// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2018 Chelsio Communications, Inc.
*
* Written by: Atul Gupta (atul.gupta@chelsio.com)
*/
#include <linux/module.h>
#include <linux/list.h>
#include <linux/workqueue.h>
#include <linux/skbuff.h>
#include <linux/timer.h>
#include <linux/notifier.h>
#include <linux/inetdevice.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/tls.h>
#include <net/tls.h>
#include "chtls.h"
#include "chtls_cm.h"
static void __set_tcb_field_direct(struct chtls_sock *csk,
struct cpl_set_tcb_field *req, u16 word,
u64 mask, u64 val, u8 cookie, int no_reply)
{
struct ulptx_idata *sc;
INIT_TP_WR_CPL(req, CPL_SET_TCB_FIELD, csk->tid);
req->wr.wr_mid |= htonl(FW_WR_FLOWID_V(csk->tid));
req->reply_ctrl = htons(NO_REPLY_V(no_reply) |
QUEUENO_V(csk->rss_qid));
req->word_cookie = htons(TCB_WORD_V(word) | TCB_COOKIE_V(cookie));
req->mask = cpu_to_be64(mask);
req->val = cpu_to_be64(val);
sc = (struct ulptx_idata *)(req + 1);
sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_NOOP));
sc->len = htonl(0);
}
static void __set_tcb_field(struct sock *sk, struct sk_buff *skb, u16 word,
u64 mask, u64 val, u8 cookie, int no_reply)
{
struct cpl_set_tcb_field *req;
struct chtls_sock *csk;
struct ulptx_idata *sc;
unsigned int wrlen;
wrlen = roundup(sizeof(*req) + sizeof(*sc), 16);
csk = rcu_dereference_sk_user_data(sk);
req = (struct cpl_set_tcb_field *)__skb_put(skb, wrlen);
__set_tcb_field_direct(csk, req, word, mask, val, cookie, no_reply);
set_wr_txq(skb, CPL_PRIORITY_CONTROL, csk->port_id);
}
/*
* Send control message to HW, message go as immediate data and packet
* is freed immediately.
*/
static int chtls_set_tcb_field(struct sock *sk, u16 word, u64 mask, u64 val)
{
struct cpl_set_tcb_field *req;
unsigned int credits_needed;
struct chtls_sock *csk;
struct ulptx_idata *sc;
struct sk_buff *skb;
unsigned int wrlen;
int ret;
wrlen = roundup(sizeof(*req) + sizeof(*sc), 16);
skb = alloc_skb(wrlen, GFP_ATOMIC);
if (!skb)
return -ENOMEM;
credits_needed = DIV_ROUND_UP(wrlen, 16);
csk = rcu_dereference_sk_user_data(sk);
__set_tcb_field(sk, skb, word, mask, val, 0, 1);
skb_set_queue_mapping(skb, (csk->txq_idx << 1) | CPL_PRIORITY_DATA);
csk->wr_credits -= credits_needed;
csk->wr_unacked += credits_needed;
enqueue_wr(csk, skb);
ret = cxgb4_ofld_send(csk->egress_dev, skb);
if (ret < 0)
kfree_skb(skb);
return ret < 0 ? ret : 0;
}
void chtls_set_tcb_field_rpl_skb(struct sock *sk, u16 word,
u64 mask, u64 val, u8 cookie,
int through_l2t)
{
struct sk_buff *skb;
unsigned int wrlen;
wrlen = sizeof(struct cpl_set_tcb_field) + sizeof(struct ulptx_idata);
wrlen = roundup(wrlen, 16);
skb = alloc_skb(wrlen, GFP_KERNEL | __GFP_NOFAIL);
if (!skb)
return;
__set_tcb_field(sk, skb, word, mask, val, cookie, 0);
send_or_defer(sk, tcp_sk(sk), skb, through_l2t);
}
/*
* Set one of the t_flags bits in the TCB.
