Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 | // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause /* * Copyright(c) 2015, 2016 Intel Corporation. */ #include <linux/delay.h> #include <linux/pci.h> #include <linux/vmalloc.h> #include "hfi.h" /* for the given bus number, return the CSR for reading an i2c line */ static inline u32 i2c_in_csr(u32 bus_num) { return bus_num ? ASIC_QSFP2_IN : ASIC_QSFP1_IN; } /* for the given bus number, return the CSR for writing an i2c line */ static inline u32 i2c_oe_csr(u32 bus_num) { return bus_num ? ASIC_QSFP2_OE : ASIC_QSFP1_OE; } static void hfi1_setsda(void *data, int state) { struct hfi1_i2c_bus *bus = (struct hfi1_i2c_bus *)data; struct hfi1_devdata *dd = bus->controlling_dd; u64 reg; u32 target_oe; target_oe = i2c_oe_csr(bus->num); reg = read_csr(dd, target_oe); /* * The OE bit value is inverted and connected to the pin. When * OE is 0 the pin is left to be pulled up, when the OE is 1 * the pin is driven low. This matches the "open drain" or "open * collector" convention. */ if (state) reg &= ~QSFP_HFI0_I2CDAT; else reg |= QSFP_HFI0_I2CDAT; write_csr(dd, target_oe, reg); /* do a read to force the write into the chip */ (void)read_csr(dd, target_oe); } static void hfi1_setscl(void *data, int state) { struct hfi1_i2c_bus *bus = (struct hfi1_i2c_bus *)data; struct hfi1_devdata *dd = bus->controlling_dd; u64 reg; u32 target_oe; target_oe = i2c_oe_csr(bus->num); reg = read_csr(dd, target_oe); /* * The OE bit value is inverted and connected to the pin. When * OE is 0 the pin is left to be pulled up, when the OE is 1 * the pin is driven low. This matches the "open drain" or "open * collector" convention. */ if (state) reg &= ~QSFP_HFI0_I2CCLK; else reg |= QSFP_HFI0_I2CCLK; write_csr(dd, target_oe, reg); /* do a read to force the write into the chip */ (void)read_csr(dd, target_oe); } static int hfi1_getsda(void *data) { struct hfi1_i2c_bus *bus = (struct hfi1_i2c_bus *)data; u64 reg; u32 target_in; hfi1_setsda(data, 1); /* clear OE so we do not pull line down */ udelay(2); /* 1us pull up + 250ns hold */ target_in = i2c_in_csr(bus->num); reg = read_csr(bus->controlling_dd, target_in); return !!(reg & QSFP_HFI0_I2CDAT); } static int hfi1_getscl(void *data) { struct hfi1_i2c_bus *bus = (struct hfi1_i2c_bus *)data; u64 reg; u32 target_in; hfi1_setscl(data, 1); /* clear OE so we do not pull line down */ udelay(2); /* 1us pull up + 250ns hold */ target_in = i2c_in_csr(bus->num); reg = read_csr(bus->controlling_dd, target_in); return !!(reg & QSFP_HFI0_I2CCLK); } /* * Allocate and initialize the given i2c bus number. * Returns NULL on failure. */ static struct hfi1_i2c_bus *init_i2c_bus(struct hfi1_devdata *dd, struct hfi1_asic_data *ad, int num) { struct hfi1_i2c_bus *bus; int ret; bus = kzalloc(sizeof(*bus), GFP_KERNEL); if (!bus) return NULL; bus->controlling_dd = dd; bus->num = num; /* our bus number */ bus->algo.setsda = hfi1_setsda; bus->algo.setscl = hfi1_setscl; bus->algo.getsda = hfi1_getsda; bus->algo.getscl = hfi1_getscl; bus->algo.udelay = 5; bus->algo.timeout = usecs_to_jiffies(100000); bus->algo.data = bus; bus->adapter.owner = THIS_MODULE; bus->adapter.algo_data = &bus->algo; bus->adapter.dev.parent = &dd->pcidev->dev; snprintf(bus->adapter.name, sizeof(bus->adapter.name), "hfi1_i2c%d", num); ret = i2c_bit_add_bus(&bus->adapter); if (ret) { dd_dev_info(dd, "%s: unable to add i2c bus %d, err %d\n", __func__, num, ret); kfree(bus); return NULL; } return bus; } /* * Initialize i2c buses. * Return 0 on success, -errno on error. */ int set_up_i2c(struct hfi1_devdata *dd, struct hfi1_asic_data *ad) { ad->i2c_bus0 = init_i2c_bus(dd, ad, 0); ad->i2c_bus1 = init_i2c_bus(dd, ad, 1); if (!ad->i2c_bus0 || !ad->i2c_bus1) return -ENOMEM; return 0; }; static void clean_i2c_bus(struct hfi1_i2c_bus *bus) { if (bus) { i2c_del_adapter(&bus->adapter); kfree(bus); } } void clean_up_i2c(struct hfi1_devdata *dd, struct hfi1_asic_data *ad) { if (!ad) return; clean_i2c_bus(ad->i2c_bus0); ad->i2c_bus0 = NULL; clean_i2c_bus(ad->i2c_bus1); ad->i2c_bus1 = NULL; } static int i2c_bus_write(struct hfi1_devdata *dd, struct hfi1_i2c_bus *i2c, u8 slave_addr, int offset, int offset_size, u8 *data, u16 len) { int ret; int num_msgs; u8 offset_bytes[2]; struct i2c_msg msgs[2]; switch (offset_size) { case 0: num_msgs = 1; msgs[0].addr = slave_addr; msgs[0].flags = 0; msgs[0].len = len; msgs[0].buf = data; break; case 2: offset_bytes[1] = (offset >> 8) & 0xff; fallthrough; case 1: num_msgs = 2; offset_bytes[0] = offset & 0xff; msgs[0].addr = slave_addr; msgs[0].flags = 0; msgs[0].len = offset_size; msgs[0].buf = offset_bytes; msgs[1].addr = slave_addr; msgs[1].flags = I2C_M_NOSTART; msgs[1].len = len; msgs[1].buf = data; break; default: return -EINVAL; } i2c->controlling_dd = dd; ret = i2c_transfer(&i2c->adapter, msgs, num_msgs); if (ret != num_msgs) { dd_dev_err(dd, "%s: bus %d, i2c slave 0x%x, offset 0x%x, len 0x%x; write failed, ret %d\n", __func__, i2c->num, slave_addr, offset, len, ret); return ret < 0 ? ret : -EIO; } return 0; } static int i2c_bus_read(struct hfi1_devdata *dd, struct hfi1_i2c_bus *bus, u8 slave_addr, int offset, int offset_size, u8 *data, u16 len) { int ret; int num_msgs; u8 offset_bytes[2]; struct i2c_msg msgs[2]; switch (offset_size) { case 0: num_msgs = 1; msgs[0].addr = slave_addr; msgs[0].flags = I2C_M_RD; msgs[0].len = len; msgs[0].buf = data; break; case 2: offset_bytes[1] = (offset >> 8) & 0xff; fallthrough; case 1: num_msgs = 2; offset_bytes[0] = offset & 0xff; msgs[0].addr = slave_addr; msgs[0].flags = 0; msgs[0].len = offset_size; msgs[0].buf = offset_bytes; msgs[1].addr = slave_addr; msgs[1].flags = I2C_M_RD; msgs[1].len = len; msgs[1].buf = data; break; default: return -EINVAL; } bus->controlling_dd = dd; ret = i2c_transfer(&bus->adapter, msgs, num_msgs); if (ret != num_msgs) { dd_dev_err(dd, "%s: bus %d, i2c slave 0x%x, offset 0x%x, len 0x%x; read failed, ret %d\n", __func__, bus->num, slave_addr, offset, len, ret); return ret < 0 ? ret : -EIO; } return 0; } /* * Raw i2c write. No set-up or lock checking. * * Return 0 on success, -errno on error. */ static int __i2c_write(struct hfi1_pportdata *ppd, u32 target, int i2c_addr, int offset, void *bp, int len) { struct hfi1_devdata *dd = ppd->dd; struct hfi1_i2c_bus *bus; u8 slave_addr; int offset_size; bus = target ? dd->asic_data->i2c_bus1 : dd->asic_data->i2c_bus0; slave_addr = (i2c_addr & 0xff) >> 1; /* convert to 7-bit addr */ offset_size = (i2c_addr >> 8) & 0x3; return i2c_bus_write(dd, bus, slave_addr, offset, offset_size, bp, len); } /* * Caller must hold the i2c chain resource. * * Return