Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 | // SPDX-License-Identifier: GPL-2.0 /* * arch/sh/drivers/dma/dma-sh.c * * SuperH On-chip DMAC Support * * Copyright (C) 2000 Takashi YOSHII * Copyright (C) 2003, 2004 Paul Mundt * Copyright (C) 2005 Andriy Skulysh */ #include <linux/init.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/io.h> #include <mach-dreamcast/mach/dma.h> #include <asm/dma.h> #include <asm/dma-register.h> #include <cpu/dma-register.h> #include <cpu/dma.h> /* * Define the default configuration for dual address memory-memory transfer. * The 0x400 value represents auto-request, external->external. */ #define RS_DUAL (DM_INC | SM_INC | RS_AUTO | TS_INDEX2VAL(XMIT_SZ_32BIT)) static unsigned long dma_find_base(unsigned int chan) { unsigned long base = SH_DMAC_BASE0; #ifdef SH_DMAC_BASE1 if (chan >= 6) base = SH_DMAC_BASE1; #endif return base; } static unsigned long dma_base_addr(unsigned int chan) { unsigned long base = dma_find_base(chan); /* Normalize offset calculation */ if (chan >= 9) chan -= 6; if (chan >= 4) base += 0x10; return base + (chan * 0x10); } #ifdef CONFIG_SH_DMA_IRQ_MULTI static inline unsigned int get_dmte_irq(unsigned int chan) { return chan >= 6 ? DMTE6_IRQ : DMTE0_IRQ; } #else static unsigned int dmte_irq_map[] = { DMTE0_IRQ, DMTE0_IRQ + 1, DMTE0_IRQ + 2, DMTE0_IRQ + 3, #ifdef DMTE4_IRQ DMTE4_IRQ, DMTE4_IRQ + 1, #endif #ifdef DMTE6_IRQ DMTE6_IRQ, DMTE6_IRQ + 1, #endif #ifdef DMTE8_IRQ DMTE8_IRQ, DMTE9_IRQ, DMTE10_IRQ, DMTE11_IRQ, #endif }; static inline unsigned int get_dmte_irq(unsigned int chan) { return dmte_irq_map[chan]; } #endif /* * We determine the correct shift size based off of the CHCR transmit size * for the given channel. Since we know that it will take: * * info->count >> ts_shift[transmit_size] * * iterations to complete the transfer. */ static unsigned int ts_shift[] = TS_SHIFT; static inline unsigned int calc_xmit_shift(struct dma_channel *chan) { u32 chcr = __raw_readl(dma_base_addr(chan->chan) + CHCR); int cnt = ((chcr & CHCR_TS_LOW_MASK) >> CHCR_TS_LOW_SHIFT) | ((chcr & CHCR_TS_HIGH_MASK) >> CHCR_TS_HIGH_SHIFT); return ts_shift[cnt]; } /* * The transfer end interrupt must read the chcr register to end the * hardware interrupt active condition. * Besides that it needs to waken any waiting process, which should handle * setting up the next transfer. */ static irqreturn_t dma_tei(int irq, void *dev_id) { struct dma_channel *chan = dev_id; u32 chcr; chcr = __raw_readl(dma_base_addr(chan->chan) + CHCR); if (!(chcr & CHCR_TE)) return IRQ_NONE; chcr &= ~(CHCR_IE | CHCR_DE); __raw_writel(chcr, (dma_base_addr(chan->chan) + CHCR)); wake_up(&chan->wait_queue); return IRQ_HANDLED; } static int sh_dmac_request_dma(struct dma_channel *chan) { if (unlikely(!(chan->flags & DMA_TEI_CAPABLE))) return 0; return request_irq(get_dmte_irq(chan->chan), dma_tei, IRQF_SHARED, chan->dev_id, chan); } static void sh_dmac_free_dma(struct dma_channel *chan) { free_irq(get_dmte_irq(chan->chan), chan); } static int sh_dmac_configure_channel(struct dma_channel *chan, unsigned long chcr) { if (!chcr) chcr = RS_DUAL | CHCR_IE; if (chcr & CHCR_IE) { chcr &= ~CHCR_IE; chan->flags |= DMA_TEI_CAPABLE; } else { chan->flags &= ~DMA_TEI_CAPABLE; } __raw_writel(chcr, (dma_base_addr(chan->chan) + CHCR)); chan->flags |= DMA_CONFIGURED; return 0; } static void sh_dmac_enable_dma(struct dma_channel *chan) { int irq; u32 chcr; chcr = __raw_readl(dma_base_addr(chan->chan) + CHCR); chcr |= CHCR_DE; if (chan->flags & DMA_TEI_CAPABLE) chcr |= CHCR_IE; __raw_writel(chcr, (dma_base_addr(chan->chan) + CHCR)); if (chan->flags & DMA_TEI_CAPABLE) { irq = get_dmte_irq(chan->chan); enable_irq(irq); } } static void sh_dmac_disable_dma(struct dma_channel *chan) { int irq; u32 chcr; if (chan->flags & DMA_TEI_CAPABLE) { irq = get_dmte_irq(chan->chan); disable_irq(irq); } chcr = __raw_readl(dma_base_addr(chan->chan) + CHCR); chcr &= ~(CHCR_DE | CHCR_TE | CHCR_IE); __raw_writel(chcr, (dma_base_addr(chan->chan) + CHCR)); } static int sh_dmac_xfer_dma(struct dma_channel *chan) { /* * If we haven't pre-configured the channel with special flags, use * the defaults. */ if (unlikely(!