*/
int chtls_set_tcb_tflag(struct sock *sk, unsigned int bit_pos, int val)
{
return chtls_set_tcb_field(sk, 1, 1ULL << bit_pos,
(u64)val << bit_pos);
}
static int chtls_set_tcb_keyid(struct sock *sk, int keyid)
{
return chtls_set_tcb_field(sk, 31, 0xFFFFFFFFULL, keyid);
}
static int chtls_set_tcb_seqno(struct sock *sk)
{
return chtls_set_tcb_field(sk, 28, ~0ULL, 0);
}
static int chtls_set_tcb_quiesce(struct sock *sk, int val)
{
return chtls_set_tcb_field(sk, 1, (1ULL << TF_RX_QUIESCE_S),
TF_RX_QUIESCE_V(val));
}
void chtls_set_quiesce_ctrl(struct sock *sk, int val)
{
struct chtls_sock *csk;
struct sk_buff *skb;
unsigned int wrlen;
int ret;
wrlen = sizeof(struct cpl_set_tcb_field) + sizeof(struct ulptx_idata);
wrlen = roundup(wrlen, 16);
skb = alloc_skb(wrlen, GFP_ATOMIC);
if (!skb)
return;
csk = rcu_dereference_sk_user_data(sk);
__set_tcb_field(sk, skb, 1, TF_RX_QUIESCE_V(1), 0, 0, 1);
set_wr_txq(skb, CPL_PRIORITY_CONTROL, csk->port_id);
ret = cxgb4_ofld_send(csk->egress_dev, skb);
if (ret < 0)
kfree_skb(skb);
}
/* TLS Key bitmap processing */
int chtls_init_kmap(struct chtls_dev *cdev, struct cxgb4_lld_info *lldi)
{
unsigned int num_key_ctx, bsize;
int ksize;
num_key_ctx = (lldi->vr->key.size / TLS_KEY_CONTEXT_SZ);
bsize = BITS_TO_LONGS(num_key_ctx);
cdev->kmap.size = num_key_ctx;
cdev->kmap.available = bsize;
ksize = sizeof(*cdev->kmap.addr) * bsize;
cdev->kmap.addr = kvzalloc(ksize, GFP_KERNEL);
if (!cdev->kmap.addr)
return -ENOMEM;
cdev->kmap.start = lldi->vr->key.start;
spin_lock_init(&cdev->kmap.lock);
return 0;
}
static int get_new_keyid(struct chtls_sock *csk, u32 optname)
{
struct net_device *dev = csk->egress_dev;
struct chtls_dev *cdev = csk->cdev;
struct chtls_hws *hws;
struct adapter *adap;
int keyid;
adap = netdev2adap(dev);
hws = &csk->tlshws;
spin_lock_bh(&cdev->kmap.lock);
keyid = find_first_zero_bit(cdev->kmap.addr, cdev->kmap.size);
if (keyid < cdev->kmap.size) {
__set_bit(keyid, cdev->kmap.addr);
if (optname == TLS_RX)
hws->rxkey = keyid;
else
hws->txkey = keyid;
atomic_inc(&adap->chcr_stats.tls_key);
} else {
keyid = -1;
}
spin_unlock_bh(&cdev->kmap.lock);
return keyid;
}
void free_tls_keyid(struct sock *sk)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
struct net_device *dev = csk->egress_dev;
struct chtls_dev *cdev = csk->cdev;
struct chtls_hws *hws;
struct adapter *adap;
if (!cdev->kmap.addr)
return;
adap = netdev2adap(dev);
hws = &csk->tlshws;
spin_lock_bh(&cdev->kmap.lock);
if (hws->rxkey >= 0) {
__clear_bit(hws->rxkey, cdev->kmap.addr);
atomic_dec(&adap->chcr_stats.tls_key);
hws->rxkey = -1;
}
if (hws->txkey >= 0) {
__clear_bit(hws->txkey, cdev->kmap.addr);
atomic_dec(&adap->chcr_stats.tls_key);
hws->txkey = -1;
}
spin_unlock_bh(&cdev->kmap.lock);
}
unsigned int keyid_to_addr(int start_addr, int keyid)
{