number of bytes written, or -errno. */ int i2c_write(struct hfi1_pportdata *ppd, u32 target, int i2c_addr, int offset, void *bp, int len) { int ret; if (!check_chip_resource(ppd->dd, i2c_target(target), __func__)) return -EACCES; ret = __i2c_write(ppd, target, i2c_addr, offset, bp, len); if (ret) return ret; return len; } /* * Raw i2c read. No set-up or lock checking. * * Return 0 on success, -errno on error. */ static int __i2c_read(struct hfi1_pportdata *ppd, u32 target, int i2c_addr, int offset, void *bp, int len) { struct hfi1_devdata *dd = ppd->dd; struct hfi1_i2c_bus *bus; u8 slave_addr; int offset_size; bus = target ? dd->asic_data->i2c_bus1 : dd->asic_data->i2c_bus0; slave_addr = (i2c_addr & 0xff) >> 1; /* convert to 7-bit addr */ offset_size = (i2c_addr >> 8) & 0x3; return i2c_bus_read(dd, bus, slave_addr, offset, offset_size, bp, len); } /* * Caller must hold the i2c chain resource. * * Return number of bytes read, or -errno. */ int i2c_read(struct hfi1_pportdata *ppd, u32 target, int i2c_addr, int offset, void *bp, int len) { int ret; if (!check_chip_resource(ppd->dd, i2c_target(target), __func__)) return -EACCES; ret = __i2c_read(ppd, target, i2c_addr, offset, bp, len); if (ret) return ret; return len; } /* * Write page n, offset m of QSFP memory as defined by SFF 8636 * by writing @addr = ((256 * n) + m) * * Caller must hold the i2c chain resource. * * Return number of bytes written or -errno. */ int qsfp_write(struct hfi1_pportdata *ppd, u32 target, int addr, void *bp, int len) { int count = 0; int offset; int nwrite; int ret = 0; u8 page; if (!check_chip_resource(ppd->dd, i2c_target(target), __func__)) return -EACCES; while (count < len) { /* * Set the qsfp page based on a zero-based address * and a page size of QSFP_PAGESIZE bytes. */ page = (u8)(addr / QSFP_PAGESIZE); ret = __i2c_write(ppd, target, QSFP_DEV | QSFP_OFFSET_SIZE, QSFP_PAGE_SELECT_BYTE_OFFS, &page, 1); /* QSFPs require a 5-10msec delay after write operations */ mdelay(5); if (ret) { hfi1_dev_porterr(ppd->dd, ppd->port, "QSFP chain %d can't write QSFP_PAGE_SELECT_BYTE: %d\n", target, ret); break; } offset = addr % QSFP_PAGESIZE; nwrite = len - count; /* truncate write to boundary if crossing boundary */ if (((addr % QSFP_RW_BOUNDARY) + nwrite) > QSFP_RW_BOUNDARY) nwrite = QSFP_RW_BOUNDARY - (addr % QSFP_RW_BOUNDARY); ret = __i2c_write(ppd, target, QSFP_DEV | QSFP_OFFSET_SIZE, offset, bp + count, nwrite); /* QSFPs require a 5-10msec delay after write operations */ mdelay(5); if (ret) /* stop on error */ break; count += nwrite; addr += nwrite; } if (ret < 0) return ret; return count; } /* * Perform a stand-alone single QSFP write. Acquire the resource, do the * write, then release the resource. */ int one_qsfp_write(struct hfi1_pportdata *ppd, u32 target, int addr, void *bp, int len) { struct hfi1_devdata *dd = ppd->dd; u32 resource = qsfp_resource(dd); int ret; ret = acquire_chip_resource(dd, resource, QSFP_WAIT); if (ret) return ret; ret = qsfp_write(ppd, target, addr, bp, len); release_chip_resource(dd, resource); return ret; } /* * Access page n, offset m of QSFP memory as defined by SFF 8636 * by reading @addr = ((256 * n) + m) * * Caller must hold the i2c chain resource. * * Return the number of bytes read or -errno. */ int qsfp_read(struct hfi1_pportdata *ppd, u32 