(chan->flags & DMA_CONFIGURED))) sh_dmac_configure_channel(chan, 0); sh_dmac_disable_dma(chan); /* * Single-address mode usage note! * * It's important that we don't accidentally write any value to SAR/DAR * (this includes 0) that hasn't been directly specified by the user if * we're in single-address mode. * * In this case, only one address can be defined, anything else will * result in a DMA address error interrupt (at least on the SH-4), * which will subsequently halt the transfer. * * Channel 2 on the Dreamcast is a special case, as this is used for * cascading to the PVR2 DMAC. In this case, we still need to write * SAR and DAR, regardless of value, in order for cascading to work. */ if (chan->sar || (mach_is_dreamcast() && chan->chan == PVR2_CASCADE_CHAN)) __raw_writel(chan->sar, (dma_base_addr(chan->chan) + SAR)); if (chan->dar || (mach_is_dreamcast() && chan->chan == PVR2_CASCADE_CHAN)) __raw_writel(chan->dar, (dma_base_addr(chan->chan) + DAR)); __raw_writel(chan->count >> calc_xmit_shift(chan), (dma_base_addr(chan->chan) + TCR)); sh_dmac_enable_dma(chan); return 0; } static int sh_dmac_get_dma_residue(struct dma_channel *chan) { if (!(__raw_readl(dma_base_addr(chan->chan) + CHCR) & CHCR_DE)) return 0; return __raw_readl(dma_base_addr(chan->chan) + TCR) << calc_xmit_shift(chan); } /* * DMAOR handling */ #if defined(CONFIG_CPU_SUBTYPE_SH7723) || \ defined(CONFIG_CPU_SUBTYPE_SH7724) || \ defined(CONFIG_CPU_SUBTYPE_SH7780) || \ defined(CONFIG_CPU_SUBTYPE_SH7785) #define NR_DMAOR 2 #else #define NR_DMAOR 1 #endif /* * DMAOR bases are broken out amongst channel groups. DMAOR0 manages * channels 0 - 5, DMAOR1 6 - 11 (optional). */ #define dmaor_read_reg(n) __raw_readw(dma_find_base((n)*6)) #define dmaor_write_reg(n, data) __raw_writew(data, dma_find_base(n)*6) static inline int dmaor_reset(int no) { unsigned long dmaor = dmaor_read_reg(no); /* Try to clear the error flags first, incase they are set */ dmaor &= ~(DMAOR_NMIF | DMAOR_AE); dmaor_write_reg(no, dmaor); dmaor |= DMAOR_INIT; dmaor_write_reg(no, dmaor); /* See if we got an error again */ if ((dmaor_read_reg(no) & (DMAOR_AE | DMAOR_NMIF))) { printk(KERN_ERR "dma-sh: Can't initialize DMAOR.\n"); return -EINVAL; } return 0; } /* * DMAE handling */ #ifdef CONFIG_CPU_SH4 #if defined(DMAE1_IRQ) #define NR_DMAE 2 #else #define NR_DMAE 1 #endif static const char *dmae_name[] = { "DMAC Address Error0", "DMAC Address Error1" }; #ifdef CONFIG_SH_DMA_IRQ_MULTI static inline unsigned int get_dma_error_irq(int n) { return get_dmte_irq(n * 6); } #else static unsigned int dmae_irq_map[] = { DMAE0_IRQ, #ifdef DMAE1_IRQ DMAE1_IRQ, #endif }; static inline unsigned int get_dma_error_irq(int n) { return dmae_irq_map[n]; } #endif static irqreturn_t dma_err(int irq, void *dummy) { int i; for (i = 0; i < NR_DMAOR; i++) dmaor_reset(i); disable_irq(irq); return IRQ_HANDLED; } static int dmae_irq_init(void) { int n; for (n = 0; n < NR_DMAE; n++) { int i = request_irq(get_dma_error_irq(n), dma_err, IRQF_SHARED, dmae_name[n], (void *)dmae_name[n]); if (unlikely(i < 0)) { printk(KERN_ERR "%s request_irq fail\n", dmae_name[n]); return i; } } return 0; } static void dmae_irq_free(void) { int n; for (n = 0; n < NR_DMAE; n++) free_irq(get_dma_error_irq(n), NULL); } #else static inline int dmae_irq_init(void) { return 0; } static void dmae_irq_free(void) { } #endif static struct dma_ops sh_dmac_ops = { .request = sh_dmac_request_dma, .free = sh_dmac_free_dma, .get_residue = sh_dmac_get_dma_residue, .xfer = sh_dmac_xfer_dma, .configure = sh_dmac_configure_channel, }; static struct dma_info sh_dmac_info = { .name = "sh_dmac", .nr_channels = CONFIG_NR_ONCHIP_DMA_CHANNELS, .ops = &sh_dmac_ops, .flags = DMAC_CHANNELS_TEI_CAPABLE, }; static int __init sh_dmac_init(void) { struct dma_info *info = &sh_dmac_info; int i, rc; /* * Initialize DMAE, for parts that support it. */ rc = dmae_irq_init(); if (unlikely(rc != 0)) return rc; /* * Initialize DMAOR, and clean up any error flags that may have * been set. */ for (i = 0; i < NR_DMAOR; i++) { rc = dmaor_reset(i); if (unlikely(rc != 0)) return rc; } return register_dmac(info); } static void __exit sh_dmac_exit(void) { dmae_irq_free(); unregister_dmac(&sh_dmac_info); } subsys_initcall(sh_dmac_init); module_exit(sh_dmac_exit); MODULE_AUTHOR("Takashi YOSHII, Paul Mundt, Andriy Skulysh"); MODULE_DESCRIPTION("SuperH On-Chip DMAC Support"); MODULE_LICENSE("GPL v2"); |