return (start_addr + (keyid * TLS_KEY_CONTEXT_SZ)) >> 5;
}
static void chtls_rxkey_ivauth(struct _key_ctx *kctx)
{
kctx->iv_to_auth = cpu_to_be64(KEYCTX_TX_WR_IV_V(6ULL) |
KEYCTX_TX_WR_AAD_V(1ULL) |
KEYCTX_TX_WR_AADST_V(5ULL) |
KEYCTX_TX_WR_CIPHER_V(14ULL) |
KEYCTX_TX_WR_CIPHERST_V(0ULL) |
KEYCTX_TX_WR_AUTH_V(14ULL) |
KEYCTX_TX_WR_AUTHST_V(16ULL) |
KEYCTX_TX_WR_AUTHIN_V(16ULL));
}
static int chtls_key_info(struct chtls_sock *csk,
struct _key_ctx *kctx,
u32 keylen, u32 optname,
int cipher_type)
{
unsigned char key[AES_MAX_KEY_SIZE];
unsigned char *key_p, *salt;
unsigned char ghash_h[AEAD_H_SIZE];
int ck_size, key_ctx_size, kctx_mackey_size, salt_size;
struct crypto_aes_ctx aes;
int ret;
key_ctx_size = sizeof(struct _key_ctx) +
roundup(keylen, 16) + AEAD_H_SIZE;
/* GCM mode of AES supports 128 and 256 bit encryption, so
* prepare key context base on GCM cipher type
*/
switch (cipher_type) {
case TLS_CIPHER_AES_GCM_128: {
struct tls12_crypto_info_aes_gcm_128 *gcm_ctx_128 =
(struct tls12_crypto_info_aes_gcm_128 *)
&csk->tlshws.crypto_info;
memcpy(key, gcm_ctx_128->key, keylen);
key_p = gcm_ctx_128->key;
salt = gcm_ctx_128->salt;
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
kctx_mackey_size = CHCR_KEYCTX_MAC_KEY_SIZE_128;
break;
}
case TLS_CIPHER_AES_GCM_256: {
struct tls12_crypto_info_aes_gcm_256 *gcm_ctx_256 =
(struct tls12_crypto_info_aes_gcm_256 *)
&csk->tlshws.crypto_info;
memcpy(key, gcm_ctx_256->key, keylen);
key_p = gcm_ctx_256->key;
salt = gcm_ctx_256->salt;
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
kctx_mackey_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
break;
}
default:
pr_err("GCM: Invalid key length %d\n", keylen);
return -EINVAL;
}
/* Calculate the H = CIPH(K, 0 repeated 16 times).
* It will go in key context
*/
ret = aes_expandkey(&aes, key, keylen);
if (ret)
return ret;
memset(ghash_h, 0, AEAD_H_SIZE);
aes_encrypt(&aes, ghash_h, ghash_h);
memzero_explicit(&aes, sizeof(aes));
csk->tlshws.keylen = key_ctx_size;
/* Copy the Key context */
if (optname == TLS_RX) {
int key_ctx;
key_ctx = ((key_ctx_size >> 4) << 3);
kctx->ctx_hdr = FILL_KEY_CRX_HDR(ck_size,
kctx_mackey_size,
0, 0, key_ctx);
chtls_rxkey_ivauth(kctx);
} else {
kctx->ctx_hdr = FILL_KEY_CTX_HDR(ck_size,
kctx_mackey_size,
0, 0, key_ctx_size >> 4);
}
memcpy(kctx->salt, salt, salt_size);
memcpy(kctx->key, key_p, keylen);
memcpy(kctx->key + keylen, ghash_h, AEAD_H_SIZE);
/* erase key info from driver */
memset(key_p, 0, keylen);
return 0;
}
static void chtls_set_scmd(struct chtls_sock *csk)
{
struct chtls_hws *hws = &csk->tlshws;
hws->scmd.seqno_numivs =
SCMD_SEQ_NO_CTRL_V(3) |
SCMD_PROTO_VERSION_V(0) |
SCMD_ENC_DEC_CTRL_V(0) |
SCMD_CIPH_AUTH_SEQ_CTRL_V(1) |
SCMD_CIPH_MODE_V(2) |
SCMD_AUTH_MODE_V(4) |
SCMD_HMAC_CTRL_V(0) |
SCMD_IV_SIZE_V(4) |
SCMD_NUM_IVS_V(1);
hws->scmd.ivgen_hdrlen =
SCMD_IV_GEN_CTRL_V(1) |