target, int addr, void *bp, int len) { int count = 0; int offset; int nread; int ret = 0; u8 page; if (!check_chip_resource(ppd->dd, i2c_target(target), __func__)) return -EACCES; while (count < len) { /* * Set the qsfp page based on a zero-based address * and a page size of QSFP_PAGESIZE bytes. */ page = (u8)(addr / QSFP_PAGESIZE); ret = __i2c_write(ppd, target, QSFP_DEV | QSFP_OFFSET_SIZE, QSFP_PAGE_SELECT_BYTE_OFFS, &page, 1); /* QSFPs require a 5-10msec delay after write operations */ mdelay(5); if (ret) { hfi1_dev_porterr(ppd->dd, ppd->port, "QSFP chain %d can't write QSFP_PAGE_SELECT_BYTE: %d\n", target, ret); break; } offset = addr % QSFP_PAGESIZE; nread = len - count; /* truncate read to boundary if crossing boundary */ if (((addr % QSFP_RW_BOUNDARY) + nread) > QSFP_RW_BOUNDARY) nread = QSFP_RW_BOUNDARY - (addr % QSFP_RW_BOUNDARY); ret = __i2c_read(ppd, target, QSFP_DEV | QSFP_OFFSET_SIZE, offset, bp + count, nread); if (ret) /* stop on error */ break; count += nread; addr += nread; } if (ret < 0) return ret; return count; } /* * Perform a stand-alone single QSFP read. Acquire the resource, do the * read, then release the resource. */ int one_qsfp_read(struct hfi1_pportdata *ppd, u32 target, int addr, void *bp, int len) { struct hfi1_devdata *dd = ppd->dd; u32 resource = qsfp_resource(dd); int ret; ret = acquire_chip_resource(dd, resource, QSFP_WAIT); if (ret) return ret; ret = qsfp_read(ppd, target, addr, bp, len); release_chip_resource(dd, resource); return ret; } /* * This function caches the QSFP memory range in 128 byte chunks. * As an example, the next byte after address 255 is byte 128 from * upper page 01H (if existing) rather than byte 0 from lower page 00H. * Access page n, offset m of QSFP memory as defined by SFF 8636 * in the cache by reading byte ((128 * n) + m) * The calls to qsfp_{read,write} in this function correctly handle the * address map difference between this mapping and the mapping implemented * by those functions * * The caller must be holding the QSFP i2c chain resource. */ int refresh_qsfp_cache(struct hfi1_pportdata *ppd, struct qsfp_data *cp) { u32 target = ppd->dd->hfi1_id; int ret; unsigned long flags; u8 *cache = &cp->cache[0]; /* ensure sane contents on invalid reads, for cable swaps */ memset(cache, 0, (QSFP_MAX_NUM_PAGES * 128)); spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); ppd->qsfp_info.cache_valid = 0; spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags); if (!qsfp_mod_present(ppd)) { ret = -ENODEV; goto bail; } ret = qsfp_read(ppd, target, 0, cache, QSFP_PAGESIZE); if (ret != QSFP_PAGESIZE) { dd_dev_info(ppd->dd, "%s: Page 0 read failed, expected %d, got %d\n", __func__, QSFP_PAGESIZE, ret); goto bail; } /* Is paging enabled? */ if (!(cache[2] & 4)) { /* Paging enabled, page 03 required */ if ((cache[195] & 0xC0) == 0xC0) { /* all */ ret = qsfp_read(ppd, target, 384, cache + 256, 128); if (ret <= 0 || ret != 128) { dd_dev_info(ppd->dd, "%s failed\n", __func__); goto bail; } ret = qsfp_read(ppd, target, 640, cache + 384, 128); if (ret <= 0 || ret != 128) { dd_dev_info(ppd->dd, "%s failed\n", __func__); goto bail; } ret = qsfp_read(ppd, target, 896, cache + 512, 128); if (ret <= 0 || ret != 128) { dd_dev_info(ppd->dd, "%s failed\n", __func__); goto bail; } } else if ((cache[195] & 0x80) == 