Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 | // SPDX-License-Identifier: GPL-2.0 #include "block-range.h" #include "annotate.h" #include <assert.h> #include <stdlib.h> struct { struct rb_root root; u64 blocks; } block_ranges; static void block_range__debug(void) { /* * XXX still paranoid for now; see if we can make this depend on * DEBUG=1 builds. */ #if 1 struct rb_node *rb; u64 old = 0; /* NULL isn't executable */ for (rb = rb_first(&block_ranges.root); rb; rb = rb_next(rb)) { struct block_range *entry = rb_entry(rb, struct block_range, node); assert(old < entry->start); assert(entry->start <= entry->end); /* single instruction block; jump to a jump */ old = entry->end; } #endif } struct block_range *block_range__find(u64 addr) { struct rb_node **p = &block_ranges.root.rb_node; struct rb_node *parent = NULL; struct block_range *entry; while (*p != NULL) { parent = *p; entry = rb_entry(parent, struct block_range, node); if (addr < entry->start) p = &parent->rb_left; else if (addr > entry->end) p = &parent->rb_right; else return entry; } return NULL; } static inline void rb_link_left_of_node(struct rb_node *left, struct rb_node *node) { struct rb_node **p = &node->rb_left; while (*p) { node = *p; p = &node->rb_right; } rb_link_node(left, node, p); } static inline void rb_link_right_of_node(struct rb_node *right, struct rb_node *node) { struct rb_node **p = &node->rb_right; while (*p) { node = *p; p = &node->rb_left; } rb_link_node(right, node, p); } /** * block_range__create * @start: branch target starting this basic block * @end: branch ending this basic block * * Create all the required block ranges to precisely span the given range. */ struct block_range_iter block_range__create(u64 start, u64 end) { struct rb_node **p = &block_ranges.root.rb_node; struct rb_node *n, *parent = NULL; struct block_range *next, *entry = NULL; struct block_range_iter iter = { NULL, NULL }; while (*p != NULL) { parent = *p; entry = rb_entry(parent, struct block_range, node); if (start < entry->start) p = &parent->rb_left; else if (start > entry->end) p = &parent->rb_right; else break; } /* * Didn't find anything.. there's a hole at @start, however @end might * be inside/behind the next range. */ if (!*p) { if (!entry) /* tree empty */ goto do_whole; /* * If the last node is before, advance one to find the next. */ n = parent; if (entry->end < start) { n = rb_next(n); if (!n) goto do_whole; } next = rb_entry(n, struct block_range, node); if (next->start <= end) { /* add head: [start...][n->start...] */ struct block_range *head = malloc(sizeof(struct block_range)); if (!head) return iter; *head = (struct block_range){ .start = start, .end = next->start - 1, .is_target = 1, .is_branch = 0, }; rb_link_left_of_node(&head->node, &next->node); rb_insert_color(&head->node, &block_ranges.root); block_range__debug(); iter.start = head; goto do_tail; } do_whole: /* * The whole [start..end] range is non-overlapping. */ entry = malloc(sizeof(struct block_range)); if (!entry) return iter; *entry = (struct block_range){ .start = start, .end = end, .is_target = 1, .is_branch = 1, }; rb_link_node(&entry->node, parent, p); rb_insert_color(&entry->node, &block_ranges.root); block_range__debug(); iter.start = entry; iter.end = entry; goto done; } /* * We found a range that overlapped with ours, split if needed. */ if (entry->start < start) { /* split: [e->start...][start...] */ struct block_range *head = malloc(sizeof(struct block_range)); if (!head) return iter; *head = (struct block_range){ .start = entry->start, .end = start - 1, .is_target = entry->is_target, .is_branch = 0, .coverage = entry->coverage, .entry = entry->entry, }; entry->start = start; entry->is_target = 1; entry->entry = 0; rb_link_left_of_node(&head->node, &entry->node); rb_insert_color(&head->node, &block_ranges.root); block_range__debug(); } else if (entry->start == start) entry->is_target = 1; iter.start = entry; do_tail: /* * At this point we've got: @iter.start = [@start...] but @end can still be * inside or beyond it. */ entry = iter.start; for (;;) { /* * If @end is inside @entry, split. */ if (end < entry->end) { /* split: [...end][...e->end] */ struct block_range *tail = malloc(sizeof(struct block_range)); if (!tail) return iter; *tail = (struct block_range){ .start = end + 1, .end = entry->end, .is_target = 0, .is_branch = entry->is_branch, .coverage = entry->coverage, .taken = entry->taken, .pred = entry->pred, }; entry->end = end; entry->is_branch = 1; entry->taken = 0; entry->pred = 0; rb_link_right_of_node(&tail->node, &entry->node); rb_insert_color(&tail->node, &block_ranges.root); block_range__debug(); iter.end = entry; goto done; } /* * If @end matches @entry, done */ if (end == entry->end) { entry->is_branch = 1; iter.end = entry; goto done; } next = block_range__next(entry); if (!next) goto add_tail; /* * If @end is in beyond @entry but not inside @next, add tail. */ if (end < next->start) { /* add tail: [...e->end][...end] */ struct block_range *tail; add_tail: tail = malloc(sizeof(struct block_range)); if (!tail) return iter; *tail = (struct block_range){ .start = entry->end + 1, .end = end, .is_target = 0, .is_branch = 1, }; rb_link_right_of_node(&tail->node, &entry->node); rb_insert_color(&tail->node, &block_ranges.root); block_range__debug(); iter.end = tail; goto done; } /* * If there is a hole between @entry and @next, fill it. */ if (entry->end + 1 != next->start) { struct block_range *hole = malloc(sizeof(struct block_range)); if (!hole) return iter; *hole = (struct block_range){ .start = entry->end + 1, .end = next->start - 1, .is_target = 0, .is_branch = 0, }; rb_link_left_of_node(&hole->node, &next->node); rb_insert_color(&hole->node, &block_ranges.root); block_range__debug(); } entry = next; } done: assert(iter.start->start == start && iter.start->is_target); assert(iter.end->end == end && iter.end->is_branch); block_ranges.blocks++; return iter; } /* * Compute coverage as: * * br->coverage / br->sym->max_coverage * * This ensures each symbol has a 100% spot, to reflect that each symbol has a * most covered section. * * Returns [0-1] for coverage and -1 if we had no data what so ever or the * symbol does not exist. */ double block_range__coverage(struct block_range *br) { struct symbol *sym; if (!br) { if (block_ranges.blocks) return 0; return -1; } sym = br->sym; if (!sym) return -1; return (double)br->coverage / symbol__annotation(sym)->max_coverage; } |