SCMD_KEY_CTX_INLINE_V(0) |
SCMD_TLS_FRAG_ENABLE_V(1);
}
int chtls_setkey(struct chtls_sock *csk, u32 keylen,
u32 optname, int cipher_type)
{
struct tls_key_req *kwr;
struct chtls_dev *cdev;
struct _key_ctx *kctx;
int wrlen, klen, len;
struct sk_buff *skb;
struct sock *sk;
int keyid;
int kaddr;
int ret;
cdev = csk->cdev;
sk = csk->sk;
klen = roundup((keylen + AEAD_H_SIZE) + sizeof(*kctx), 32);
wrlen = roundup(sizeof(*kwr), 16);
len = klen + wrlen;
/* Flush out-standing data before new key takes effect */
if (optname == TLS_TX) {
lock_sock(sk);
if (skb_queue_len(&csk->txq))
chtls_push_frames(csk, 0);
release_sock(sk);
}
skb = alloc_skb(len, GFP_KERNEL);
if (!skb)
return -ENOMEM;
keyid = get_new_keyid(csk, optname);
if (keyid < 0) {
ret = -ENOSPC;
goto out_nokey;
}
kaddr = keyid_to_addr(cdev->kmap.start, keyid);
kwr = (struct tls_key_req *)__skb_put_zero(skb, len);
kwr->wr.op_to_compl =
cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) | FW_WR_COMPL_F |
FW_WR_ATOMIC_V(1U));
kwr->wr.flowid_len16 =
cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(len, 16) |
FW_WR_FLOWID_V(csk->tid)));
kwr->wr.protocol = 0;
kwr->wr.mfs = htons(TLS_MFS);
kwr->wr.reneg_to_write_rx = optname;
/* ulptx command */
kwr->req.cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE) |
T5_ULP_MEMIO_ORDER_V(1) |
T5_ULP_MEMIO_IMM_V(1));
kwr->req.len16 = cpu_to_be32((csk->tid << 8) |
DIV_ROUND_UP(len - sizeof(kwr->wr), 16));
kwr->req.dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(klen >> 5));
kwr->req.lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(kaddr));
/* sub command */
kwr->sc_imm.cmd_more = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_IMM));
kwr->sc_imm.len = cpu_to_be32(klen);
lock_sock(sk);
/* key info */
kctx = (struct _key_ctx *)(kwr + 1);
ret = chtls_key_info(csk, kctx, keylen, optname, cipher_type);
if (ret)
goto out_notcb;
if (unlikely(csk_flag(sk, CSK_ABORT_SHUTDOWN)))
goto out_notcb;
set_wr_txq(skb, CPL_PRIORITY_DATA, csk->tlshws.txqid);
csk->wr_credits -= DIV_ROUND_UP(len, 16);
csk->wr_unacked += DIV_ROUND_UP(len, 16);
enqueue_wr(csk, skb);
cxgb4_ofld_send(csk->egress_dev, skb);
skb = NULL;
chtls_set_scmd(csk);
/* Clear quiesce for Rx key */
if (optname == TLS_RX) {
ret = chtls_set_tcb_keyid(sk, keyid);
if (ret)
goto out_notcb;
ret = chtls_set_tcb_field(sk, 0,
TCB_ULP_RAW_V(TCB_ULP_RAW_M),
TCB_ULP_RAW_V((TF_TLS_KEY_SIZE_V(1) |
TF_TLS_CONTROL_V(1) |
TF_TLS_ACTIVE_V(1) |
TF_TLS_ENABLE_V(1))));
if (ret)
goto out_notcb;
ret = chtls_set_tcb_seqno(sk);
if (ret)
goto out_notcb;
ret = chtls_set_tcb_quiesce(sk, 0);
if (ret)
goto out_notcb;
csk->tlshws.rxkey = keyid;
} else {
csk->tlshws.tx_seq_no = 0;
csk->tlshws.txkey = keyid;
}
release_sock(sk);
return ret;
out_notcb:
release_sock(sk);
free_tls_keyid(sk);
out_nokey:
kfree_skb(skb);
return ret;
}