0x80) { /* only page 2 and 3 */ ret = qsfp_read(ppd, target, 640, cache + 384, 128); if (ret <= 0 || ret != 128) { dd_dev_info(ppd->dd, "%s failed\n", __func__); goto bail; } ret = qsfp_read(ppd, target, 896, cache + 512, 128); if (ret <= 0 || ret != 128) { dd_dev_info(ppd->dd, "%s failed\n", __func__); goto bail; } } else if ((cache[195] & 0x40) == 0x40) { /* only page 1 and 3 */ ret = qsfp_read(ppd, target, 384, cache + 256, 128); if (ret <= 0 || ret != 128) { dd_dev_info(ppd->dd, "%s failed\n", __func__); goto bail; } ret = qsfp_read(ppd, target, 896, cache + 512, 128); if (ret <= 0 || ret != 128) { dd_dev_info(ppd->dd, "%s failed\n", __func__); goto bail; } } else { /* only page 3 */ ret = qsfp_read(ppd, target, 896, cache + 512, 128); if (ret <= 0 || ret != 128) { dd_dev_info(ppd->dd, "%s failed\n", __func__); goto bail; } } } spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); ppd->qsfp_info.cache_valid = 1; ppd->qsfp_info.cache_refresh_required = 0; spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags); return 0; bail: memset(cache, 0, (QSFP_MAX_NUM_PAGES * 128)); return ret; } const char * const hfi1_qsfp_devtech[16] = { "850nm VCSEL", "1310nm VCSEL", "1550nm VCSEL", "1310nm FP", "1310nm DFB", "1550nm DFB", "1310nm EML", "1550nm EML", "Cu Misc", "1490nm DFB", "Cu NoEq", "Cu Eq", "Undef", "Cu Active BothEq", "Cu FarEq", "Cu NearEq" }; #define QSFP_DUMP_CHUNK 16 /* Holds longest string */ #define QSFP_DEFAULT_HDR_CNT 224 #define QSFP_PWR(pbyte) (((pbyte) >> 6) & 3) #define QSFP_HIGH_PWR(pbyte) ((pbyte) & 3) /* For use with QSFP_HIGH_PWR macro */ #define QSFP_HIGH_PWR_UNUSED 0 /* Bits [1:0] = 00 implies low power module */ /* * Takes power class byte [Page 00 Byte 129] in SFF 8636 * Returns power class as integer (1 through 7, per SFF 8636 rev 2.4) */ int get_qsfp_power_class(u8 power_byte) { if (QSFP_HIGH_PWR(power_byte) == QSFP_HIGH_PWR_UNUSED) /* power classes count from 1, their bit encodings from 0 */ return (QSFP_PWR(power_byte) + 1); /* * 00 in the high power classes stands for unused, bringing * balance to the off-by-1 offset above, we add 4 here to * account for the difference between the low and high power * groups */ return (QSFP_HIGH_PWR(power_byte) + 4); } int qsfp_mod_present(struct hfi1_pportdata *ppd) { struct hfi1_devdata *dd = ppd->dd; u64 reg; reg = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_IN : ASIC_QSFP1_IN); return !(reg & QSFP_HFI0_MODPRST_N); } /* * This function maps QSFP memory addresses in 128 byte chunks in the following * fashion per the CableInfo SMA query definition in the IBA 1.3 spec/OPA Gen 1 * spec * For addr 000-127, lower page 00h * For addr 128-255, upper page 00h * For addr 256-383, upper page 01h * For addr 384-511, upper page 02h * For addr 512-639, upper page 03h * * For addresses beyond this range, it returns the invalid range of data buffer * set to 0. * For upper pages that are optional, if they are not valid, returns the * particular range of bytes in the data buffer set to 0. */ int get_cable_info(struct hfi1_devdata *dd, u32 port_num, u32 addr, u32 len, u8 *data) { struct hfi1_pportdata *ppd; u32 excess_len = len; int ret = 0, offset = 0; if (port_num > dd->num_pports || port_num < 1) { dd_dev_info(dd, "%s: Invalid port number %d\n", __func__, port_num); ret = -EINVAL; goto