Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | // SPDX-License-Identifier: GPL-2.0-only /* * Aptina Sensor PLL Configuration * * Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com> */ #include <linux/device.h> #include <linux/gcd.h> #include <linux/kernel.h> #include <linux/lcm.h> #include <linux/module.h> #include "aptina-pll.h" int aptina_pll_calculate(struct device *dev, const struct aptina_pll_limits *limits, struct aptina_pll *pll) { unsigned int mf_min; unsigned int mf_max; unsigned int p1_min; unsigned int p1_max; unsigned int p1; unsigned int div; dev_dbg(dev, "PLL: ext clock %u pix clock %u\n", pll->ext_clock, pll->pix_clock); if (pll->ext_clock < limits->ext_clock_min || pll->ext_clock > limits->ext_clock_max) { dev_err(dev, "pll: invalid external clock frequency.\n"); return -EINVAL; } if (pll->pix_clock == 0 || pll->pix_clock > limits->pix_clock_max) { dev_err(dev, "pll: invalid pixel clock frequency.\n"); return -EINVAL; } /* Compute the multiplier M and combined N*P1 divisor. */ div = gcd(pll->pix_clock, pll->ext_clock); pll->m = pll->pix_clock / div; div = pll->ext_clock / div; /* We now have the smallest M and N*P1 values that will result in the * desired pixel clock frequency, but they might be out of the valid * range. Compute the factor by which we should multiply them given the * following constraints: * * - minimum/maximum multiplier * - minimum/maximum multiplier output clock frequency assuming the * minimum/maximum N value * - minimum/maximum combined N*P1 divisor */ mf_min = DIV_ROUND_UP(limits->m_min, pll->m); mf_min = max(mf_min, limits->out_clock_min / (pll->ext_clock / limits->n_min * pll->m)); mf_min = max(mf_min, limits->n_min * limits->p1_min / div); mf_max = limits->m_max / pll->m; mf_max = min(mf_max, limits->out_clock_max / (pll->ext_clock / limits->n_max * pll->m)); mf_max = min(mf_max, DIV_ROUND_UP(limits->n_max * limits->p1_max, div)); dev_dbg(dev, "pll: mf min %u max %u\n", mf_min, mf_max); if (mf_min > mf_max) { dev_err(dev, "pll: no valid combined N*P1 divisor.\n"); return -EINVAL; } /* * We're looking for the highest acceptable P1 value for which a * multiplier factor MF exists that fulfills the following conditions: * * 1. p1 is in the [p1_min, p1_max] range given by the limits and is * even * 2. mf is in the [mf_min, mf_max] range computed above * 3. div * mf is a multiple of p1, in order to compute * n = div * mf / p1 * m = pll->m * mf * 4. the internal clock frequency, given by ext_clock / n, is in the * [int_clock_min, int_clock_max] range given by the limits * 5. the output clock frequency, given by ext_clock / n * m, is in the * [out_clock_min, out_clock_max] range given by the limits * * The first naive approach is to iterate over all p1 values acceptable * according to (1) and all mf values acceptable according to (2), and * stop at the first combination that fulfills (3), (4) and (5). This * has a O(n^2) complexity. * * Instead of iterating over all mf values in the [mf_min, mf_max] range * we can compute the mf increment between two acceptable values * according to (3) with * * mf_inc = p1 / gcd(div, p1) (6) * * and round the minimum up to the nearest multiple of mf_inc. This will * restrict the number of mf values to be checked. * * Furthermore, conditions (4) and (5) only restrict the range of * acceptable p1 and mf values by modifying the minimum and maximum * limits. (5) can be expressed as * * ext_clock / (div * mf / p1) * m * mf >= out_clock_min * ext_clock / (div * mf / p1) * m * mf <= out_clock_max * * or * * p1 >= out_clock_min * div / (ext_clock * m) (7) * p1 <= out_clock_max * div / (ext_clock * m) * * Similarly, (4) can be expressed as * * mf >= ext_clock * p1 / (int_clock_max * div) (8) * mf <= ext_clock * p1 / (int_clock_min * div) * * We can thus iterate over the restricted p1 range defined by the * combination of (1) and (7), and then compute the restricted mf range * defined by the combination of (2), (6) and (8). If the resulting mf * range is not empty, any value in the mf range is acceptable. We thus * select the mf lwoer bound and the corresponding p1 value. */ if (limits->p1_min == 0) { dev_err(dev, "pll: P1 minimum value must be >0.\n"); return -EINVAL; } p1_min = max(limits->p1_min, DIV_ROUND_UP(limits->out_clock_min * div, pll->ext_clock * pll->m)); p1_max = min(limits->p1_max, limits->out_clock_max * div / (pll->ext_clock * pll->m)); for (p1 = p1_max & ~1; p1 >= p1_min; p1 -= 2) { unsigned int mf_inc = p1 / gcd(div, p1); unsigned int mf_high; unsigned int mf_low; mf_low = roundup(max(mf_min, DIV_ROUND_UP(pll->ext_clock * p1, limits->int_clock_max * div)), mf_inc); mf_high = min(mf_max, pll->ext_clock * p1 / (limits->int_clock_min * div)); if (mf_low > mf_high) continue; pll->n = div * mf_low / p1; pll->m *= mf_low; pll->p1 = p1; dev_dbg(dev, "PLL: N %u M %u P1 %u\n", pll->n, pll->m, pll->p1); return 0; } dev_err(dev, "pll: no valid N and P1 divisors found.\n"); return -EINVAL; } EXPORT_SYMBOL_GPL(aptina_pll_calculate); MODULE_DESCRIPTION("Aptina PLL Helpers"); MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>"); MODULE_LICENSE("GPL v2"); |