Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 | // SPDX-License-Identifier: GPL-2.0 /* * fs/partitions/aix.c * * Copyright (C) 2012-2013 Philippe De Muyter <phdm@macqel.be> */ #include "check.h" struct lvm_rec { char lvm_id[4]; /* "_LVM" */ char reserved4[16]; __be32 lvmarea_len; __be32 vgda_len; __be32 vgda_psn[2]; char reserved36[10]; __be16 pp_size; /* log2(pp_size) */ char reserved46[12]; __be16 version; }; struct vgda { __be32 secs; __be32 usec; char reserved8[16]; __be16 numlvs; __be16 maxlvs; __be16 pp_size; __be16 numpvs; __be16 total_vgdas; __be16 vgda_size; }; struct lvd { __be16 lv_ix; __be16 res2; __be16 res4; __be16 maxsize; __be16 lv_state; __be16 mirror; __be16 mirror_policy; __be16 num_lps; __be16 res10[8]; }; struct lvname { char name[64]; }; struct ppe { __be16 lv_ix; unsigned short res2; unsigned short res4; __be16 lp_ix; unsigned short res8[12]; }; struct pvd { char reserved0[16]; __be16 pp_count; char reserved18[2]; __be32 psn_part1; char reserved24[8]; struct ppe ppe[1016]; }; #define LVM_MAXLVS 256 /** * read_lba(): Read bytes from disk, starting at given LBA * @state * @lba * @buffer * @count * * Description: Reads @count bytes from @state->disk into @buffer. * Returns number of bytes read on success, 0 on error. */ static size_t read_lba(struct parsed_partitions *state, u64 lba, u8 *buffer, size_t count) { size_t totalreadcount = 0; if (!buffer || lba + count / 512 > get_capacity(state->disk) - 1ULL) return 0; while (count) { int copied = 512; Sector sect; unsigned char *data = read_part_sector(state, lba++, §); if (!data) break; if (copied > count) copied = count; memcpy(buffer, data, copied); put_dev_sector(sect); buffer += copied; totalreadcount += copied; count -= copied; } return totalreadcount; } /** * alloc_pvd(): reads physical volume descriptor * @state * @lba * * Description: Returns pvd on success, NULL on error. * Allocates space for pvd and fill it with disk blocks at @lba * Notes: remember to free pvd when you're done! */ static struct pvd *alloc_pvd(struct parsed_partitions *state, u32 lba) { size_t count = sizeof(struct pvd); struct pvd *p; p = kmalloc(count, GFP_KERNEL); if (!p) return NULL; if (read_lba(state, lba, (u8 *) p, count) < count) { kfree(p); return NULL; } return p; } /** * alloc_lvn(): reads logical volume names * @state * @lba * * Description: Returns lvn on success, NULL on error. * Allocates space for lvn and fill it with disk blocks at @lba * Notes: remember to free lvn when you're done! */ static struct lvname *alloc_lvn(struct parsed_partitions *state, u32 lba) { size_t count = sizeof(struct lvname) * LVM_MAXLVS; struct lvname *p; p = kmalloc(count, GFP_KERNEL); if (!p) return NULL; if (read_lba(state, lba, (u8 *) p, count) < count) { kfree(p); return NULL; } return p; } int aix_partition(struct parsed_partitions *state) { int ret = 0; Sector sect; unsigned char *d; u32 pp_bytes_size; u32 pp_blocks_size = 0; u32 vgda_sector = 0; u32 vgda_len = 0; int numlvs = 0; struct pvd *pvd = NULL; struct lv_info { unsigned short pps_per_lv; unsigned short pps_found; unsigned char lv_is_contiguous; } *lvip; struct lvname *n = NULL; d = read_part_sector(state, 7, §); if (d) { struct lvm_rec *p = (struct lvm_rec *)d; u16 lvm_version = be16_to_cpu(p->version); char tmp[64]; if (lvm_version == 1) { int pp_size_log2 = be16_to_cpu(p->pp_size); pp_bytes_size = 1 << pp_size_log2; pp_blocks_size = pp_bytes_size / 512; snprintf(tmp, sizeof(tmp), " AIX LVM header version %u found\n", lvm_version); vgda_len = be32_to_cpu(p->vgda_len); vgda_sector = be32_to_cpu(p->vgda_psn[0]); } else { snprintf(tmp, sizeof(tmp), " unsupported AIX LVM version %d found\n", lvm_version); } strlcat(state->pp_buf, tmp, PAGE_SIZE); put_dev_sector(sect); } if (vgda_sector && (d = read_part_sector(state, vgda_sector, §))) { struct vgda *p = (struct vgda *)d; numlvs = be16_to_cpu(p->numlvs); put_dev_sector(sect); } lvip = kcalloc(state->limit, sizeof(struct lv_info), GFP_KERNEL); if (!lvip) return 0; if (numlvs && (d = read_part_sector(state, vgda_sector + 1, §))) { struct lvd *p = (struct lvd *)d; int i; n = alloc_lvn(state, vgda_sector + vgda_len - 33); if (n) { int foundlvs = 0; for (i = 0; foundlvs < numlvs && i < state->limit; i += 1) { lvip[i].pps_per_lv = be16_to_cpu(p[i].num_lps); if (lvip[i].pps_per_lv) foundlvs += 1; } /* pvd loops depend on n[].name and lvip[].pps_per_lv */ pvd = alloc_pvd(state, vgda_sector + 17); } put_dev_sector(sect); } if (pvd) { int numpps = be16_to_cpu(pvd->pp_count); int psn_part1 = be32_to_cpu(pvd->psn_part1); int i; int cur_lv_ix = -1; int next_lp_ix = 1; int lp_ix; for (i = 0; i < numpps; i += 1) { struct ppe *p = pvd->ppe + i; unsigned int lv_ix; lp_ix = be16_to_cpu(p->lp_ix); if (!lp_ix) { next_lp_ix = 1; continue; } lv_ix = be16_to_cpu(p->lv_ix) - 1; if (lv_ix >= state->limit) { cur_lv_ix = -1; continue; } lvip[lv_ix].pps_found += 1; if (lp_ix == 1) { cur_lv_ix = lv_ix; next_lp_ix = 1; } else if (lv_ix != cur_lv_ix || lp_ix != next_lp_ix) { next_lp_ix = 1; continue; } if (lp_ix == lvip[lv_ix].pps_per_lv) { char tmp[70]; put_partition(state, lv_ix + 1, (i + 1 - lp_ix) * pp_blocks_size + psn_part1, lvip[lv_ix].pps_per_lv * pp_blocks_size); snprintf(tmp, sizeof(tmp), " <%s>\n", n[lv_ix].name); strlcat(state->pp_buf, tmp, PAGE_SIZE); lvip[lv_ix].lv_is_contiguous = 1; ret = 1; next_lp_ix = 1; } else next_lp_ix += 1; } for (i = 0; i < state->limit; i += 1) if (lvip[i].pps_found && !lvip[i].lv_is_contiguous) { char tmp[sizeof(n[i].name) + 1]; // null char snprintf(tmp, sizeof(tmp), "%s", n[i].name); pr_warn("partition %s (%u pp's found) is " "not contiguous\n", tmp, lvip[i].pps_found); } kfree(pvd); } kfree(n); kfree(lvip); return ret; } |