set_zeroes; } ppd = dd->pport + (port_num - 1); if (!qsfp_mod_present(ppd)) { ret = -ENODEV; goto set_zeroes; } if (!ppd->qsfp_info.cache_valid) { ret = -EINVAL; goto set_zeroes; } if (addr >= (QSFP_MAX_NUM_PAGES * 128)) { ret = -ERANGE; goto set_zeroes; } if ((addr + len) > (QSFP_MAX_NUM_PAGES * 128)) { excess_len = (addr + len) - (QSFP_MAX_NUM_PAGES * 128); memcpy(data, &ppd->qsfp_info.cache[addr], (len - excess_len)); data += (len - excess_len); goto set_zeroes; } memcpy(data, &ppd->qsfp_info.cache[addr], len); if (addr <= QSFP_MONITOR_VAL_END && (addr + len) >= QSFP_MONITOR_VAL_START) { /* Overlap with the dynamic channel monitor range */ if (addr < QSFP_MONITOR_VAL_START) { if (addr + len <= QSFP_MONITOR_VAL_END) len = addr + len - QSFP_MONITOR_VAL_START; else len = QSFP_MONITOR_RANGE; offset = QSFP_MONITOR_VAL_START - addr; addr = QSFP_MONITOR_VAL_START; } else if (addr == QSFP_MONITOR_VAL_START) { offset = 0; if (addr + len > QSFP_MONITOR_VAL_END) len = QSFP_MONITOR_RANGE; } else { offset = 0; if (addr + len > QSFP_MONITOR_VAL_END) len = QSFP_MONITOR_VAL_END - addr + 1; } /* Refresh the values of the dynamic monitors from the cable */ ret = one_qsfp_read(ppd, dd->hfi1_id, addr, data + offset, len); if (ret != len) { ret = -EAGAIN; goto set_zeroes; } } return 0; set_zeroes: memset(data, 0, excess_len); return ret; } static const char *pwr_codes[8] = {"N/AW", "1.5W", "2.0W", "2.5W", "3.5W", "4.0W", "4.5W", "5.0W" }; int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len) { u8 *cache = &ppd->qsfp_info.cache[0]; u8 bin_buff[QSFP_DUMP_CHUNK]; char lenstr[6]; int sofar; int bidx = 0; u8 *atten = &cache[QSFP_ATTEN_OFFS]; u8 *vendor_oui = &cache[QSFP_VOUI_OFFS]; u8 power_byte = 0; sofar = 0; lenstr[0] = ' '; lenstr[1] = '\0'; if (ppd->qsfp_info.cache_valid) { if (QSFP_IS_CU(cache[QSFP_MOD_TECH_OFFS])) snprintf(lenstr, sizeof(lenstr), "%dM ", cache[QSFP_MOD_LEN_OFFS]); power_byte = cache[QSFP_MOD_PWR_OFFS]; sofar += scnprintf(buf + sofar, len - sofar, "PWR:%.3sW\n", pwr_codes[get_qsfp_power_class(power_byte)]); sofar += scnprintf(buf + sofar, len - sofar, "TECH:%s%s\n", lenstr, hfi1_qsfp_devtech[(cache[QSFP_MOD_TECH_OFFS]) >> 4]); sofar += scnprintf(buf + sofar, len - sofar, "Vendor:%.*s\n", QSFP_VEND_LEN, &cache[QSFP_VEND_OFFS]); sofar += scnprintf(buf + sofar, len - sofar, "OUI:%06X\n", QSFP_OUI(vendor_oui)); sofar += scnprintf(buf + sofar, len - sofar, "Part#:%.*s\n", QSFP_PN_LEN, &cache[QSFP_PN_OFFS]); sofar += scnprintf(buf + sofar, len - sofar, "Rev:%.*s\n", QSFP_REV_LEN, &cache[QSFP_REV_OFFS]); if (QSFP_IS_CU(cache[QSFP_MOD_TECH_OFFS])) sofar += scnprintf(buf + sofar, len - sofar, "Atten:%d, %d\n", QSFP_ATTEN_SDR(atten), QSFP_ATTEN_DDR(atten)); sofar += scnprintf(buf + sofar, len - sofar, "Serial:%.*s\n", QSFP_SN_LEN, &cache[QSFP_SN_OFFS]); sofar += scnprintf(buf + sofar, len - sofar, "Date:%.*s\n", QSFP_DATE_LEN, &cache[QSFP_DATE_OFFS]); sofar += scnprintf(buf + sofar, len - sofar, "Lot:%.*s\n", QSFP_LOT_LEN, &cache[QSFP_LOT_OFFS]); while (bidx < QSFP_DEFAULT_HDR_CNT) { int iidx; memcpy(bin_buff, &cache[bidx], QSFP_DUMP_CHUNK); for (iidx = 0; iidx < QSFP_DUMP_CHUNK; ++iidx) { sofar += scnprintf(buf + sofar, len - sofar, " %02X", bin_buff[iidx]); } sofar += scnprintf(buf + sofar, len - sofar, "\n"); bidx += QSFP_DUMP_CHUNK; } } return sofar; } |