usage was recorded. The recording happens on a best effort basis when a task is scheduled out. This means that the value depends on two factors: 1) The time which the task spent on the CPU without being scheduled out. With CPU isolation and a single runnable task this can take several seconds. 2) The time since the task was scheduled out last. Depending on the reason for being scheduled out (time slice exhausted, syscall ...) this can be arbitrary long time. As a consequence the value cannot be considered precise and authoritative information. The application which uses this information has to be aware of the overall scenario on the system in order to determine whether a task is a real AVX512 user or not. Precise information can be obtained with performance counters. A special value of '-1' indicates that no AVX512 usage was recorded, thus the task is unlikely an AVX512 user, but depends on the workload and the scheduling scenario, it also could be a false negative mentioned above. Chapter 4: Configuring procfs ============================= 4.1 Mount options --------------------- The following mount options are supported: ========= ======================================================== hidepid= Set /proc/<pid>/ access mode. gid= Set the group authorized to learn processes information. subset= Show only the specified subset of procfs. ========= ======================================================== hidepid=off or hidepid=0 means classic mode - everybody may access all /proc/<pid>/ directories (default). hidepid=noaccess or hidepid=1 means users may not access any /proc/<pid>/ directories but their own. Sensitive files like cmdline, sched*, status are now protected against other users. This makes it impossible to learn whether any user runs specific program (given the program doesn't reveal itself by its behaviour). As an additional bonus, as /proc/<pid>/cmdline is unaccessible for other users, poorly written programs passing sensitive information via program arguments are now protected against local eavesdroppers. hidepid=invisible or hidepid=2 means hidepid=1 plus all /proc/<pid>/ will be fully invisible to other users. It doesn't mean that it hides a fact whether a process with a specific pid value exists (it can be learned by other means, e.g. by "kill -0 $PID"), but it hides process' uid and gid, which may be learned by stat()'ing /proc/<pid>/ otherwise. It greatly complicates an intruder's task of gathering information about running processes, whether some daemon runs with elevated privileges, whether other user runs some sensitive program, whether other users run any program at all, etc. hidepid=ptraceable or hidepid=4 means that procfs should only contain /proc/<pid>/ directories that the caller can ptrace. gid= defines a group authorized to learn processes information otherwise prohibited by hidepid=. If you use some daemon like identd which needs to learn information about processes information, just add identd to this group. subset=pid hides all top level files and directories in the procfs that are not related to tasks. Chapter 5: Filesystem behavior ============================== Originally, before the advent of pid namepsace, procfs was a global file system. It means that there was only one procfs instance in the system. When pid namespace was added, a separate procfs instance was mounted in each pid namespace. So, procfs mount options are global among all mountpoints within the same namespace:: # grep ^proc /proc/mounts proc /proc proc rw,relatime,hidepid=2 0 0 # strace -e mount mount -o hidepid=1 -t proc proc /tmp/proc mount("proc", "/tmp/proc", "proc", 0, "hidepid=1") = 0 +++ exited with 0 +++ # grep ^proc /proc/mounts proc /proc proc rw,relatime,hidepid=2 0 0 proc /tmp/proc proc rw,relatime,hidepid=2 0 0 and only after remounting procfs mount options will change at all mountpoints:: # mount -o remount,hidepid=1 -t proc proc /tmp/proc # grep ^proc /proc/mounts proc /proc proc rw,relatime,hidepid=1 0 0 proc /tmp/proc proc rw,relatime,hidepid=1 0 0 This behavior is different from the behavior of other filesystems. The new procfs behavior is more like other filesystems. Each procfs mount creates a new procfs instance. Mount options affect own procfs instance. It means that it became possible to have several procfs instances displaying tasks with different filtering options in one pid namespace:: # mount -o hidepid=invisible -t proc proc /proc # mount -o hidepid=noaccess -t proc proc /tmp/proc # grep ^proc /proc/mounts proc /proc proc rw,relatime,hidepid=invisible 0 0 proc /tmp/proc proc rw,relatime,hidepid=noaccess 0 0 |